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ABSTRACT

There exist numerous indexing methods which handle either spatio-temporal or high-dimensional data well. How-
ever, those indexing methods which handle spatio-temporal data well have certain drawbacks when confronted
with high-dimensional data. As the most efficient spatio-temporal indexing methods are based on the R-tree and
its variants, they face the well known problems in high-dimensional space. Furthermore, most high-dimensional
indexing methods try to reduce the number of dimensions in the data being indexed and compress the information
given by all dimensions into few dimensions but are not able to store now - relative data. One of the most efficient
high-dimensional indexing methods, the Pyramid Technique, is able to handle high-dimensional point-data only.
Nonetheless, we take this technique and extend it such that it is able to handle spatio-temporal data as well. We
introduce a technique for querying in this structure with spatio-temporal queries. We compare our technique, the
Spatio-Temporal Pyramid Adapter (STPA), to the R -tree for in-memory and on-disk applications. We show that
for high dimensions, the extra query-cost for reducing the dimensionality in the Pyramid Technique is clearly ex-
ceeded by the rising query-cost in the RS -tree. Concluding, we address the main drawbacks and advantages of our
technique.
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1 INTRODUCTION the modeled reality, then the building is planned, i.e. it
does not yet exist. If the valid-time-span of a building
object lies before the current time of the modeled reality

When modeling real-world objects it is often necessary it existed once, but has been destructed already. Hence,

to not only include three spatial but also a temporal di-  if the valid-time-span of a building object contains the

mension as our world is three-dimensional and time is  cyrrent time it is valid and therefore exists at that very
always moving forward. Objects change over time and  oment. For such a valid-time model changes on an ob-
these changes may be modeled along a temporal axis. A ject in the real world mean, that the valid-time of the
rather simple way to describe changes over time is the us- 1,5 deled object ends with the time of change and a new
age of a valid-time model [38]. For example, when mod-  gpiect is created, whose valid-time begins with the time
eling building structures, railway tracks or similar archi- f (he change. A chain of changes is therefore described
tectures, the valid-time of a modeled object describes ¢ 4 chain of objects whose valid-time-spans are touched

when the object exists and when not. If the valid-time- by the valid-time-spans of the antecedent and subsequent
span of a building object lies after the current time of
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versions of the object. When modeling the exchange of
a houses’ windows, not the entire house would be de-
stroyed and rebuilt in the model, but the parts which
changed, thus the windows.

When modeling objects with temporal dimensions as
described above, one must bear in mind that time is mod-
eled different to space. All temporal dimensions refer to
an increasing now-value. By including time one must
also include the continuous progression of time in the
real world. Additionally, objects may not only be marked
with constant time values such as dates and times, but
also as current. Thus in contrast to the spatial part of an
object which always has a certain beginning and end in
every dimension, the temporal part may not have a cer-
tain end. For example, if the destruction of a building is
not predetermined, the end of its valid-time should be set
to current. That means that it might be destroyed one day
but not now. Usually, current is a flag and every time the
end of a time dimension has been marked as current, the
end time is set to the current value of now during com-
putation. The different attempts to model such a current
flag is addressed in the next section.

Despite three spatial and the above described tempo-
ral dimension, models of real world applications may in-
clude additional dimensions. Databases may store dif-
ferent versions of the inserted objects, i.e. the time of
insertion, update and deletion. Similarly to the valid-
time, this transaction-time is connected to an increas-
ing now-value. The transaction-time-span of a newly in-
serted object starts with the current time and ends with
a flag like until changed, which denotes that the object
has not yet been deleted. When the object is updated or
deleted, the end of its transaction-time-span is set to the
current time. Note that the current time is not the above
used flag current, but the value of now at the moment of
insertion, update, or deletion. The connection of valid-
and transaction-time to the bi-temporal [38] model is dis-
cussed in the following section.

Additional to these five useful dimensions for real-
world models, three spatial and two temporal, a model
may contain a lot of additional thematic attributes and the
spatial extent of a real world object may be described in
different ways. For example, the aforementioned build-
ings may be represented by a building process model, a
discrete model, or both. Also the more or less detailed
spatial parts of an object in different levels of detail may
be stored with one and the same object. This leads to at
least three additional spatial dimensions for every level
of detail [11].

In order to keep the redundancy of the different spa-
tial representations, levels of detail, and versions of an
object at a minimum, an indexing method needs to pro-
vide direct access to all informations instead of spreading
the informations on several specialized indexing meth-

ods. Additionally, the indexing method should avoid
costly joins between query results on several sub-indices
whereat one may store spatial, one temporal, and one
thematic data. Moreover, when using separated indices,
it is difficult to tell how to split the information up into
several indices, since some queries focus on the spatial
difference between different versions of an object, others
on thematic changes or the impact on different levels of
detail etc.

Storing objects of such a model with a great amount of
dimensions including several temporal dimensions into a
database requires an indexing method which is not only
able to handle high-dimensional but also spatio-temporal
data efficiently. Especially, the indexing method must
be able to store and process representations of the afore-
mentioned now-relative data. In this paper, we propose
a new indexing method which is called Spatio-Temporal
Pyramid Adapter (STPA) and is able to process these val-
ues and handle the combination of both spatio-temporal
and high-dimensional data well. Despite building mod-
els and construction plans, the desired indexing method
may be used for any application which deals with spatio-
temporal data with a discretely changing spatial extend
and a high number of dimensions. For instance, classic
GIS applications to manage cadastre data where addi-
tional dimensions may be pricing, land use and differ-
ent levels of detail may use this method. CAD appli-
cations which are used to generate the aforementioned
building models and construction plans may also benefit
from a faster access. Even image processing applica-
tions, which are used to compare historic pictures with
current images taken from the same position and angle
may benefit from a spatio-temporal, high-dimensional
indexing method.

We give an overview of spatio-temporal and high-
dimensional indexing methods in section 2. We also
address the main drawbacks of the existing approaches
when confronted with high-dimensional spatio-temporal
data. In order to classify different access methods several
attempts for both, spatio-temporal and high-dimensional
data, have been made which include specific datasets and
benchmarking applications. We give a brief overview
over these evaluation techniques in section 2.3. Follow-
ing the experiences from section 2, we describe the de-
sign of our new indexing approach in section 3.1. A con-
crete implementation is described in section 3.3. The
evaluation in section 4 includes the description of the
concrete implementations of the RST-tree and our eval-
uation program together with the evaluation of the STPA
in comparison to the R3T-tree. We conclude our work in
section 5 giving an outlook to future enhancements and
additional areas of applications.
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2 RELATED WORK

In this paper, we deal with high-dimensional data as well
as with spatio-temporal data. We give an introduction
about temporal data in the previous section. This is spec-
ified in this section along with a literature overview about
spatio-temporal and high-dimensional indexing methods
and their evaluation.

2.1 Spatio-Temporal Access Methods

One may specify at least two temporal dimensions: on
the valid-time axis it is specified whether or not a mod-
eled object exists in reality, i.e. is valid. The transaction-
time describes the appearance of an object in a database
system. Thus, the transaction-time of an object describes
when the object has been inserted and when it has been
deleted or updated. A model supporting both aspects is
considered to be bi-temporal. These temporal aspects
were described in detail by Snodgrass [38]. Worboys
[46] propose a model for spatial and temporal informa-
tion and, amongst others, motivated it with the building
process of road networks which is quite similar to the
planning of subway tracks, the application the STPA will
mostly be used for [9].

All applications which are using temporal aspects
have to deal with some special cases which arise when
modeling the continuous progression of time. They need
to be able to represent the ongoing present, which is of-
ten denoted by a flag called now or similar. The se-
mantics of now in databases are discussed in detail by
Clifford et al. [13]. Especially, if one does not only
need to store certain timestamps, but also values grow-
ing along with the ongoing now, the flag current may be
used. That means that a field, which is set to the value
current, will somehow change over time. Thus the rela-
tion between an object whose temporal value has been
the current time or now at insertion time to an object
whose temporal value is current will also change. An
optimistic approach sets a value to a very large num-
ber or even infinity instead of current. In terms of the
end of the valid-time of an object this imposes the as-
sumption that the object is always valid. Problems arise
when the end value of the valid-time-span changes to a
certain time. In this case, all previous queries regarding
the future validity of the object must be considered to be
wrong. Among the definition of this and other problems,
Clifford et al.[13] propose a framework for working with
bi-temporal data.

Numerous approaches exist which grant fast access
to such data which take the above mentioned problems
into account. Most of these approaches are designed to
handle continuously moving objects. However, we do
not deal with moving objects like vehicles or even hang-

slopes, where objects change their position in space and
not their general appearance. Instead we deal with non-
moving yet discretely changing data. For instance, con-
sider building plans which change over time or buildings
which are changed during the building process and al-
tered after they have been built. Abraham and Roddick
[2], Mokbel et al. [26], Nguyen-Dinh et al. [29] and
Pelekis et al. [31] give good overviews about past and
recent approaches on indexing methods for continuously
moving objects.

Spatio-temporal indexing methods have been devel-
oped mostly as extension of well known access structures
such as the Quadtree by Finkel and Bentley [17] which
has been extended by the Overlapping Linear Quadtree
from Tzouramanis et al. [41]. Or the B-tree by Bayer
and McCreight [4] which has been extended to the BX-
tree by Jensen et al. [22]. Most of the spatial indexing
methods depend on the R- [19] and R”-tree [5], which
is widely used in spatial information and database sys-
tems and seem to be the best choice for handling massive
low-dimensional data. For instance, van Oosterom et al.
[43] proofed the performance of the R-tree on several
database systems.

The improvements on the R-tree regarding spatio-
temporal data can be separated into two branches. First,
there are indexing methods that combine several R-trees
in order to take the now-relative temporal intervals into
account. The Historical R-tree by Nascimento and Silva
[27] is an R-tree of R-trees, one for every time step,
where new R-trees only store changed objects and use
references to the subtrees of the unchanged nodes in the
previous R-tree in order to save space. The 2+3 R-tree
by Nascimento et al. [28] uses one 2-dimensional R-
tree to store the current spatial information and one 3-
dimensional R-tree to store all past data, i.e. every object
that already has now-relative temporal intervals. If every
state of the object is known a priori, the 2+3 R-tree is
reduced to a 3-dimensional R-tree. Both are only able to
handle one time dimension.

Second, some indices try to enhance the R-tree with
spatio-temporal functionality by changing its insert, split
and delete algorithms. The RST-tree by Saltenis and
Jensen [34] uses time-parametrized values and an addi-
tional splitting algorithm to take growing time-spans for
the transaction- as well as the valid-time into account.
One extension of the often-cited Time-Parametrized-R-
tree (TPR-tree) [36], the REXP-tree [35], takes moving
objects into account by simply using integrals for the
R"-tree operations such as union, overlap, volume, and
margin which denotes the length of the boundaries of a
rectangle. With this it is able to build up conservative
minimum bounding rectangles (MBR) which take the
future extension of the spatio-temporal MBRs into ac-
count. Therefore, it is not necessary to update the MBRs
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with every change of the object’s shape and position.
The REXP-tree does not use a constant parametrization
value but a dynamical computation via a time horizon
function. The time horizon function can be used to en-
hance the RST-tree which is shown in section 4. As there
seems to be no other indexing method which is designed
for discretely changing spatial and bi-temporal data, the
RST-tree is the most suitable competitor for the STPA-
technique. Stantic et al. [39] propose a new indexing
technique for temporal data based on the relationships
between intervals [3], the TD-tree. Despite the fact that
this technique does not incorporate now-relative data, it
is used by He et al. [20] to create a parallel indexing
technique for spatio-temporal data. Although it does not
support now-relative data, it provides another perspec-
tive on indexing high-dimensional spatial data which is
partly used by the STPA.

2.2 High-Dimensional Access Methods

In the past, the R-tree [19] seemed to be the best choice
not only for indexing spatial but also point and spatio-
temporal data. Nonetheless, the performance of the R-
tree and its best known enhancement, the R*-tree [5],
decreases rapidly when used for objects with a higher
number of dimensions (> 10). Berchtold et al. [8] state,
that the overlap of the directory nodes of a R"-tree in-
creases rapidly for uniformly distributed points with in-
creasing dimensionality. They propose the X-tree, which
extends the R"-tree with a new splitting technique and
supernodes. If a node cannot be split such that the split-
ted nodes have a minimum overlap, the capacity of the
original node is enhanced instead.

The maximum number of entries in one node of the
R-tree or a similar hierarchical structure decreases with
an increasing number of dimensions. Thus, more nodes
are needed to index high-dimensional data and therefore
more nodes and blocks are accessed when querying the
structure. Referring to that, the TV-tree [25] reduces the
number of dimensions by using a telescoping function.
The number of dimensions used in the directory nodes to
discriminate the path to the leafs is reduced significantly.

In contrast to these R-tree-Based methods, many
methods use regular space partition in order to divide
the multi-dimensional data space into subspaces. The
Quadtree [17] method for instance recursively divides
the n-dimensional data space into 2" sub-spaces. The
Grid-File [30] uses a directory file, which contains point-
ers on the buckets that partition the data space. For
indexing point data, the K-D-B-tree [32] partitions the
data space into point pages and merges them into region
pages. These region pages are recursively merged up
to a root page which represents the whole data space.
Space-partitioning methods do not face the problem of

overlapping regions but the number of partitions grows
exponentially [45] with an increasing number of dimen-
sions and therefore also have a decreasing performance.
Facing these problems, Weber et al. [45] propose the VA
(vector-approximation) file which divides the data space
into 2° rectangular cells, where b is a user defined num-
ber of bits. Together with a formular for approximatively
addressing each data point and a filtering function for ef-
ficiently excluding data cells when querying, the VA-file
outperforms the X- and R-tree and works even better in
higher dimensions.

Beside R-tree-based and space-partition-based meth-
ods, dimension-reducing methods use to map the n-
dimensional data points or rectangles onto a one dimen-
sional value and store these with a B*-tree [14] or simi-
lar method. iDistance [21] identifies the n-dimensional
points by the nearest reference point and the distance
to this reference point. The PL-tree [44] uses a scal-
ing function to map a real vector to an integral vector
and the bijective cantor pairing function to map these n-
dimensional data points into a scalar. It outperforms the
X- and R-tree but is outperformed by iDistance in terms
of query performance.

dy
1.0
0.8 P3
Po P2
height
b1 P
do
0.0 0:5 1.0

Figure 1: Calculation of the pyramid value of a 2-
dimensional point P(0.75,0.1). The data space has
been divided into 4 pyramids. The pyramid value for
P is 1.4: 1 because it lies in pyramid 1 plus .4 be-
cause this is its distance (height) to the center (0.5) in
dimension d;. (after Berchtold et al. [7])

The Pyramid Technique [7] maps n-dimensional
points into one-dimensional values. It therefore splits the
n-dimensional data space into 2n n-dimensional pyra-
mids, whose bases are the borders and whose centers are
the center of the data space. The pyramid-value is cal-
culated as follows (Figure 1): the places before the deci-
mal point depict the pyramid in which the point lies and
the decimal places are the height in that pyramid. The
height of a point in pyramid p is the distance of that point
from the center in dimension p M OD n. After mapping
all points to their pyramid values they are stored into a
B*-tree [14], using the pyramid values as keys, while
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the leaf nodes contain the original n-dimensional key.
As the calculation of the pyramid value is not bijective,
a mapped range query on data stored with the pyramid
technique may result in more elements than expected.
Therefore, one has to test every match against the orig-
inal query. Moreover, an n-dimensional range query is
converted into up to 2n one-dimensional queries because
every pyramid which intersects the query rectangle has
to be queried. The main drawback of the Pyramid Tech-
nique is, that one has to certainly know the borders of the
data space and rebuild the complete index if data is stored
which lies outside the originally assumed borders. This
rebuild causes an overhead of node accesses. However,
experiments indicate that this overhead becomes negligi-
ble for high-dimensional data.

The Pyramid Technique can be enhanced to the Ex-
tended Pyramid Technique [7] by shifting the center of
the pyramids to the median of the data set in every di-
mension. Doing so, the efficiency of querying on clus-
tered data sets is improved, but the center of the pyra-
mids needs be altered if its distance to the real median
is to high. Therefore, an approximation of the real me-
dian of the already inserted data is tracked by a histogram
and constantly compared to the actual center. Altering
the center to the median requires a complete rebuild of
the structure which can be done most efficiently by us-
ing bulk loading techniques on the underlying B*-tree.
Zhang et al. [47] generalized this technique to the P*-
tree, which dynamically divides the data space into sev-
eral subspaces in order to deal with more than one cluster
of data points.

2.3 Evaluating High-Dimensional and Spatio-
Temporal Indices

Together with high-dimensional and spatio-temporal ac-
cess methods several datasets and benchmarking appli-
cations have been proposed in order to analyze and eval-
uate different indexing approaches. For the generation of
spatio-temporal data, i.e. moving-objects data, the best
known frameworks may be GSTD [40], OPORTO [33],
and G-TERD [42]. Brinkhoff [10] propose a framework
for generating network-based moving objects e.g. traf-
fic in road networks, just like the data created by SUMO
[6]. In addition, Jensen et al. [22] (COST), Diintgen et
al. [15] (BerlinMOD), and Chen et al. [12] define bench-
marks for moving objects indices. As there seems to be
no data generator or benchmark for spatio-temporal data
with discretely changing spatial extent, the experiences
with the above mentioned generators and benchmarks
are used to create a new workload generator in section
4.

The most recent approach for the analysis of index-
ing techniques for high-dimensional point data is QuE-

val [37, 23], a framework which can be extended with
index structures, data sets, and distance metrics. Unfor-
tunately, it is designed for high-dimensional point and
not spatial or even spatio-temporal data.

3 HIGH-DIMENSIONAL SPATIO-TEMPORAL

INDEXING

An indexing method is needed which is able to han-
dle high-dimensional and spatio-temporal data. This
method needs to incorporate now-relative data and elim-
inate the drawbacks of other spatio-temporal approaches
which are a high overlap between directory nodes and
the shrinking number of entries in each directory node
with an increasing number of dimensions. In this section,
we describe the design and implementation of a method
which is capable of doing so.

3.1 Design

First, the overlap between directory nodes should be
minimized. The simplest way to accomplish that, is to
exclude the possibility of an overlap between different
nodes by a space partitioning method. Second, the size
of the directory nodes should be constant at an increas-
ing number of dimensions. This is possible by mapping
the intervals with start and end point in every dimension
to a single value and storing all elements with that value
as key into a B*-tree.

None of the techniques described in section 2.2 is able
to store now-relative data. Therefore, the mapping func-
tion needs to map the current flag as well. It also needs
to map in respect to the ongoing time and the fact, that
the time correlated to current is constantly growing.

Mapping now-relative data to a single constant value
causes a cluster of data points at this value for large
spatio-temporal data sets. For this reason, the indexing
method needs to be able to convert the current flag to
a constant value for a specific dimension, and then map
the data with this converted value into a single value and
not convert the whole data to a constant value. To our
knowledge, the only method which already contains a
constant value which can be used as a replacement for
the current flag in every dimension, is the Pyramid Tech-
nique. As it uses the Pyramid Technique as indexing
method in its core, the new indexing method described
in this paper is called Spatio-Temporal Pyramid Adapter
(STPA). Before mapping a point to the corresponding
pyramid value, the STPA converts every current value
to the corresponding median value which is the center
of the pyramids in the given dimension. Using the cen-
ter of the pyramids as mapping for the current flag has
the additional benefit, that the Pyramid Technique works
best if the queries contain the center of the pyramids
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class STPA {

BPlustree bplustree
double-array medians

method insert
double pyramidvalue
bplustree.insert (pyramidvalue,
// update histogram,

(rectangle) {

// methods delete, update,

method convert (rectangle) {

convert (rectangle)
rectangle)
rebuild index if medians change

and lookup work analogously

instantiate double—-array point with a length of 2xrectangle.dimensions

for i = 0O,
point (dim)
if (rectangle.end.get (1)
then

point (i+rectangle.dimensions)
else
point (it+rectangle.dimensions)
end

double pyramidvValue

return pyramidvValue

}

i < rectangle.dimensions,
rectangle.begin.get (i)
current)

convertToPyramidValue (point) ;

i++ do

medians (1 + rectangle.dimensions)
rectangle.end.get (1)

// use [7]

Figure 2: Pseudo-code for inserting a new element with the STPA. First the rectangle is converted into the
corresponding pyramid value and then inserted into an underlying B*-tree using the pyramid value as key.

[47]. And, by definition, the Pyramid Technique is not
only a dimension-reducing but also a space-partitioning
method and therefore no overlaps between the directory
nodes occur. The incorporation of the ongoing time is
discussed in section 3.2. Note, that the Pyramid Tech-
nique is only suitable for point data. So at first the STPA
needs to convert rectangular data into point data.

Hence, before inserting new data, given an n-
dimensional data space and spatio-temporal data, the
STPA converts the n intervals of one data key into an
2n-dimensional point. The first n entries of that point
are the start values of the intervals and the second n
entries are the end values of the intervals. Afterwards,
the current flags are replaced by the median value in
the given dimension. Finally the 2n-dimensional point
is converted into the corresponding pyramid value and
stored into an underlying B*-tree, just like in the original
Pyramid Technique. The pseudo-code for inserting new
elements is shown in Figure 2.

Summing up, the STPA uses a B*-tree, which con-
tains key-value pairs, where the original n intervals of

the MBR and a pointer to the original object are the
value, and the corresponding pyramid value is the key.
The additional space needed to store the data is O(V)
for the pyramid values of IV inserted objects plus the ad-
ditional space needed for the B*-tree. Lookup, deletion,
and update work just like insertion: First the data is con-
verted into the corresponding pyramid value and then the
operations are proceeded as for the original B*-tree.

Converting the n-dimensional intervals into the pyra-
mid value lies in O(n), as the algorithm needs to deter-
mine the pyramid and the distance to the center by a con-
stant number of visits of each dimension. Nonetheless,
we do not detect any impact of the conversion process in
our evaluation in section 4. The query conversion, which
is described in section 3.2 also lies in O(n), but the query
itself always is a range query on a B*-tree with no addi-
tional costs. As for the conversion to pyramid values, we
do not detect any measurable impact of our query con-
version on the performance.

However, shifting the center of the pyramids in order
to minimize the distance to the real median of the already
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0.2

dq dig
1.0 1.0
0.8 —— 0.8
0.3 — 0.3
do
0.0 0.2 0.7 1.0 0.0 0.3

(a) query

(b) conversion for d;

0002 0507 1.0 %

(c) conversion for dg

Ny
08 1.0 ¢

Figure 3: Example query (a) in two dimensional space with one temporal (d,) and one spatial (d;) dimension
and its conversion to two during queries (b+c). The current value of now is 0.7. The median, e.g. the center
of the pyramids, in each dimension of the converted space is 0.5. After conversion the space of the query
according to d; is extended because the query rectangle ends with current in that dimension.

inserted data causes a complete rebuild of the structure,
because every element has to be converted again. The
costs of this operation may be reduced by using bulk-
loading techniques and setting the initial center to a good
approximation of the expected median value. Berchtold
et al. [7] state that a rebuild of the structure is so un-
likely that it does not have an impact on the overall per-
formance. Therefore, we do not investigate the impact of
a rebuild any further.

3.2 Querying

Querying elements with the STPA is more difficult than
insertion or deletion because of two reasons. First, an
n-dimensional query needs to be converted into a 2n-
dimensional range query because the original Pyramid
Technique is only capable of that type of query. Second,
queries containing now-relative values or queries which
might match now-relative data need to be converted re-
spectively. Hereinafter, we describe the query process
up to the conversion into 4n range queries. This range
query is converted as suggested for the original Pyramid
Technique. For a better understanding of the following
conversion steps consider the following example.

Example: Given a two-dimensional normal-
ized space, with one spatial dimension d; and
one temporal dimension dp, get all elements
which are contained in the query rectangle
((0.2, current), (0.3,0.8)) which is shown in Fig-
ure 3a.

Because the data is stored as intervals, the STPA first
needs to convert the query into interval queries. Allen
[3] and Kriegel et al. [24] suggested 13 relationships
between intervals which are visualized in Figure 4.

b | - o
finishedBy contains startedBy
e — e —

overlaps  equals overlapedBy

before meets metBy after
e i e
starts during  finishes

Figure 4: Thirteen general interval relationships (af-
ter [3, 24]). The gray line is the query interval, the
black line a matching interval to that query.

He et al. [20] combine these relationships to the 8 fun-
damental relationships between two n-dimensional ob-
jects suggested by Egenhofer [16]. Likewise, the STPA
determines which interval queries are affected by the
given n-dimensional query and union the ranges of these
interval queries. In contrast to the approach given by He
et al. [20] it is not efficient to split the query into several
sub queries and combine the results with logical opera-
tors like AND or OR. The STPA therefore either needs
to join the possibly large result sets of the sub queries
or track which elements already have been matched by
a query. He et al. [20] suggest to use a flag for every
element and every dimension to depict if an element has
already been visited by a query in that dimension. This
also means that this flag has to be reseted after every
query. Just like the join of the result sets of every sub
query in the first variant, this reset requires each queried
element to be called again and causes a large overhead
of I/O operations. Table 1 shows which interval query is
affected by which of the fundamental relationships.
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Table 1: List of the general interval relationships
which are affected by the 8 relationships between n-
dimensional objects (after [20]).

Relationships be-
tween objects [16]

Interval relationships [3]

Disjoint Before, After

Meets Meets, MetBy

Overlaps Overlaps, OverlappedBy
Equals Equals

Contains Contains

Contained During

Covers Covers

CoveredBy CoveredBy

Example: Following Table 1 the given confained
query needs is converted into two during queries.

After deciding which interval queries have to be
used, the STPA converts this interval queries into range
queries. Figure 5 shows how a one-dimensional interval
query (Qs, Q), where Qg is the start and Qg is the end
of the query interval, is converted into a two-dimensional
range query. This gives us the 2n ranges to be queried
by the underlying Pyramid Technique.

Example: The during queries are created as shown
in Figure 3b+c. Before the special cases for now-
relative data are incorporated all current values are
set to the median value at that dimension. In the
example the median in each dimension is 0.5.

Before querying the STPA also needs to incorporate
now-relative data into the generated range queries for the
following two cases:

1. The original n-dimensional interval query itself
contains now-relative values, thus the end value in
at least one dimension equals current.

2. The interval query matches the current value of
now.

For every one-dimensional interval query (Qgs, Qg) the
STPA has to determine how to change the converted two-
dimensional range query, if one of the aforementioned
cases sets in. Table 2 lists how to adapt the resulting
region query for each of the query types from Figure 5.
Note that the now-relative values have been stored as the
center value of the pyramids in the specific dimension.
The Before and Meets query are not affected by now-
relative query intervals as they only query for elements
with certain start-intervals. Despite the fact that the Fin-
ishes, FinishedBy, Starts, and StartedBy query are not

affected by any of the original 8 relationships between
objects as shown in Table 1, their conversion is shown
in Figure 5 and Table 2 because one may want to define
more specific temporal queries.

Example: The example query ends with current in
dimension dy. Therefore the end value in dj is set
to the maximum of the median (0.5) and the current
value of now (0.7) and the query space is extended.
The query matches the current now if it contained
the current value of now in the temporal dimension.

As the query conversion often causes many false-
positive results, we also implemented two query alter-
natives. In the first alternative, whenever the stored now-
relative data has to be accessed, the query intervals are
not expanded but additionally only the affected now-
relative elements are queried and both result sets are
combined with an logical operator. In the second alter-
native, the now-relative elements are stored in separate
indices. As bi-temporal data is investigated, four indices
have to be queried in that alternative. One which only
contains now-relative valid-time data, one which only
contains now-relative transaction-time data, one which
only contains elements which are now-relative in both
temporal dimensions and one which does not contain any
now-relative data. Therefore every query is distributed
into up to four queries on the separated indices and the
results combined by logical operators. As the elements
in the underlying B*-tree are ordered the query results
could be joined in linear time in both alternatives. Un-
fortunately, the costs for the additional queries exceed
the benefits from much less false-positive results and the
alternatives perform worse by up to three orders of mag-
nitude. Therefore we do not investigate these alternatives
any further.

Summing up, the complete query conversion process
is defined as follows.

1. Identify the type of region queries which are af-
fected by the query (Table 1).

2. Convert the query to the identified region queries in
every dimension (Figure 5).

3. Adapt the converted queries if they contain now-
relative values or if they match the current value of
now (Table 2).

4. Merge the resulting n two-dimensional region
queries to one 2n dimensional query.

5. Convert the query to up to 4n range queries on the
underlying B*-tree (see [7]).
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Figure 5: 12 queries on intervals. The gray area shows which data is affected by an interval query (Qs, Qf)
when converted into a two-dimensional region query. The x-axis denotes the value of the starting points, the
y-axis denotes the value of the ending points of the intervals. Note that no point lies beneath the diagonal
and all points are lying inside [0, 1] in every dimension. The Equals query is a point query on (Qgs, Qs) and

(QE, QEg) respectively (after He et al. [20]).

Example: Finally, the query is converted into four
range queries (dimension / range):

dos  (0.2,0.7)
dop  (0.2,0.7)
dis  (0.3,0.8)
dip  (0.3,0.8)

Berchtold et al. [7] suggest to store all query results in
a Point-Set running through it after querying and check-
ing for valid results by matching to the original query. In
order to keep the necessary additional space at a mini-
mum the STPA uses the Visitor-Pattern [18]. In order to
query the STPA the client has to provide a query region
and a query instance. The query instance is a visitor and
the STPA a visitable. Thus, for every queried element the
given query instance is called by the STPA. The STPA

converts the region query into 4n range queries and per-
forms them on the underlying B*-tree in the same man-
ner. It provides a start and ending value for the range
query and a query object. Every time the B*-tree finds
a match for the given query it calls the given query ob-
ject. This query object then matches the given object
against the original query and, if it matches, calls the
query object of the original region query. As the differ-
ent range queries on the B*-tree are independent to each
other, the underlying range queries in the STPA may be
computed parallel. Figure 6 shows the general structure
of the STPA and Figure 7 a sequence of the query sys-
tem.
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Table 2: Incorporating now-relative values into range queries. The original one-dimensional query (Qs, Q)
is mapped into a two-dimensional region query as shown in Figure 5. The values of the resulting region query
are defined as (Es, Eg) and (Ss, Sg) - a start and an end value for each of both target dimensions. The table
lists how these values need to be altered if the query has a now-relative end value or if the query matches
the current value of now. The value c; is the value of the center point of the pyramids in the dimension d
of the converted interval. Now is the current value of the ongoing time to which all temporal dimensions are

connected.
Query @ Qg = current () matches current now
Before not affected Ep = MAX(Qs,caq)
After Eg = Ss= MIN(cg,now) Eg=Ss=MIN(Qg,cg)
B Es = MIN(Qs,ca)
Overlaps Er = MAX (cq,now) Ep = MAX(Qp,cq)
OverlappedBy FEg = MIN(cq, now) Es = MIN(Qg, cq)

, o , Es = MIN(Qs, ca)
During Sg = FErp = MAX(cq,now) Ep = MAX(Qg, ca)
Contains Es = MIN (cq,now) Es = MIN(QE, ca)

_ EsZMIN(Qs,Cd)
Starts Be = MAX(ca,now) B = MAX(Qp, ca)
B ES:MIN(Qs,Cd)
StartedBy Es = MIN(cq,now) Ep = MAX(Qg, cq)
Es = MIN(Qs, Cd)
Meets not affected Ep = MAX(Qs, cq)
MetB Sg¢=FEs=MIN(cq,now) Sg=MIN(QE,cq)
Y Sg = MAX (cq,now) Sgp=MAX(QEg,cq)
Finishes Sg = Eg = MIN(cq,now) FEg= MIN(Qg,cq)
Sgp =FEg = MAX(cqg,now) Sg=FErp=MAX(Qg,cq)
. Eg = MIN(cq,now) Es = MIN(Qg,cq)
FinishedBy Er = MAX (cq,now) Erp = MAX(QE, ca)
Equals Es = MIN (cq,now) Es=MIN(QE,ca)

Erg = MAX (cq,now)

Ep = MIN(QEg,cq)

3.3 Implementation

The STPA is implemented in the programming language
Java, Version 8 and the code is accessible via GitHub
[1]. Although it would have been possible, we relin-
quished on the implementation of a parallel query system
like shown in Figure 7. However, this would not have
changed the CPU-time or the number of I/Os which are
evaluated in the next section.

The underlying file system is abstracted by a
StorageManager and the file system is only acces-
sible through this StorageManager as depicted in
Figure 6. This was done for two reasons. First, it
allows the user to count the number of I/Os in this
StorageManager and therefore easily differentiate
between I/O operations which are caused by operations
on the STPA or from other parts of the application, like
the Virtual Machine. Second, the StorageManager
is exchangeable, for instance if the user wants to switch
between an on-disk and an in-memory application or if
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the user wants to alter the buffer or block size of the ab-
stracted file system.

As we know the properties of the inserted data sets
quite well, we did not implement a dynamic approxima-
tion of the actual median of the inserted data sets. In-
stead, it is possible to define the presumable median of
the data sets with initialization of the structure. Nonethe-
less, it is possible to optimize the index structure targeted
and bulk-load the whole data set into a clone with an op-
timized center of the pyramids. The concrete implemen-
tation of the competitor, the RS"-tree, is described in the
following section.

4 EVALUATION

In this section, the STAP is evaluated and compared to
the RST-tree, since other spatio-temporal methods are
able to handle moving-objects data, but not discretely
changing spatial data. First the implementation of the
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Figure 6: UML class diagram of the STPA. The upper part shows the query system and indexing methods,
the lower part shows the structure of the underlying storage manager. Any type of object may be stored, if it
has been wrapped into a Storable. Every Storable is identified by a unique ObjectReference.

R5T-tree and the evaluation program are described. Af-
terwards, the evaluation setup and evaluation results are
presented.

4.1 Implementation of the RST-tree

Our implementation of the RST-tree uses the previously
described St orageManager. The performance of the
R5T-tree can be adjusted at several positions. First, the
parameter « € [—1, 1] depicts how much the bi-temporal
part influences the computation of the volume v of a
MBR r by the following formula [34]:

v(r) = {
ey

The margin of a MBR is computed analogously and,
since not the absolute margins are crucial for the algo-
rithms of the R*- and RST-tree but their correct order, the
margins are computed as sums of the lengths of the MBR
in every dimension with the above described spatio-
temporal weight. The second adjustable parameter is the

yre ifa <0

else.

bitemp_area(r -area(r)

bitemp_area(r) - area(r)' =
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parametrization value. Every now-relative value is re-
placed by the current value of now plus the parametriza-
tion value. There are two types of parametrization val-
ues. The constant value and the dynamic value. When
the dynamic value is chosen, the RS"-tree uses a dynamic
time horizon [35]: Every n insertions, the time duration
At of the last n insertions is computed, where n equates
to the number of entries in a node. Then the update in-
terval length is approximated as U = (£%) N, where
N is the number of leaf entries and the querying window
length as W = ap - UI with 0 < aw < 1. The time
horizon H is computed as H = W + U1.

The alternate union, splitting, and deletion algorithms
are implemented as proposed in the original paper. Sum-
ming up, a RST - tree can be improved by adjusting the
« parameter, plus choosing between a constant and dy-
namic parametrization value and adjusting the ayy pa-
rameter, if the latter is chosen.

4.2 Evaluation Program and Setup

The crucial part of the evaluation is the selection of
the index-specific parameters and the distribution of the
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used in this diagram is shown in Figure 6.

spatio-temporal data sets. The evaluation program, the
parameters and the results are accessible via GitHub [1].

The STPA can only be improved further by altering the
center of the pyramids. The center of the pyramids is set
to the median of the data set at the beginning of the evalu-
ation, which is almost optimal. Since the temporal values
change over time and therefore the approximated median
changes over time, the Pyramid Technique, whose center
is set to a constant, only provides approximately optimal
query results. As in the original paper [7], our exper-
iments show that the benefits in the query cost of pro-
viding an optimal center of the pyramids is outweighed
by the additional rebuilding cost. Contrary, when using
an approximately optimal median, the addition rebuild-
ing cost is negligible [7]. The effect of a not optimized
median is investigated in section 4.3.

The RST-tree can by improved either by using a con-
stant or dynamic parametrization value plus the parame-
ter a. For the workloads described below both types of
parametrization values where compared and the constant
parametrization showed the best results. Note, that the o
and optionally ayy - parameter is adapted anew for each

s described in section 3.2. The structure of the classes

evaluation setup and especially for each spatio-temporal
distribution. For the in-memory case the node size can
be improved.

One workload is generated as follows. An index is
initialized with initialSize elements, whose end
values on the transaction-time axis are set to current.
Each of these elements with an now-relative end value
are considered to be part of an active history. A his-
tory is a chain of versions of one and the same ob-
ject which changes its appearance. Within every eval-
uation step incSize elements are inserted, in which
a ratio of startPercentage elements start a new
active history. A ratio of endPercentage elements
end a still active history by updating the last element
in that history with an element whose end value in
transaction-time is the current value of now. A ratio of
updatePercentage elements continue an active his-
tory by adding an element to a history whose end value
is current on the transaction-time axis. Adding an ele-
ment to a history always means that the end value on the
transaction-time axis of the latest element is updated to
the current value of now. Therefore, the start value on

12
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Table 3: Setup parameters for the in-memory and on-disk evaluation plus uniformly distributed, clustered,

and skewed data sets.

parameter value(s)
startPercentage 0.1
endPercentage 0.1
updatePercentage 0.8
uniform in[0, 1]
normal stdDev = 0.6
distribution mean = 0.25
validTimeDistribution stdDev = 0.3
skewed normal mean = 0.25
skew = —1.0
vtInfinityProbability 0.1
maxValidTimeLength 0.1
maxElementSize 0.1
incSize 11000
queries 1000
querySize 0.2
dimensions 5,10, 15,20, 30, 40, 50
InMemory
StorageManager . 4096 bytes per block
OnDisk 0,50 blocks in buffer

the transaction-time axis of the newly inserted element
is set to the current value of now.

The distribution of the elements in transaction-time
is given by the filling process described above. The
distribution along the valid-time axis is given by a
validTimeDistribution, which may either be a
uniform, normal or skewed normal distribution. Al-
though it is possible to vary the range and concrete be-
havior of the distributions, the evaluation only uses data
sets which are generated with one of the following set-
tings:

o A uniform distribution in [0, 1].

e A normal distribution with a standard deviation of
0.6 and a mean value of 0.25 in order to create data
clusters at 0.25 and most elements lying in [0, 1].

A skewed normal distribution with a standard de-
viation of 0.3, a mean value of 0.25, and a skew
of —1 in order to achieve a maximal skewness.
The skewness is applied on a random number y by
y = (1 — e~skewsy) /skew.

Additionally, elements which lie outside of [0,1] are
discarded. To create now-relative valid-time inter-
vals, the parameter vt InfinityProbability de-
notes the likelihood for setting the end time on the
valid-time axis of a newly created element to cur-
rent. For all non-now-relative elements the param-
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eter maxValidTimeLength denotes the maximum
length of the valid-time interval. The length is always
uniformly distributed in [0, maxValidTimeLength].
The start and end values in all non-temporal dimen-
sions are also created with either uniform, normal, or
skewed normal distributions. All non-temporal values
are created with the same distribution distribution
and the maximum length of the intervals is given by
maxElementSize. The number of dimensions is ad-
justable, but all elements at least have a transaction-
and a valid-time dimension. The dimensions are cho-
sen with respect to the long computation time for one
workload and in order to show the general behavior of
the structures with increasing dimensionality. As the
expected impact of the curse of dimensionality should
be between 5 and 15 dimensions, more low dimen-
sions are chosen for evaluation. After every insertion
of incSize elements, the structure is queried by an
amount of queries in [0, 1] uniformly distributed con-
tained queries. The maximum length of the queries in
every dimension is given by querySize. This is possi-
ble because the valid and transaction-time values are also
lying in [0, 1]. The current value of now starts at 0.25 in
order to model that some time already has passed and
is increased by a constant for every insert or update op-
eration on the evaluated index. This constant is defined
such that the current value of now is 0.75 at the end of the
workload generation. We also evaluated different block
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and buffer sizes, but concentrated on a block size of 4096
byte and a buffer size of 0 due to the fact that a greater
buffer size only shifts the results but does not change the
general conclusion if the number of inserted elements is
big enough. In order to keep the number of elements in
one workload at a minimum without falsifying the out-
come,the impact of different buffer sizes is not discussed
in detail. Keep in mind that the block size is only crucial
for the on-disk case, for the in-memory case the maxi-
mum number of entries in one node is constant. For our
implementation of the RST-tree, the best maximum node
size is 32 entries and the best maximum node size for
the underlying B*-tree of the STPA is 40 entries. The
setup of the workload generator is listed in Table 3. We
generate 100 workloads for every setup and both, an in-
memory and an on-disk working StorageManager.
Every workload contains 10 evaluation steps and with a
initial size of 1000 elements every evaluated index con-
tains 100000 elements at the end of one workload.

In order to provide a reproducible evaluation setup, ev-
ery pseudo random number generated within one work-
load depends on a certain random seed. Using this seed,
one can reproduce every number as it was generated in a
previous generation of a workload with the same set of
parameters.

4.3 Results

In this section the evaluation results are presented. For
the in-memory case the CPU-time is crucial since both
indexing methods do not need much additional memory
storage. Note, that the maximum number of entries in
the nodes of both structures remains constant for the in-
memory case, whereas the node size and not the num-
ber of entries remains constant for the on-disk case. The
number of I/O operations is the most relevant value for
the on-disk case.

For every evaluation setup three diagrams are pro-
vided, all generated with Mathematica 10:

e A three-dimensional diagram showing the
normalized means for every data point
(size, dimensions). This means, that the

mean at every data point is divided by the mean of
the first data point (10900, 5). By normalizing the
plot, we get a better understanding of the relations
between increasing size and dimensionality. For a
better visibility, only the data from the STPA with a
approximately optimized median and the R3T-tree
is shown.

e Two two-dimensional diagrams showing a Line Plot
of the absolute mean values for 5 and 50 dimen-
sions.

For both, the in-memory (Figure 9) and the on-disk
(Figure 8) case, the RST-tree has a better query perfor-
mance than the STPA for lower dimensions, but is clearly
outperformed by the STPA for higher dimensions. Tak-
ing the trend for an increasing number of elements into
account, the STPA is more efficient in higher dimen-
sions.

The better query performance of the STPA in the in-
memory case is likely to result from the fact, that for
an increasing number of dimensions by a constant maxi-
mum number of entries in every node the R3T-tree has to
perform an increasing number of floating-point compu-
tations when computing the overlaps, margins and vol-
umes of the nodes MBRs. For the on-disk case the per-
formance of the RST-tree is reduced in higher dimen-
sions, since the maximum number of entries decreases.
That is why more nodes have to be created for storing the
same number of elements and therefore more nodes have
to be accessed when querying. Neither the maximum
number of entries in the dir-nodes nor the size of the dir-
nodes of the underlying B*-tree of the STPA is affected
by an increasing number of dimensions, because every
entry is always identified by a one-dimensional value.
However, the maximum number of entries in the leaf-
nodes of the underlying B*-tree is affected by an increas-
ing number of dimensions in the on-disk case and our
structure also has to perform more subqueries on high-
dimensional data which causes a slightly worse query
behavior in the in-memory case.

Through the different distributions the STPA and the
R5T-tree show the same general behavior but especially
the impact of the median in the STPA variates. For uni-
formly and normal distributed data choosing the default
median of 0.5 seems to have less impact on the evalua-
tion results as the STPA with the default median is only
slightly worse than the STPA with approximately opti-
mized median. For the in-memory case (Figure 9) the
mean values seem to be better for the configuration with
the default median, but as the results for optimized and
default median also vary about 0.4 we cannot make a
general conclusion on the impact of the median. Such
an impact can clearly be seen for the skewed distribu-
tion. There, the approximately optimized median shows
clearly better results than the default median setting. The
dent in the plot for the skewed distribution in lower di-
mensions (Figures 8c, 9¢) may be caused by the greater
impact both time dimensions. Especially if it is recalled,
that the time moved from 0.25 to 0.75 through one eval-
uation.

With respect to the 3D-plots, which show the relative
means of the STPA with approximately optimized medi-
ans and the R3T-tree, the relative difference is larger for
uniformly, less for normal, and even lesser for skewed
distributed data. This means, that the increase of the
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query cost in the RST-tree depends on the distribution of
the data, whereas the STPA seems to have a nearly equal
increase for all three distribution types.

We observe a similar behavior for the costs of inser-
tion, update, and deletion in the indexing methods. In
difference to the query cost the STPA outperforms the
R5T-tree also in absolute terms and lower dimensions.
We do not present these results in detail here as the
query cost is the crucial value for comparing the index-
ing methods.

5 CONCLUSIONS AND OUTLOOK

We presented a new indexing method for high-
dimensional spatio-bitemporal data with a discretely
changing spatial extend, the Spatio-Temporal Pyramid
Adapter (STPA), which is based on the Extended Pyra-
mid Technique [7]. The evaluation shows, that the over-
head generated by the conversion of an n-dimensional
spatio-temporal query to up to 4n one-dimensional
queries is outweighed by the benefits of the Pyramid
Technique in higher dimensions (> 10). The STPA is
not suitable for continously moving objects and the con-
figuration of the medians is crucial for distributions with
a high skewness. With respect to that, an approximately
optimal median as generated by the Extended Pyramid
Technique is sufficient. For distributions with more than
one cluster, the P*-tree [47] may be used instead of the
Extended Pyramid Technique.

The STPA can be implemented for parallel computa-
tion and is not restricted to a certain number of temporal
dimensions. As it is based on the B*-tree it may be im-
plemented on top of common database systems.

Following the outcome of this paper, we see several
research directions. First, the implementation of the P*-
tree [47] as basis of the STPA may be worthwhile, as
such a index may handle data with more than one cluster
better. Also, the impact of the ongoing time with re-
spect to the median may be investigated further, as the
evaluation indicated that at there is an impact at least for
skewed distributions.

Second, another good way to access high-dimensional
spatio-temporal data may be a combination of the X-tree
[8] and the RST-tree [34], as they both extend the R™-tree
and their algorithms independently address the special
requirements of high-dimensional and spatio-temporal
data respectively. As the main aspect of the X-tree is
the subtle usage of the main memory in order to achieve
fewer disk accesses, it is not useful for our in-memory
case and therefore this combination of X- and RS"-tree
was not further investigated.

Third and last, we plan to extend our evaluation pro-
gram, which is based on the generation and measurement
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of clearly defined workloads, to a more general perfor-
mance test system. Therefore, we need to create an au-
tomated system, which does not rely on test cases which
where foreseen by an expert, but derives the test cases
from the specification.
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