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ABSTRACT

Many application domains such as surveillance, envirortalenonitoring or sensor-data processing need upper
and lower bounds on areas that are covered by a certain feator example, a smart-city infrastructure might need

bounds on the size of an area polluted with fine-dust, to eraombustion-engine traffic. Obtaining such bounds
is challenging, because in almost any real-world applicatinformation about the region of interest is incomplete,

e.g., the database of sensor data contains only a limitedbeurof samples. Existing approaches cannot provide
upper and lower bounds or depend on restrictive assumptiems, the area must be convex. Our approach in
turn is based on the natural assumption that it is possibleptecify a minimal diameter for the feature in question.

Given this assumption, we formally derive bounds on the si&g and we provide algorithms that compute these
bounds from a database of sensor data, based on geometoiogiderations. We evaluate our algorithms both with

a real-world case study and with synthetic data.
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1 INTRODUCTION

Determining the size of a surface area that is coverec
by a certain attribute or feature from a database of sam
ples is a standard task in many application domains. Fo
example, meteorologists are interested in the area siz |
where the thickness of the ozone layer is bebo Dob- ‘ - -
son units, traffic planners need to know the size of th e

area where the density of the particlBd/,, is above

50ug/m?, and firefighter units that are approved for ra- Figure 1: Temperature Anomalies [6]

diation zones must know the size of the area where radia-

tion is higher thari 5m.Sv. However, in many real-world

applications it is an expensive and time-consuming tas&mples in the database may well be correlated. This
to take samples of the feature in question, be it by daakes it difficult to impossible to reliably determine the
ploying sensor networks, by constructing weather sgror of the surface area estimated. In such scenarios,
tions or by taking samples manually. In consequence, #per and lower bounds of the area sizes allow a precise
surface area frequently must be estimated from a ratBésessment of the information provided by the samples.
small database. Furthermore, in many situations, somdo provide a concrete example, Figure 1 shows a
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color-encoded map of the database of five-year globa?. We formally specify a lower bounfl B,,,csent ON
temperature anomalies [6] from 1880 to 2012. Tem- the size of an area where the feature measured is
peratures that are higher than the global mean temper- present, and a lower boundB,;s..; for an area
ature over a time interval of five years are shown in where the feature measured is absent. The corre-
red, and lower than normal temperatures are shown in sponding upper bounds are the total area considered
blue. Figure 1 has been estimated according to the con- MiNUSL By, esent aNALBgpsent, respectively.
textual knowledge that temperature anomalies correlatd. We develop measures to verify if the data set is con-
strongly [7] for measuring stations separated by up to sistent with the minimal radius, and if taking more
1000km. However, due to incomplete spatial coverage samplesis likely to bring the bounds much closer to
in the era before satellite-aided meteorology, the degree the real area sizes.
of uncertainty of the estimated temperature anomalies id. We provide proof-of-concept algorithms that com-
this figure can be high. pute the boundd B, csent and LBgpsent from a
Existing estimation methods, e.g., Random Sampling, database of samples by geometrical considerations,
Spline Lattices, or Voronoi Diagrams (cf. Section2fora and we evaluate our approach by means of a real-
more extensive list), are best-effort approaches. That is, world case study and by experiments with synthetic
such methods try to estimate the area in question as well data.
as possible, but cannot provide guarantees on the min©ur experiments confirm the applicability of our ap-
imal or maximal size of the area. The well-research@doach with real-world problems and indicate directions
skyline database operator [13] does not solve this prdbr future research, e.g., to optimize the processing of
lem either. This is because it is based on the assumptinm bounds for application scenarios that depend on “big
that the values of interest describe a convex area that ddats”.
not consist of multiple isolated regions. We strive for a

different approach towards a database operator that pfesper Structure:  The next section contains a running

vides bounds on area sizes. Our starting point is the @8gample and reviews related work. Section 3 describes
sumption that one can specify a minimal diameter for thagy upper and lower bounds, followed by an experimen-
feature in question. This is typical in many scenarios: ta| evaluation in Section 4 and a discussion of our ap-

e Temperature anomalies have a minimal radius Bfoach in Section 5. Section 6 concludes.
Tmin = D00km ([7], Figure 1).

. ? BACKGROUND
e In meteorology a low pressure area is never smaller

than some hundred kilometers. In this section, we introduce an application scenario

e Thunderstorms have a minimal size and a bord&yhich we use as our running example, and we outline
line without sharp angles. related work.

e The diffusi_o_n of quic_is follows a circular pattern,, 1 Application Scenario

and the minimal radius can be calculated from the

Brownian motion depending on the temperature dhink of a smart-city-infrastructure that has been de-

the fluid. ployed in an urban area to execute Directive 2008/50/EC

on ambient air quality and cleaner air for Europe [5].

' 2008/50/EC specifies that the smallest polluted area to
be considered must have a size of at |€astn - 250m,

We formally derive upper and lower bounds on thiee., the minimal radius of the area covered by the fea-
size of an area that is covered by a certain feature. In pare “PM;, > 50ug/m>” is explicitly given. To en-
ticular, we ensure that, given a database of samples &mde the directive, the infrastructure contains a number
a minimal radius of the feature, the area covered caf-measuring points that observe the air pollution with
not be smaller or larger than what is expressed by quarticlesPM;,, and it controls a number of electronic
bounds. Except for straightforward bounds such as zeoad signs to re-route local motor-vehicle traffic out of
as the minimal area size, this is challenging. In particeach area where the density Bi\/;, exceeds the limit
lar, it is unclear how to specify these bounds, and howad50..g/m?. Thus, the infrastructure possesses informa-
transform this specification into a computable problerion of positions within a city where the pollution with
In this paper, we make the following contributions: ~ PM;, is above and below the limit, but it does not know

1. We motivate the concept of computing bounds @bout the spatial extent of the pollution at these positions

the size of an area that is partly covered by a featurle infrastructure must use this information to assess the
which in turn has a minimal radius. size of the polluted areas in each city district, and it must

e The minimal diameter of a car ®cm (Bubble Car
e.g., BMW Isetta).
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an area of at leas0m radius around the source of pollu-
tion. Based on this information, it is possible to identify
locations that definitively have not been polluted, e.g., if

a disc with aradius,,;,, = 50m does not fit into a group

of sensors that are close together and have not detected
P M, above the allowed limit. We will exploit this idea

to obtain bounds on the area size.

Area Size in 1,000 (°)?

Afalse
Est. Ape, —— 2.2 Related Work
0 | | | | |

0 1,000 2000 3,000 4,000 5,000 To the best of our knowledge, we are first to compute

Number of Sensors bounds on the area size based on the weak assump-
tion that the feature observed has a minimal diameter.
Besides the random sampling method sketched in the
last subsection, a number of approaches have been re-
I . ___searched to estimate the size of a feature without this as-
take act_|0n in a way that local traffic is affected as I'mgumption. Such approaches can provide stochastic guar-
as possible. antees, i.e., that the border is inside a certain intervél wi

A straightforward solution to obtain the size of the pol given confidence. However, they cannot provide upper
luted area would be random sampling [4]: If the measWind lower bounds, as required by our application sce-
ing points have been deployed independently from tRgrig.
sources of pollution, the polluted area can be eStimatedGeographic Information Syster(@IS) frequently use
as the total area surface, multiplied with the numbergﬁ,”neS or polygon lattices to interpolate areas from a
sensors that have detect®d/1o > 50u9/m?, divided |imited set of sampling points (“Kriging”, [9]). Such ap-
by the number of all sensors. However, the uncertairfyoaches can provide stochastic guarantees. Neverthe-
of this approach is high for a number of sensor nodes th&ds, in real settings, 3% of the values interpolated with
is realistic. well-researched methods fall into the percentile “30% er-

We illustrate this with a simple Monte Carlo simularor and more” [8], i.e., it is impossible to obtain bounds
tion (Figure 2) where 100 to 5000 sensors have been disis way.
tributed over the surface of the earth, i.e., over a gridin the context of wireless ad-hoc networks, ap-
with (latitude - longitude)180° - 360° = 64,800(°)*>. proaches foBoundary Recognitiofil4] have been re-
The ratio of the unpolluted area from the total area é@arched. Such approaches strive to detect holes and fail-
Aabsent = 29.68%. We have simulated each number afires in the routing graph of the ad-hoc network. Bound-
sensors 100 times. The vertical axis of Figure 2 ShO\d@ recognition approaches can be used to approximate
the area size in 1.000 square degrees. The real areagiition and perimeter of an area of interest if it is cov-
is drawn in gray. The estimated area sizes are drawn ag&d by sensor nodes. However, we want to provide guar-
standard box plot, where the whiskers denote the meantees even for areas that are not observed by sensors.
the minimal and the maximal values of the estimation, Approaches liké/oronoi Diagramsor Delaunay Tri-
and the boxes show th#5%- and75% quantiles. The angulation[1] partition a region into cells, according to
figure confirms that the Monte Carlo approach has a highyiven set of discrete points. Each cell of a Voronoi
degree of uncertainty, with few sensor tuples in particliagram contains one point at the center. The border
lar. For example, with 200 sensor tuples the maximgétween two cells is orthogonal to the straight line con-
and minimal estimations of the area size #e690(°)> necting their centers and is exactly in the middle between
(~ 131 Mio. km?) away from each other. Since the suthem. The Delaunay Triangulation is the dual graph of
face of the earth has10 Mio. km?, this is a lot. Even the Voronoi diagram. Both approaches are frequently
with 5,000 samples, the maximal and minimal valugged to visualize measured values, but it remains unclear
differ by aboutl, 940(°)* (= 24 Mio. km?), and it is how well the partitioning of the area matches reality.
impossible to tell if this is an over- or underestimation gflinimum Bounding Rectangl¢8] and Spatial Skyline
the real area. Queries[13] approximate a region from a set of points.

In our scenario, the smart-city-infrastructure wants téowever, minimum bounding rectangles assume that a
know the size of the areas within city districts that havectangle is a good approximation for a region, and sky-
been polluted in the best and in the worst case, to tdkes queries assume that the area is convex. Furthermore,
actions with a minimal impact. Assume that, due to gasth approaches require that the area in question does not
dispersion and wind drift, air-borne particles spread ovesnsist of multiple isolated regions.

Figure 2: Real data set, Monte Carlo approach
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Adbsent ft = present. Analogously, databade,...; stores all
positions whereft = absent. Ppresent N Pabsent = 0,
° and each positiop € Ppresent U Pabsent COrresponds to
a unique point inA. This is because no sensor can ob-
3 serve the presence and absence of the feature at the same
O time, and no two sensors can be located at identical po-

A &N . sitions.

prosent We assume that the feature we want to observe has
a minimal radiusr,,,;,,, i.€., it has at least the size and
shape of a disc with radius,;,,, but can be any larger.

o

Figure 3: Scenario

. ) Definition 1 (Feature Region): A region Apresent
The Meeting Scheduling Problemnswers the ques-in the region of interest A is &eature Regionif the

tion where and when a meeting should take place, givefllowing holds: There exists a set of overlapping discs
that all participants start at different places and needlsych that

some time to reach the meeting location. Related algoi. vVd € D: d,,q = rmin
rithms [2] compute spatial and temporal bounds, baseg Vp € Apresent: 0 € Uyep d
on a set of points. However, such approaches cannot b v, ¢ Usepd:p g A
used to estimate the size of an area that is coveredhy

a certain feature: In contrast to the meeting scheduling_l_h . e that iti ible f h boi
problem, our data set is incomplete, i.e., the feature.in e properties require that it is possible for €ach point

guestion might be present at unknown positions. in the area, ¢, to constructa disd with radiusr .,
which does not overlap withl ,;5¢,;. Thus, the perime-

ter of the feature must not contain sharp bulges. Figure 4
illustrates this. This definition of a feature region is is in
eji_ne with our application scenario.

absent

3 BOUNDS

In this section, we specify bounds in line with the sc
nario described, and we provide algorithms that compute

these bounds based on geometric models. We also pro- Apesent Apresent
pose measures to verify if the data set is consistent with

the minimal radius, and to evaluate if taking more sam-

ples brings the bounds closer to the real area sizes.

3.1 Formal Framework

Aabsent Aa bsent

Figure 3 serves as our running example. It shows sen-_. . . .
sor positions where the feature has been detected, repré:—Igure 4: Feature Region with and withoutrimin
sented as filled dots. Sensor positions where the feature, . . L .

has not been detected are shown as empty dots. The ar(@:\efm't'on 1 |mpl|es th".ﬂ if @ sensor measurgs =
A,resens Where the feature is present is in light gray. \N’gresent at a certain positiopos, we know for sure that

ize- 32 -
compute upper and lower bounds on the area sizes wh?—:-trleeaSt an area of size: (rm )" is covered by the fea

the feature is present/not present for sure, based on & Th'? |Is;_true eXenslf the refatlr:eature has ag |rregtu_lgr
sensor positions and a minimal radius of the feature J2P¢€ (c - rigure ): ome ot Ihis area may be outside
question. of A (cf. Figure 3). Our objective is to obtain upper and

We formalize this problem as follows: We consider Igwer bounds on the size of the area where the feature is
. . . ) " esent C A, the light gray area in Figure 3)
eographic region of interest in the Euclidean plane P'€SeNt Bpresent S . -
geograp 9 P i absentl ;sent € A, the white area in Figure 3). Ob-

R2. In Figure 3, this is the entire area. Regions aft .
infinite sets of points so that we can use set ope?’é(-)us'y’ valid upper and lower bounds o cscn: ar_eA
d0. However, such bounds are hardly useful in prac-

tions to express operations on geometric objects, ®iite. We strive for bounds that are close to the real values
Aapsent N Apresent = 0. A sensor tuple = (pos, ft) : :

stores a positiopos = (lat,long) € A, together with a ;ror:oj]o’ \(/jvietd(re]flnebset\\l/verarl]a:\lljvmllar?/ func\zl?tim(t)l re-
feature valueft € {present, absent}. urns the distance between two poipty. outloss

We consider two sensor databasB$een; and of generality, we use the Euclidean distance:
Pabsent. DatabasePesent 1S a finite set containing

the positionsP present 1= {pos1, posa, - - - pos, } of all  dist(p, ¢) = \/(p.lat — g.lat)? + (p.long — q.long)?
sensor tuples where the feature has been detected, i.e., (1)
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A A region of interest
Trmin Radius of a disc describing the minimal size of the featurguiestion
Ppresents Pabsent Databases of points where the feature is predent ) and absentl{,psent)

LBpresent, LBapsent | LOwer bounds on the area sizednwhereft = present or ft = absent
VIpresent, VIapsent | Volatility indicators for the bound& B, esent, LBabsent

dist(p1, p2) Distance of two pointgy, po
area(E) Total area of elemenft
intpts(D1, D2) The intersection points of the borders of two diges D-

Table 1: Symbols and Notations

Furthermore, we define a functionea(F) that re- (empty dots) and the minimal radius,;,,, it can be ex-
turns the total area of a geometric figurewhich might cluded that any point in the gray area hfas= present,
be a disc, a triangle or an area of interest. Finallgyen if it has not been measured. However, all locations
intpts() returns the set of all intersection points of theutside of this area might be polluted in the worst case.
borders of two disc®;, Dy. Thus,intpts(Dy, Ds) re- Note that an increased,,;,, increases the area be-
turns( if Dy, D, do not overlap, the two intersectiortween the measurements wift = absent where we
points if D, D, overlap, and one point for touchingcan exclude the presence of the feature. To illustrate,
discs. compare Figures 5 and 6: {f,;, is increased, the
bound L B.ysen: (the gray area in the figure) becomes
larger. Having clarified this, we will be able to com-
3.2 Lower Bound L Bapsent pute a lower bound. Byt ON the size of the area
In this subsection, we define a lower boUbB,psc,,; 0N Aabsent © A Where a feature with a minimal radiug,;,,
the size of an area,..,; Where the feature is absentis not present.
Furthermore, we present an algorithm to calculate this'We computeLB,s.,.. by constructing a geometric
value based on geometric considerations. Translate®®eCtl'absent (Cf. Figures 5 and 6) from all points iA
our running example, we compute the size of the aréfere we can exclude the presence of the feature. That
Agpsent that is within our region of interest, and is IS, the lower bound. Bgpsent proposed in the following
not polluted withP M, for sure. Note thahrea(A) — is based on geometric considerations: We refer to a disc
L Babsent is an upper bound on the size of the area whetg,q in the Euclidean plan&> by means of its center
the feature measured is present. Thus, in our exampléit* and radiusi,.q. Our starting point for the compu-

is an upper bound on the size of the area that might hdgton of a lower bound. Bepsent is the set of all discs
been polluted in the worst case. possibly having the feature everywherednas follows:

Definition 2 (Possible Disc®yipossible):  The set of
Possible DiscDrpossible CONtains all discg that fulfill
the following properties:

1. drad = Tmin

2. dped:pe A

3. Eq €d: qc Pabsent
O

That is, any disc iMy¢possible Nas radiugr,, (first
property). Furthermore, it includes at least one point

Figure 5: Bound Figure 6: Bound in the region of interes®l (second property), but does
LBgpsent With a small LBpsen: With @ large  NOt contain a point where a sensor has meastitee
Trnin Tmin absent (third property). The area of minus each point

in any disc iNDyipossible 1S OUr LBgpsent, i-€., it is the

Intuitively, we exploit that a disc with the minimal ra.dark gray area in Figures 5 and 6:

dius of the feature might not fit in between some points
whereft = absent. This is true if the distances between LBapsent = area ( AN U d ) (2)
these points are smaller thap;,,. In Figure 5, our lower d€Drpossible

bound is the size of the dark gray area. Given the platemma 1: LBgpsen: IS @ lower bound on the size of
ment of the sensors that have measuféd= absent the aread psent € A. O



Open Journal of Databases (OJDB), Volume 2, Issue 1, 2015

Note that the set of discs is exhaustive, i.e., there is no
discd’ & Deioseby Which fulfills the properties described.

Observation 2: For a given sensor databade,scus,
there is only one set of disd3.joseny that fulfills these
properties, i.e., the set of close-by discs is unambiguous.
[ ]
O
[ ]

Only discs which overlap with the border bf,scn:
are required to compute the bound. ThD§pee1y Might
contain more discs than necessary to obiaif c,,: -

Figure 7: Outside Figure 8: Inside

Proof sketch This follows from the construction of pos- Inside: We now define a set of trianglég ;4. that
sible discs. In particular, since no discldpossible Must INClude Agpsent-

include a point inPansent and the set of discs is exhauspfinition 4 (Interior Triangles Tinside): The set

tive, the area that is not overlapped by any disc must bg g jor Triangles T;,.iq. consists of all trianglesthat
lower bound oM ,psen:. This holds ifr,,,;, is a minimal fulfill three properties:

radius for the feature in question. 1. tis bounded by a set of three pairwise different ver-

tiCeS{Ul, V9, 1)3} S.t.v1, 02,03 € Papsent
3.2.1 Computing L Bapsent 2. Vt1,ts € Tingide: t1 Nta =0
3. V{Ul, V2, ’1}3} S Tinside: max (diSt(Ul, ’Ug),

To arrive at a value fol. B,pscni, We determine the area dist(vs, v3), dist(v1, U3)) <2.r.

size of a geometric objedt,psent- Lapsent 1S described

by two components where the first one is subtracted from
the second one: a set of discs that are jusisideof  The first property says that each triangle is a 3-tuple of
Tupsent (the discs with solid lines in Figure 7), and a sdtisjoint vertices from the set of sensor positions where

of triangles that overlaps with iigside(the gray area in the feature is absent. The second property requires non-
Figure 8). overlapping triangles which may have a common edge

or vertex. Finally, we rule out that an area wifth =
absent and minimal diameter is inside a triangle by re-
quiring that the edges of each triangle have a length of
In the following, we will show how to construct theat most2 - r,,,;,,. The set of triangles is exhaustive, i.e.,
components of ..+ SO that we obtain the lower boundhere is no triangle’ ¢ Ti,sa. Which fulfills the prop-
sought. erties described. Figure 8 shows the set of triangles that
follows from this definition.

Outside: To distinguish the inside from the outside oPbservation 3: Definition 4 allows several different
Capsent, we define a set of disdcioseby C Ditpossible decompos!t!ons OP ahsent INtO triangles. However, all
(solid-line discs in Figure 7). The discs are outside #compositions allowed have the same area sizé.l

the aread psent, but as close as possible to all positions 5 concrete decomposition might depend on the algo-

Observation 1: TD'gpsent and Appesen: are disjoint.
O

whereft = absent has been measured: rithm used to create the triangles. However, since Defini-
Definition 3 (Close-by DiscSDcioseby): The set tion4 _requires that all pqints RA.psent are part of at least
Close-by DiscD.i0schy CONSsists of all discd that fulfill  one triangle, the area size Bfy,.,. does not depend on
two properties: the particular layout of the triangles.

1. d7-ad = Tmin
2. 3p,q € Papsent: dP?° € intpts(discfmm,
dlsc’lq"'rnln) /\VL’E E Pabsent \{p7 Q} dpos ¢ dlsc":’l‘:'rnln

O

The first property specifies the radidis,; of the discs.
The second property requires that the cedtét of each
discd € Dcioseby iS @n intersection point of the discs
around any two points it ,psent (dashed discs in Fig-
ure 7). Furthermore, this intersection point must not lie
within another disc around a positionpsent \{p, ¢}-

Figure 9: Subtracting the outside from the inside
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Area Size of Typsens: Finally, we introduce Input: Set of points .psent
Fabsent: (Ppresent7 Pabsent7 A; rmin) — R: a function Result Fabsent
that returns the area size Bfjscn:. Intuitively, Fopsent /1 Compute the outside
returns the area of the trianglds, 4. clipped by the 1 DiscsD := generateDiscs(Tmin, Pabsent);
discSDecioseby, as illustrated in Figure 9. This results ire PointsI := computelntersections(D);

the dark gray areB ;s ShOwn in Figure 5. 3 I := prunelntersections(I);
/1l Compute the inside
4 Triangles
Fopsent = area ( U t\ U d) 3 T := generateTriangles(Tmin, Pabsent);
t€Tinside  d€Dcloseby /] Obtain the bound

lude: 5 GeoShap& := subtract(T, generateDiscs(I));
We conclude: 6 return computeSur face(G);

Lemma 2:  Fypsent returns the lower bound Bpsent - :
- Algorithm 1: computel,psen:

Proof sketch: The lemma holds, becau$gy....;: returns
the size of the area @f,psent, aNdl gpsene IS @ geometric
object consisting of all points id not overlapped by any
disc inDgpossible (SE€ Lemma 1).

area wherg't = present is the area size of a geometric
objectT' csent that is a set of overlapping discs with
a minimal area that can explain all sensor positions in
. Ppresent andPabsent-

3.2.2 An Algorithm for Fipsent Figure 10 depict$’,,c.cn: @s a dark gray area. In the

We now discuss how a lower bound eiy,..,; can be figure, it is the area of two disc segments with radius
computed. Note that our algorithm is a proof-of-concepitpin that contain all points where the feature has been

i.e., performance considerations will be part of our futuftetected, and that have been placed s.t. its surface within
work. A'is as small as possible. This corresponds to a scenario

Algorithm 1 computesi,ysn; in three steps: First, Where two places just outside of the observed urban area
we compute all intersection points between the bordéfdve been polluted wit? 15, and only a small part of
of all discs around points ifP eent (Lines 1 and 2), the traffic within a city district needs to be re-routed.
but remove intersection points that are inside anothemMNote that our lower bound depends on the measure-
disc (Line 3). This corresponds to computing all cefnents and-,;,. For example, with a smati,;,, multi-
ter points iNDejosehy- Second, we compute the set ople overlapping discs are needed to constructasen:
trianglesT;,siqe that overlap with the inside ofl ..., that covers all positions where the feature has been mea-
(Line 4). We do so by adapting the Flip-algorithm fogured with a minimal total area size (Figure 11). In con-
Delaunay-Triangulation so that it removes all triangld&ast, a large-,,;, means that large parts of the feature
where one or more edges are longer than,,;,,. Third, might be outside ofi. A comparison of Figure 3 with
we subtract from the surface @f;,q. all overlapping Figure 10 provides an intuition for this effect.
segments of the discs Dcioseby. Thus, this step com-
putesl psen:. We use an R-tree to do this efficiently
(Line 5). The bound is the size of the remaining area
(Line 6). o o

o o

3 . 3 LOWGF Bou nd LBp?"esent rpresent rpre ent nt
L] gj rpre

Now we specify a lower bound By, cscnt ON the size

of the aread,, ..., Where the feature is present, and

we introduce an algorithm to calculate this value. Re- ]

garding our running example, we obtain the size ofigure 10:  Bound Figure 11:  Bound

an area that is placed within the region of interdst LBpresent With a large LBpresent With @ small

and is polluted with certainty. Furthermore, the valugmin T'min

area(A) — LBpresent 1S @n upper bound on the size of

the area where the feature is absent, i.e., on the size dh the following, we introduce a lower bound

the area that is unpolluted in the best case. LByresent ON the size of the ared,;csent € A Where a
Intuitively, since the feature in question is at leastfaature with a minimal radius,,;,, is present. Our start-

disc with radiusr,,;,,, a lower bound on the size of theng pointis a set of discs:

o o
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Definition 5 (Covering DiscSDcover): Covering 3.3.1 ComputingL Bresent
DiscsDover IS @ set of discs so that:

To compute our lower bounfl By, csent, We determine
1.Vd S Dcover: drad = Tmin

the area size of a geometric 0bj&Gf..c»: that consists

2. Ppresent \ UdeDcover d :g of one concrete set of discs, as shown in Figure 10. In
3. Pabsent N UdeDmyr d= ’ - . the following, we will show how to construtt,csen+ SO
4. LetD be the family of discs fulfilling Axioms 1, 2,

that we obtainL By,,.csen+. FOr this purpose, we consider
3. ThenAD’ e Ds.t.

the properties of the set of discs, the number of the discs
area(ANUycp d') <area(ANUyep prop

cover @) and their placement in.
O

Thus, D.over CONtains a set of discs with radius,;,, _Properties of the Disc_:s O_ur construction of p,¢sent
(first property) that overlap with all points iRpesen; 1S P@S€ 0N the following discs:

(second property), but no points Mhpsent (third prop- - pefinition 6 (All Possible DiscsDanpres):  The setAll

erty). The fourth property requires that there does npgssible DiscdD,iipres contains all discs that fulfill the
exist any set of discs whose area sizelirs smaller than fo|lowing properties:

the one oD gver- 1. dyog = Troin

Observe that this definition allows an infinite nuM- 2. Vp € Ppresent: P € Uden o
ber of valid instances dDoyer if thg points ianresent. 3. V¢ € Papsent: {¢} N UdED:l d=10
andP,psent do NOt enforce a certain placement of discs. i
For example, with our example in Figure 10 only one h .  di ith radi i
setDeover With @ minimal area size exists (fourth prop- Thus, Daupres 1S @ set of discs wit | 1ad1USin ( |rs.t.
erty). On the other hand, Figure 12 shows a scenal perty). The second property requires that all positions
where multiple placements of discs exist that have t&1€re @ sensor has measurfd = present are cov-
same minimal area size. However, the rightmost ifired by at least one disc. No disc contains a point where

stance in Figure 12 is invalid becauBg,,.. overlaps ft = absent (third property). Note that these properties
With Ppeent overlap with Definition 5. However, in order to arrive at
absent-

a computable bound, it is not sufficient to define that the
set of discs has a minimal area size. Instead, we need
to pay attention to the number and the locations of the

: @ @ discs, as we will explain.

o 5 Number and Placement of Discs: We construct
I present from a subsebpipres O the infinite set of discs

Daipres- We derive this subset from the following obser-
Figure 12: Valid and invalid covering discs vation:

Observation 5: Definition 6 does not imply a certain

0 minimal number of discs iDgptpres greater than 1.
O
LBypresent then is the area size of the set of discs
Deover in A:

Observation 4: D oyer aNd Agpsent are disjoint.

An upper bound on the number of discsgptpres IS
the number of sensof® p.csent | that have observed the
feature. However, in many cases it is optimal to cover
LByresent = area( A N U d ) (4) multiple points iNP present With the same disc (cf. Fig-
ure 10). That is, two or more discs might be congruent,
i.e., share the same center point. Thus, in a first step we
Lemma 3: LB,,..cn: is a lower bound on the size Otg)eflne a seDgpipres that contains one disc per point in
present. IN @ second step we obtall),c..n: Dy plac-
the aread, csent C A. O . . .
ing the discs iMypepres SO that they overlap as much as
Proof sketch: This follows from our construction of possible, i.e.I'p¢sen: fulfills Definition 5.

Deover- In particular, since all points iRpresent ré COV- pefinition 7 (Optimal Present DiscSDopipres):  The

ered by at least one disc, and the total area size of éﬂébptimal Present DiscSDoptpres C Dalipres CONtaINS
discs inD,qye, IS required to be m|n|mal, this area SiZ& e disc per point i present, 1.€.,¥p € Ppresent : 3d €
must be a lower bound 0Acsc,t. This holds as long 1, tores With p = dPos. [

optpres - .

asrm,q, 1S @ minimal radius for the feature in question.

d€Dcover
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We formulate the placement of discs as an Input: Set of points present, Pabsent, threshold,
optimization problem. The objective function counter
Fpresent : (Ppresent; Pabsent; A7 Tmin) — R calculates Result Fpresent
the part of A covered byDgpipres. The optimization // Cbtain initial solution
variables are the centei8°® of the discsl € Dopipres. 1 Dis€SD := setO f Discs(Ppresent);
The goal of the optimization is to MiNIMIz&),,csent /1 Optimzation procedure
without violating the properties 0OfDapres from 2 SimplexsS := genSimplex(D);
Definition 6: 3 doubled := o;
4 while counter > 0 &&
VdpDslélri)rolpmres (area (AN U d)) (®)  d— alternatingSum(D) > threshold do
’ d€Dopipres 5 counter := counter — 1;

) ) . 6 d := alternatingSum(D);
After having obtained the optimal placement of discs | ¢ .— downhill Simplex(S);

in Doptpres, We calculate the area size B, csent: 8 D := selectBest(S);
9 end
Fpresent = area(AN U d) (6) 10 return alternatingSum(D);
d€Doptpres

Algorithm 2: computel),, csent
We conclude:

Lemma 4: Fpresent returns the lower bound
LBpresent- O
in the simplex still meets the optimization constraints, as

Proof sketch: The lemma holds, becau$g,cscn: re- specified in Definition 6.

turns the size of ', csent, aNAL pesent 1S the result of
an optimization problem that computes one realizationwith each iteration, the placement of discs will be

of Deover (S€€ LEMMa 3). modified in a way that the total area size withinis
reduced, i.e., the algorithmm converges towards the set
3.3.2 An Algorithm for F,csent Doptpres- N particular, the Downhill Simplex algorithm

(Line 7) folds the simplex [11] from the solution with
In this subsection, we propose a proof-of-concept alg@e highest area size (worst solution) towards the so-
rithm to computeF,,.csen.t. This includes a nonlinear op-jytion with the smallest area size (best solution). We
timization prObIem that can be solved by different metr(};ompute the area size of a set of discs as the alternat-
ods. Quasi-Newton approaches like DFP and BFGS [§gf sum of overlapping disc segments, i.e.: (1) Compute
rely on the Hessian matrix, which is very difficult to calthe total surfaces of all discs, (2) subtract all surfaces of
culate for complex nonlinear problems. We propose #@o overlapping discs, (3) add all surfaces of three over-
use the Downhill Simplex [11], which transforms the opapping discs, (4) subtract all surfaces of four overlap-
timization problem so that hill-climbing can solve it. Th?)ing discs, and so forth (MethadternatingSum()).
disadvantage of downhill simplex is a very small prob@yr optimization procedure uses two stop conditions
bility of ending up in a local optimum. However, bothLine 4 in Algorithm 2): A maximal number of iterations
the runtime performance and the probability of avoidir(goumger) and a convergence criteriothf-eshold). If a
a local optimum can be improved by using a good initigtop condition is met, the algorithm returns the area size

solution as a starting point. of the best solution (Line 10).
Our algorithm consists of two steps. The first step

(Line 1 in Algorithm 2) computes an initial solution. The Since Algorithm 2 assigns each pojne Ppesens its
second step (Lines 2-10) iteratively solves the optimiz@Wn disc (Line 1), the number of discs is equal to the
tion problem, i.e., it places the discs so that the areatmber of points where the feature has been observed,

Tpresent iS Minimal and Lemma 4 holds. ie., |D| = |Ppresen_t |.- The properties in Definition 6
ensure that the optimization procedure does not produce

L o L a placement of discs where a popte Ppyegent iS NOt
Optimization Algorithm:  Our optimization algo- ., ared by any disc.

rithm starts by generating a set of discs from all points in

Ppresent (Line 1 in Algorithm 2). Thus, this step obtains Algorithm 2 returns the exact value 8B,.cscn:+ ONly
Daipres- The next step creates the simplex (Line 2). Fdrit converges to the optimal solutio/(reshold = 0).
this purpose, the methagnSimplex(D) adds random Otherwise, it returns an approximation. Note that, in
values to the initial solutio® and verifies that each nodesome scenarios, multiple optimal solutions might exist.
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Initial Solution:  To let the Downhill Simplex (Line 7 3.4 Time Complexity of our Algorithms

in Algorithm 2) converge quickly towards the optimum,

we strive for an initial solution that is already close t@ur algorithm to obtaitf,,.csc.: requires to compute the
an optimal one. Furthermore, this initial solution shoukternating sum of overlapping disc segments (cf. Sub-
be efficiently computable. We have devised a recursigection 10). In theory, every disc might overlap with
algorithm, shown in Algorithm 3, that is inspired by theach other disc. Thusj},,c...: has a worst-case time
Smallest Enclosing Discs approach [15]. However, oa@mplexity of O(|P|?).

approach differs from [15], since we do not search for The time complexity of our algorithm foF .., is
one smallest enclosing disc, but for a set of discs Wim(|Pabsent|2)- This is because the algorithm generates
fixed radius. Deloseby from intersection points of the borders of the

. . . . discs around any position iR,;sc.¢. 1N the worst case,
The input of Algorithm 3 s the et of Point3 cscnt. each of these discs might have two intersection points

The algorithm starts by calculating a set of discs in a

way that each disc overlaps with a different set of poin\f\gth any other one (cf. Subsection 3.2.1). However, the

(Lines 5-8). The MethOd.Sh’ifﬁPOS(Pabsent, Ppresent) worst case requires that any pair of points Is very close

in Line 6 moves the center of a disc so that it overlaﬁ%gether' In real settings, such cases are unlikely, and

with the old center and as many pointsHip,csen; @ POS- ;patlal indexes such as R-trees can speed up the process-

sible, but does not overlap with a pointihpsent- 1N @ Ing

second step (Line 13), we insert all indispensable discs

into the result seD. We say that a disc is indispensable .

if it contains one point from the input set which is nog-2 Correctness of Radius,;,
contained in any other disc. Finally, the algorithm recur-

sively invokes itself with all points that are not containe

in any indispensable disc (Line 15).

Input: Set of points P

Result Set of discs D

/1 Stop condition
1 if P = () then return 0;

N

/'l Create a set of unique discs
DiscsU := ();
foreachp € P do
Discd = disc@, rmin);
d-ShiftPOSPabsen‘m Ppresent);
if Ad eU: PNnd=Pnd then
U:=UU{d};

~N o g b~ W

[ee)

9 end
/1 ldentify indi spensabl e discs
10 DiscsD := ();
11 foreachd € U do
12 | ifdpePnd:ipg PNUcp_qq ithen
D :=Du{d};
13 ;
14 end
/'l Recursively assign remaining
poi nt's
15 return D U setO f Discs(P —U;cp d);

Algorithm 3: setOfDiscs

ljp some application areas, to compute the bounds derived
so far a user might have to estimate the minimal diameter
of the feature in question (cf. Section 2). Thus, it is
important to find out ifr,,,;,, iS not correct, according to
the values measured.

With ar,,;, value that is smaller than the real mini-
mal diameter of the feature in questia3,,csen: and
L Bgpsent Would produce bounds that are too small (cf.
Figures 5 and 6). Thus, in use cases where the minimal
radius of the feature in question cannot be obtained, we
recommend to conservatively overestimatg,, .

Without knowing the real layout of the feature in the
area, one cannot verify if the estimate 9f;, is too
small. On the other hand, we can prove that, is too
large if the feature has been detected in between a set of
measurements witlfit = absent in a way that would be
forbidden, given the value of,,;,. For example, con-
sider Figure 13: The feature has been observed in be-
tween the three points where the absence of the feature
has been measured. Thugs,;, is too large.

Lemmab5: r,,, isincorrect if the following holds:
3p € Ppresent: Apos S.t.p € disc® A dischos
N Pabsent = @ U

Proof sketch:r,,;, is incorrect if there is a poing €
Ppresent SO that all discs with radius,,;, containingp
also contain a point i ,psent.  Since this property is
mutually exclusive with Definition 6,,;, must be in-
correct.

Regarding Algorithm 2, we have identified an incor-
rectr,,.;,, if the optimization process cannot converge to-
wards an optimal solution.

10
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Figure 16: Real test case [10]

Evolutionary Algorithms. Such algorithms use an itera-
tive process to search for a quasi-optimal solution. The

‘}o’ algorithms stop if the current solution improves the pre-

a ceding one only marginally, i.e., the volatility measure is

the difference between the current and the last solution.
. ... We define volatility indicators/ I esent, VIapsent €

® . . o [0,1] for the bound functiong',,csent, Fapsent Dy bOr-

: rowing from this concept:

. L Figure 14: Bound Definition 8 (Volatility Indicators V' 1.):  The\ola-
Figure 13: Verification

Volatility tility Indicators VIpresent; VIabsent are as follows:
3.6 \olatility of our Bounds Let P = Ppresent U Pabsent andsx={present, absent}
. . S 1 if F, =0
From a practical point of view it is important to know y 7 — (P (P\{p} AT i) .
how volatile our computed bounds are. For example, the 1- gg}.}( Fo(P,A,Fmin) ) otherwise

operator of the smart-city infrastructure of our running

example would like to compute the gain of taking more

samples, i.e., to deploy more measuring points in ordefThe volatility indicators calculate the relative differ-

to have bounds that are closer to the real values. ence between the bound computed on dataliase
Most well-known approaches to estimate the conf, esent U Pabsens @nd the bound computed g minus

dence of random samples cannot be used to quantify the sensor tuple that has the highest impact on the bound.

volatility of our bounds. This is because such approachgsus, VI = 1 means that removing one value from

usually require stochastically independent values. In ahe database changes the computed bound by 100%, i.e.,

scenario, the feature in question has a minimal radigaking more samples is likely to change the bound very

and the sensor tuples measured depend on each othamuch.V I = 0 refers to the opposite situation.

particular, sensors that have positions close to each othefigure 14 illustrates this volatility measure. In the

are likely to measure the same feature value. figure, the sensor tuples with the highest impact on the
Our volatility indicators have been inspired from thbounds are highlighted with arrows. Consider func-

stop criteria of heuristics like Genetic Programming dion F,,.sen:. Without the feature detected (filled dot)

11
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in the middle of the area, the left part of the area Al e e ———— — —

Apresent Would be reduced to the dashed area, result- 140 - T
ing in Vipresent = 0.302. Thus, the volatility indica- 120 - —
tor tells us that the computed bound is volatile. This is
because it would decrease by up to 30.2% if one tuple
was removed from the database of points. Now con-
sider Fipsent. Without any of the three values where
ft = absent in the upper part of the ared, the com- A

puted bound decreases to zero, V&l psen: = 1. Thus, 20 P ]
our volatility measure indicates that, in this case, the 00 2(')0 4(')0 680 8(')0 1o|oo12|oo14loo1aoo1soo
bounds might be far away from the real size of the area

and could be improved by taking more samples.

100 |- -
80 |-
60 |-
40 |-

Area Size in 1,000 Points?

Number of Values |P|

Figure 17: Synthetic data set,Fi,psent VS. | P

4 EVALUATION
20 T T T T T T T T

In this section, we evaluate our algorithms with synthetic 18- 7
data and with real data from climatology research. We
describe our experimental setup first, then our experi-
ments.

4.1 Experimental Setup

Area Size in 1,000 (°)?

Aabsent
Fabse?t

In a nutshell, we want to find out how well our bounds
converge towards the real area sizes with an increas- I T S R
ing number of sensor tuples and with different coverage 0 200 400 600 800 1000 1200 1400 1600 1800
Apresent Of the area with the feature in question. Note Number of Values |P|

that we do not have to investigate the effect of the ra-

dius r,,,;n Or the total size ofd. This is because,, ;.
Apresent and A are relatedr,,;, cannot be larger than
the feature in question, and an increaselas the same
effect as decreasind,,csen: andry,;, at the same time.
Thus, itis sufficient to vary the ared,,csen: that is cov-

Figure 18: Real data set,Fpscnt VS. | P|

for each coverage percentage, we have 10 data sets. Fur-

thermore, we have varied the database size from 10 to
. s ;

ered by the feature. 1600, we have used the area sizé8 - 500 points and

. i f,... — 35 . =5
We have computed the bounds with our algorithms fgpoo 800 points, anddtlr;fe_ ra;dngm 35 and?’“" ‘;}0'
Fovooons and Fupone ON @ SUn X2200 M2 server with O settings are difficult, because our feature has ex-

two dual-core Opteron 2218 CPUs and 24 GB RA ctly radiusr,,.;n, and we generate data sets where the

We have calculated the minimal, maximal, average v. gature is distributed equall_y ovel. In typical use cases,
ues and the variance of the bounds calculated for s;‘;ng" meteorology or pollution control, the feature is al-
thetic and real data sets, which we will describe in (fRost always much larger tham”i" and usually fprms
following. Since performance optimizations are not pa§FveraI large clusters (cf. Figures 1 and 16). This makes

of this paper, we will leave aside systematic runtime ot easier to identify an allowed decomposition into trian-
periments ’ gles (cf. Subsection 3.2.1) or a good placement of discs

(cf. Subsection 3.3.1).

Synthetic Setting: Experiments with synthetic data

allow us to explore extreme cases and deviations b&eal Setting: To assess the applicability of our ap-
tween settings systematically. Our data set genergtooach on real data, we use data from the International
starts with an empty, squared area with a given size. \Watellite Cloud Climatology Project [10]. It contains the
then iteratively add discs with a predefined radius at ramean Tropopause temperature of the earth since Decem-
dom positions. The stop criterion is the desired coverager 2009 (left part of Figure 16). The resolution of the
of the area. Figure 15 shows exemplarily three of odata set is d44 - 72 (longitude- latitude) grid with an
synthetic test cases for an area where the coverage witlge length of 2.5 Thus, we have a total of 10,368 data
the feature is 25%, 50% and 75%. By varying the copoints, and a point on the equator is equivalent to a rect-
erage of the feature between 10% and 60% in stepsanfle of277.5 - 278.4km?.

2.5%, we have obtained 210 different data sets. ThusJTo distinguishA,,¢sent from Agpsent We have used

12
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160 IA T T T T T 120 T T T T T T T T T
absent :
W 140 - Fabsenl N W 100 |~ ™ UL N —
1= z Initial Solution : Initial Solution
5 120 - ] © + Dh. Simplex
o o 80 | : -
g 100 |- - g
S =)
= 80l 4 < 60 i
£ £
8 60 . o)
A 5 a0 -
g 4r 7 8
< 20 - < 20 : é‘presenl T
0 i | | | | ) 0 L g ey
0 10 20 30 40 50 60 70 0 50 100 150 200 250 300 350 400 450 500
Coverage in % Number of Values |P|
Figure 19: Synthetic data set,F,;s..: VS. coverage Figure 20: Synthetic data setF),csent VS. | P
_ ) ) 50 T T T T
a threshold of 200 Kelvin, which results in a coverage 45 |- : .
. . Initial Solution - Initial Soluti
of 29.68% of the area (right part of Figure 16). Pre- s 40 [p0 gnen: e semer .
liminary experiments have shown that different thresh- g 35| : T
olds produce similar test results. We assume that our 2 30
feature has a minimal radius of 7.5This is a realistic < 22 B
. . . N —
assumption, since it has been observed [7] that tempera- » 15
. . . 1] —
ture anomalies correlate strongly for measuring stations £ 0L 5
up to 1000km apart: 1000km corresponds@.6° on 5L g /;presem |
the Equator ane: 10° in Central Europe. Note that this 0 L ! e
scenario is the one which we have used for our Monte- 0 50 100 150 200 250 300
Carlo simulation in Section 2. Number of Values |P|

4.2 Lower Bound Fly.,., Figure 21: Real data set,F, cscnt VS. | P
The Figures 17 and 18 show the output of our algorithm
for Fapsent, i.€., @ bound on the size ofqysen;. Fig- In direct comparison, a Monte Carlo approach (Fig-
ure 17 has been obtained with our synthetic data set witi¢ 2) converges faster and is independent from the spa-
800 - 800 points, 50% coverage and a radiys;,, = 50. tial distribution of the feature, but it cannot provide hard
In comparison, Figure 18 results from experiments witBwer bounds and does come with a high variance of the
our real data set (29.68% coverage). We have varied #ues.
number of point$P|, and we have repeated each exper- Figure 19 shows a series of experiments where we
iment 10 times. The vertical axis of the figures shotave varied the size of,sc,.. from 10% to 60% of our
the area size in 1.000 square points (synthetic settingjasea o800-800 points. For all experiments we have used
square degrees (real setting). The real sizel@fc,.; | Pabsent | = 200 sensor tuples, i.e., since only positions
is drawn as a thick gray line. The estimated area siagBere ft = absent are used to calculate,c,:, we
are drawn as a standard box plot, where the whiskers tHave kept P.psent | COnstant. Thus, in a scenario where
note the mean, the minimal and the maximal values thie feature covers 50% of the area, the total number of
the estimation, and the boxes show the 25%- and 75%4ues in the database would i = 2| Papsent |, given
quantiles. The figures confirm that the computed bouat equi-distributed placement of sensors. Again, the gray
is well below the real area size, and that the variability ifie shows the size ofl,;scn¢, and the box plot shows
the operator output is low, even for a very small numbtire computed-,;..... The figure indicates that, with
of 50 sensor tuples. our challenging setting, 200 sensor position®ifsent
Furthermore, the figures confirms the expectation thegsult in a bound of about 25% of the real sizeQfscn.: -
with an increasing number of sensor tuples, our algbhis is in line with Figure 17.
rithm strives towards the real size 8f,,..,,;. Recallthat ~ With 200 values i ,psent, OUr algorithm requires ap-
our synthetic setting (Figure 17) describes a challengipmpx. 10 seconds to comput&s.,.;. Preliminary run-
scenario. With our real data set (Figure 18), the restithe experiments have shown that the runtime increases
of Fupsent cOmMes closer to the real size of atégys..:, less than logarithmically with the number of values in
given a sufficient number of sensor tuples. Pabsent-

13
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Figure 22: Synthetic data set,f,,cscnt VS. COverage Figure 23: Volatility Indicator V I psen:
4.3 Lower Bound Fj,csent our algorithm increases logarithmically with an increas-

_ ing number of values i present -
To test our algorithm forF},csene, We have used the

init_ial solution described in Subs_ect_ion 3.3 as a startipgy Volatility Indicators

point, and we have used Downhill Simplex [11] to solve

the optimization problem. Finally, we evaluate the applicability of our volatility-in
Figures 20 and 21 graph the output of our algorithficatorV Iapsen: With an synthetic setting o300 - 500

for Fpresent for the size ofA,.c.cnt. We have tested Points andr,,.,, = 35, 50% coverage. We have tested

our synthetic setting with a grid a$00 - 500 points, the database sizé®| = {10, 50, 200} five times each.

Fmin = 35 and 50% coverage. Figure 21 Shol$ .cn We expect thal/ I,s.: tends to have relatively small

for our real setting, whergt = present has a cover- values for large sets of sensors. This is because a single

age of 70.32%. We have varied the number of sensue might not have a high impact éiys... if the data

tuples|P|, and we have repeated each experiment figgt is large.

times. The axes and units of the figures are the same akigure 23 shows the results of our experiments. The

in Figures 17 and 18. The figures confirm the expec{;ﬂure shows that for each of the five experiments with

tion that, Simi|ar|y toF  psent, OUN a|gorithm foer'r‘esent database SiZbDl = 10 the volatility indicator is 100%.

converges towards the real area size with an increasittjs indicates that the output of our algorithm for

number of sensor tuple#)|. Fapsent €N be expected to change much with additional
Note that we have omitted the optimization stage f§€NSOr tuples. Our experiments with| = 200 show

data sets of P| > 50 in Figure 21, because, with ourd different outcome: Only one of the experiments uses

hardware configuration, the time per experiment exceet§ata set where taking additional samples might result

30 minutes for such data sets. The right side of the figufe@ Fabsent that is much closer to the real value of

only shows our initial solution. area(Aapsent). Experiments withl /,,c.cn: have pro-
Figure 22 shows the computed boufig..s..: for a duced similar results.

series of experiments with the synthetic data set where

we have varied the coverage df,.csc,.; from 10% to 5 DISCUSSION

60%. For all experiments we have ugét},;csens | = 50

sensors that have measurgtl = present. The fig- In this section, we will discuss options to improve the

ure indicates that for a feature with 10% to 30% coveiuntime of our algorithms, and we will point to further

age, 50 Sensors inside,,.....; are sufficient to obtain a Use cases for our bounds.

bound that is close to the real area size. This results from

the fact that a few evenly-distributed sensors are suffsurface Calculation: Computing the size of the to-

cient for our algorithm, to identify the positions wher¢al surface area of a large number of overlapping discs

the discs describing .5+ should be placed (cf. Fig-can be time-consuming. This issue appears with the op-

ure 10). Furthermore, the figure indicates that our irtimization function of Fy,,csent @and with the computa-

tial solution provides a reasonable bound in many castsn of the exterior off,;4c..;. An option to improve this

With our Sun X2200 M2 server;),, ..., Was computed computation is to apply a stochastic approach that allows

in less 10 seconds from 30 valuesBHp,c..nt. Prelimi- to compute the area of overlapping discs with low accu-

nary runtime experiments have shown that the runtimeraty but quickly at the first iterations of the optimization

14
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problem, and with higher precision at later iterations. fportant task in many application domains. This is chal-
particular, a Monte-Carlo simulation, combined with alenging, due to databases containing incomplete infor-
R* Tree, could randomly select points ihand verify mation, small samples and correlated values. Existing
if it is inside one of the discs. The number of points thatork does not tackle this problem. For example, best-
fall in one of the discs multiplied with the area size aneffort approaches like random sampling do not provide
divided by the number of all points is an estimate of theper and lower bounds, and database operators like sky-
size of the surface area of all overlapping discs. The dicre queries depend on the assumption of having a con-
curacy of this estimation of the area size depends on thex area.
number of points, i.e., it can be quick when a coarse es4n this paper, we have introduced formal specifications
timation is sufficient to find out if two discs overlap to &f upper and lower bounds on the size of the area where a
large extent or not. certain feature with a minimal radius is or is not present
for sure. Thus, we have taken the first steps towards a

Optimization: A promising option to speed up thedatabase operator that computes bounds on area sizes.
computation ofF,,...c..; is to reduce the complexity of To this end, we have proposed algorithms that compute
the optimization problem. One approach is to compufee bounds, bag,ed on geometrical models. We have gval-
Fyresent from the maximal square that is enclosed by tpeated our algorithms with a real-world scenario and with
disc describing the minimal size of the feature. Since tHi¥nthetic data sets. Our experiments have shown that our
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