
c© 2016 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Databases (OJDB)
Volume 3, Issue 1, 2016

http://www.ronpub.com/ojdb
ISSN 2199-3459

Runtime Adaptive Hybrid Query Engine
based on FPGAs

Stefan Werner A, Dennis Heinrich A, Sven Groppe A,
Christopher Blochwitz B, Thilo Pionteck C

A Institute of Information Systems, Universität zu Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,
{werner, heinrich, groppe}@ifis.uni-luebeck.de

B Institute of Computer Engineering, Universität zu Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,
blochwitz@iti.uni-luebeck.de

C Institute for Information Technology and Communications, Otto von Guericke University Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany, thilo.pionteck@ovgu.de

ABSTRACT

This paper presents the fully integrated hardware-accelerated query engine for large-scale datasets in the context
of Semantic Web databases. As queries are typically unknown at design time, a static approach is not feasible and
not flexible to cover a wide range of queries at system runtime. Therefore, we introduce a runtime reconfigurable
accelerator based on a Field Programmable Gate Array (FPGA), which transparently incorporates with the freely
available Semantic Web database LUPOSDATE. At system runtime, the proposed approach dynamically generates
an optimized hardware accelerator in terms of an FPGA configuration for each individual query and transparently
retrieves the query result to be displayed to the user. During hardware-accelerated execution the host supplies triple
data to the FPGA and retrieves the results from the FPGA via PCIe interface. The benefits and limitations are
evaluated on large-scale synthetic datasets with up to 260 million triples as well as the widely known Billion Triples
Challenge.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Semantic Web, Query Processing, Query Engine, Hardware Accelerator, Field
Programmable Gate Array, FPGA

1 INTRODUCTION

Nowadays it is a fact that more and more (unstructured)
data is stored and analyzed in several areas of
research and industry, motivated by political and
security reasons (surveillance, intelligence agencies), as
well as economical (advertisement, social media) or
medical matters [17]. In order to enable machines to
automatically analyze (possibly not well or completely
defined) data, the idea of the Semantic Web was created
[4]. Therefore, metadata is used to describe and link any

kind of data and resources but also allows the description
of arbitrary complex concepts and models. Besides
others, the Linking Open Data (LOD) project [37] aims
to publish new and interconnect existing open datasets.
As a result the LOD cloud consisted of more than 30
billion triples and more than 500 million links in 20111

(Big Data).
Besides suitable data structures, optimized hardware

1 http://lod-cloud.net/state/ (Version 0.3,
09/19/2011) - accessed: 05/11/2016

21

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojdb
http://lod-cloud.net/state/

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

is necessary to store and process this vast amount of
data. Whereas persistently storing of these massive
data is hassle-free, the processing and analysis within
a reasonable time frame becomes more and more
difficult. In order to cope with these problems, in
the last decades intensive work was done to optimize
database software and data structures [20, 49, 22, 18].
Furthermore, technological advances enabled shrinking
feature size to increase clock frequency and thus the
overall performance.

However, nowadays these approaches are getting close
to their limits (power wall [39]) and in the last years
the trend evolved to multi/many-core systems in order
to increase performance [5]. Additionally, these systems
are not assembled with homogeneous cores, but rather
are composed by heterogeneous and specialized cores
which compute a specific task efficiently. The main
issue of such systems is that these specialized cores
cannot be used in applications showing a huge variety in
processing. Widely available Field Programmable Gate
Arrays (FPGA) with the capability of (partial) runtime-
reconfiguration [44] are able to close the gap between the
flexibility of general-purpose CPUs and the performance
of specialized hardware-accelerators.

Although the presented methodologies are not limited
to Semantic Web database systems, we develop a
hybrid hardware-software system to enhance query
performance on large-scale Semantic Web datasets. The
proposed architecture allows the user to retrieve specific
information from Semantic Web datasets by writing a
query, which is automatically adapted and executed on a
runtime-reconfigurable FPGA (see the basic architecture
in Figure 1).

This paper is an extension of our previous work
[54] but overcomes the reported performance issues
by introducing virtual streams between host and
FPGA to enable implicit synchronization. Instead
of results obtained by simulation, this paper gives
a comprehensive performance analysis on large-scale

DATABASE SERVER

D
A
T
A

CPU

FPGA

CLIENT

QUERY

R
E
S
U

LT

Figure 1: Basic architecture of the hybrid hardware-
software system
(Explanation: The client application sends a query to the
hybrid database server which transparently determines
the result using an FPGA-based hardware accelerator.)

datasets. Additionally, the architectural overview
provides more details about FPGAs and the collaboration
between software and hardware in the hybrid system.

To the best of our knowledge this is the first hybrid
hardware-software system which fully-automatically
executes queries with an arbitrary number of operators2

on large-scale Semantic Web datasets such as the Billion
Triples Challenge [24] on an FPGA.

The remainder of this work is structured as followed:
Section 2 outlines related work in the area of hardware-
accelerators in database systems. The architectural
overview and the general work flow of our proposed
system is given in Section 3. The automated composition
of the configuration suitable for the FPGA is described
in Section 4. Section 5 evaluates the feasibility of the
presented approach and Section 6 discusses open issues
and future directions.

2 RELATED WORK

In the following we review the recent work in the field
of database tasks using modern hardware architectures.
Already in the early days of databases the idea of a
tailor-made database machine came up [36, 14, 13].
However, at this time the technological capabilities were
limited and thus these approaches were not economically
successful. Nowadays, since clock frequency growth
reaches its limits and the availability of new hardware
architectures, these and new ideas get a fresh impetus
[5, 39].

2.1 Smart Storages

While CPU performance steadily increased for the last
decades, the latency of main-memory access turned out
to be a bottleneck known as the memory wall [38].
This imbalance exacerbates when it comes to persistent
storages such as disk-based hard drives (HDDs) [35].
Although the latency is significantly reduced by flash-
based solid state drives (SSDs), the disk bandwidth
remains considerably low. With respect to databases,
typically huge amounts of data are transferred to the
CPU but often most of the data is irrelevant or is
only a part of an aggregation. Smart SSDs provide
an embedded processor, fast internal memory and
multiple I/O channels resulting in a high performance on
concurrent access patterns [33, 32]. Therefore, Do et al.
[15] use the SSD’s in-device processing capabilities to
perform selection already in the SSD before transferring
unnecessary data. Seshadri et al. [48] present a prototype
which allows to implement application-specific data
access utilizing the internal SSD processing resources.

2Only restricted by FPGA resources

22

S. Werner, D. Heinrich, S. Groppe, C. Blochwitz and T. Pionteck: Runtime Adaptive Hybrid Query Engine based on FPGAs

2.2 General Purpose Computing on GPUs

Graphics processing units (GPUs) are specialized
hardware accelerators to create and manipulate images
stored in memory (frame buffer) to be shown on a
display. Their internal structure is highly parallel, and
this makes them interesting also for other fields than
image processing. The methodology of performing
general computations on GPUs is referred as general
purpose computing on GPUs (GPGPU).

Sun et al. [50] show how to turn these characteristics
into an hardware accelerator for spatial selections and
joins. GPUTeraSort [19] utilizes a GPU as a co-
processor for solving sorting tasks on huge datasets. He
et al. provide extensive work on relational query co-
processing using GPUs [26, 25, 27, 28, 10]. One major
problem, which remains unsolved, is the transfer of data
to the GPU. Fang et al. [16] reduce the overhead of data
transfers by executing database compression techniques
on GPUs. Another hybrid query processing engine using
a GPU is shown by Breß [8, 7, 6].

2.3 Reconfigurable Computing

Reconfigurable architectures provide the post-
fabrication programmability of software and the
spatial parallelism of hardware [23]. Due to the
availability of Field-programmable Gate Arrays
(FPGAs), reconfigurable computing becomes more and
more attractive and affordable. Typically, these devices
obtain their performance advantages rather by inherent
parallelism than high clock frequencies.

Mueller et al. [40, 41] propose the component
library and compositional compiler Glacier. It takes
a continuous query for data streams and generates a
corresponding file written in the hardware description
language VHDL. After the time-consuming translation
of the VHDL description to an FPGA configuration,
the query can be programmed on an FPGA in order to
accelerate the evaluation on data streams. Consequently,
this approach is only suitable for a known query set.
Additionally, the library does not cover join operators.

Teubner et al. [51] present a window-based stream
join, called Handshake join. The approach lets the items
of two data streams flow by in opposite directions to
find join partners with each item they encounter. All
items in a predefined window are considered in parallel
to compute an intermediate result. Due to the window-
based architecture and since the window size is limited
by the chip size, it cannot be guaranteed that the result
contains all possible join partner of the two datasets.

IBM’s Netezza FAST engines [30] uses FPGAs to
reduce the amount of data to be transferred from
(persistent) memory to the CPU by early execution of

projection and restriction. Furthermore, uncompressing
data at wire speed increases the read throughput and thus
reduces the drawback of hard disks.

As the system does not support a modular composition
of complete queries, Dennl et al. [11, 12] present
concepts for on-the-fly hardware acceleration of SQL
queries in the relational database MySQL. The authors
focus on restriction and aggregation operators and thus
cannot execute complete queries on the FPGA. However,
in order to evaluate more complex queries (including
joins) additional views are created to represent partial
results and the proposed hardware-software system
achieves promising speed-up gains.

Becher et al. [3] extend this approach to an
embedded low-energy system-on-chip platform and add
more complex operators (e.g., Merge Join and sorting
of small datasets). For a simple query including one
join they achieve a comparable performance but higher
energy efficiency than a standard x86-based system.
Additionally, they provide a theoretical model for their
operators to estimate the performance.

Casper et al. [9] explore accelerating in-memory
database operations with focus on throughput and
utilization of memory bandwidth during sorting. The
presented system performs an equi-join after sorting of
two tables.

Woods et al. [58, 57] present Ibex, an intelligent
storage engine for the relational database MySQL that
supports off-loading of complex query operators using
an FPGA. Comparable to Netezza FAST engines but
more flexible, the FPGA is integrated into the data
path between data source and host system. István [31]
beneficially uses this system to generate statistics and
histograms as a side effect of data movement in the
data path. Typically, the generation of histograms is
computing intensive, but they are important for query
planning.

Sadoghi [45] and Najafi [42, 43] describe a
reconfigurable event stream processor based on an
FPGA. It supports selection, projection and window-
joins on data streams.

Heinrich et al. [29] propose a hybrid index structure,
which stores the higher levels of a B+-tree including the
root on an FPGA. The lower levels including the leaves
are located on the host system. As a result, the access
on frequently entered higher levels is accelerated. The
FPGA returns an entry point (address) from where the
software system continues the search.

In the context of Semantic Web databases we develop
a hybrid hardware-software system, which transparently
transforms and executes SPARQL queries on a run-
time reconfigurable FPGA. In previous works we have
presented our approaches to implement and execute the
join operator [53, 56] and filter expressions [55] on an

23

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

FPGA. Whereas these operators have been evaluated
in isolation, this work presents the fully automated
and transparent composition and execution of complete
operator graphs on an FPGA. As a result the user is able
to simply write an arbitrary SPARQL query in the GUI of
LUPOSDATE [21], which is automatically transformed
into a configuration suitable for the FPGA and evaluated
on it. Finally, the result is displayed by the host system
to the user.

3 ARCHITECTURAL OVERVIEW

In the following we introduce the basic internals about
Field Programmable Gate Arrays (FPGA) and some
fundamentals of Semantic Web databases. Furthermore,
we present the overall architecture of the hybrid
hardware-software system and give an insight into how
our proposed system synchronizes between host and
FPGA during query evaluation.

3.1 Field Programmable Gate Array (FPGA)

In the following the Xilinx Virtex-6 [60] FPGA is
described as it is used in this work. The overall structure
of different FPGAs is conceptually the same and differs
typically in structure size, amount of provided logic
resources and dedicated hardware cores (such as digital
signal processors (DSP) or general-purpose CPUs). The
FPGA die is organized in Configurable Logic Blocks
(CLB [61]), which each consists of 2 slices. Each slice
contains 4 Lookup Tables (LUTs), 3 multiplexer, a carry
chain and 8 flip-flops (FF). Each LUT can be used as
one 6-input with one output but can also be used as
two 5-input LUTs (using common logic inputs) with two
separate outputs. The output of the LUTs can be stored
in the FFs.

Besides implementing combinatorial functions
(SLICEL), the LUTs of between 25 to 50% of all
slices can be used as distributed 64-bit RAM or 32-bit
shift registers (SLICEM). Each slice is connected to a
switch matrix which in turn is linked to several switch
matrices nearby. Additionally, fast carry chains allow
vertical data propagation from one slice to another
above. This enables to combine slice to achieve complex
functions. Figure 2 shows a very small segment of the
total3 CLB array. Within the array, columns of Block
RAM (BRAM) and DSP blocks are located as well.
Depending on the device, multiple BRAM blocks are
placed in columns on the whole FPGA die. In case of
the Virtex-6 (and others) each block has 36 Kb storage
area but can be segmented into 2 independent 18 Kb
BRAMs. Furthermore, Virtex-6 family supports various

3Typically hundreds of thousand

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

B
lo

ck
R
A
M

B
lo

ck
R
A
M

D
S
P

D
S
P

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

Configurable

Interconnects

Figure 2: FPGA internals schematic - array of
Configurable Logic Blocks (CLB)

memory-related interfaces such as DDR2 SDRAM,
DDR3 SDRAM, RLDRAM II and QDRII+SRAM.
Thus, FPGA architectures provide a flexible memory
hierarchy with very small but very fast storage up to
comparably bigger but slower memory with different
possible granularities. In order to get a suitable
configuration (called bitfile) for the FPGA, the intended
hardware can be expressed in a hardware description
language such as VHDL4. Besides replacing the whole
design on the FPGA, Dynamic Partial Reconfiguration
(DPR [62]) allows to replace some parts of the design
at runtime. In this work, DPR is extensively used to
exchange queries in this approach.

3.2 LUPOSDATE

LUPOSDATE [21] is an open source Semantic Web
database system which allows the easy integration of
Semantic Web technologies in any other application
or the extension and contribution to LUPOSDATE
itself. Among numerous other features, it provides
several query engines, all (except the streaming engine)
supporting full SPARQL 1.0 and SPARQL 1.1 [52]. The
developed hybrid architecture in this work is based on
and transparently incorporates with the LUPOSDATE
system by introducing an FPGA-based query engine.
Therefore, the next section introduces the basic data and
query formats.

3.3 Data Representation and Queries

The Resource Description Framework (RDF [59]) is
used as the basic data format in the Semantic Web to
describe statements about web resources. The data is
represented as RDF triples. Listing 1 shows an example
RDF dataset consisting of two prefix definitions and two
triples with a common subject. In general, each triple

4VHDL: VHSIC Hardware Description Language (VHSIC: Very
High Speed Integrated Circuit)

24

S. Werner, D. Heinrich, S. Groppe, C. Blochwitz and T. Pionteck: Runtime Adaptive Hybrid Query Engine based on FPGAs

Listing 1: RDF example (modified from SP2B dataset [47])
1 @pref ix dc : <h t t p : / / p u r l . o rg / dc / e l e m e n t s /1 .1 / > .
2 @pref ix d c t e r m s : <h t t p : / / p u r l . o rg / dc / t e r m s /> .
3 <h t t p : / / l o c a l h o s t / j o u r n a l s / J o u r n a l 1 /1940> dc : t i t l e ” J o u r n a l 1 (1 9 4 0) ” ˆ ˆ xsd : s t r i n g .
4 <h t t p : / / l o c a l h o s t / j o u r n a l s / J o u r n a l 1 /1940> d c t e r m s : i s s u e d ” 1940 ” ˆ ˆ xsd : i n t e g e r .

Listing 2: SPARQL query on the SP2B dataset [47]
1 PREFIX dc : <h t t p : / / p u r l . o rg / dc / e l e m e n t s /1 .1 / >
2 PREFIX d c t e r m s : <h t t p : / / p u r l . o rg / dc / t e r m s />
3

4 SELECT ? t i t l e ? y r
5 WHERE {
6 ? doc dc : t i t l e ? t i t l e .
7 ? doc d c t e r m s : i s s u e d ? y r
8 }

RDF3XCIndexCScanCon
TripleCPattern
CCCCCCC]?doc,Cdcterms:issued,C?yrj
CollationCOrder:CPSO

RDF3XCIndexCScanCon
TripleCPattern
CCCCCCC]?doc,Cdc:title,C?titlej
CollationCOrder:CPSO

MergeJoinWithoutSorting
onC[?doc]

Projection
toC[?title,C?yr]

Result

Figure 3: Operator graph of the example query in
Listing 2

consists of components subject, predicate and object,
and is formally defined as (s, p, o) ∈ (I ∪ B) × I ×
(I ∪ B ∪ L), with the pairwise disjoint infinite sets I ,
B and L, where I consists of IRIs, B is the set of blank
nodes and L contains literals.

A set of RDF triples is used as the data basis for
SPARQL [52] queries. Listing 2 shows an example
for a SPARQL query to retrieve all document titles and
their year of publication in the SP2B dataset [47]. The
SELECT clause defines a projection list of variables
to appear in the final result (i.e., the bindings of the
variables ?title and ?yr). The WHERE clause contains
two triple patterns. Matching triples lead to bindings of
the variables. As the variable ?doc appears in both triple
patterns, both intermediate results will be joined (in this
case with a Merge Join). Like in relational databases,
the components of SPARQL queries are broken down
to a set of nestable basic operators and are combined
to an operator graph representing the given query. The
resulting operator graph of the example query is shown
in Figure 3.

?title ?yr ?doc

Figure 4: Bindings array of the example query in
Listing 2

Table 1: Dictionary regarding literals in Listing 1
(without prefix substitution)

String ID
<http :// localhost / journals / Journal1/1940> 0

dc: title 1
dcterms: issued 2

”Journal 1 (1940)” ˆˆxsd: string 3
”1940”ˆˆxsd: integer 4

Listing 3: Representing RDF triples of Listing 1 using
IDs from Figure 1
1 0 1 3 .
2 0 2 4 .

Depending on the constant values in a triple pattern
LUPOSDATE chooses a collation order for each index
scan operator. As in both triple patterns the predicate
is a constant value the collation order PSO is chosen.
This means the data is primarily sorted by the predicate,
secondarily by subject and tertiary by object. In fact,
LUPOSDATE uses six indices, each for one of the
six possible collation orders (SPO, SOP, etc.) of
RDF triples, and thus is able to retrieve sorted triples
efficiently for a given triple pattern. Intermediate results
(bound values for the variables) are stored in bindings
arrays. Each variable has a dedicated position in this
array where its bound value is stored (see Figure 4).

Furthermore, the LUPOSDATE system uses a
dictionary to map RDF terms into integer IDs [22]
and thus each binding in the bindings array is an
integer ID which refers to the actual string representation
(see Figure 1 and Listing 3). Due to lower space
consumption of the evaluation indices and a significantly
smaller memory footprint of intermediate results during
query execution, this feature is intensively used by
LUPOSDATE. With respect to the FPGA design this is
quite handy as handling arrays of integer values is rather
easier than dealing with strings of variable length.

25

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

Table 2: Brief overview of relational operators (with input relations R,S)
Operator Notation Description
Filter (Selection) σc(R) Returns only tuples of R which fulfill formula c
Projection πv1,...,vn(R) Keeps only the variables v1, . . . , vn of the tuples of R
Cross Product R× S Concatenates each tuple of R with each tuple of S
Equi-Join R ./v1,...,vn S Concatenates all tuples of R with all tuples of S which

are equal in the common join variables v1, . . . , vn
Union R ∪ S Returns all tuples of R and S
Limit limitn(R) Returns first n tuples of R
Offset offsetn(R) Returns all except the first n tuples of R
Distinct δ(R) R without duplicates
Order By τv1,...,vn(R) R sorted with respect to variables v1, . . . , vn
Triple Pattern Scan (i1, i2, i3) Returns triples satisfying the pattern

Besides the basic structure, consisting of
SELECT/WHERE clause and triple pattern, other
features such as FILTER, UNION and OPTIONAL are
provided by SPARQL. Each SPARQL operator (except
the index scan operator) can be expressed as relational
algebra. Table 2 gives a brief overview of the important
operators of the relational algebra.

3.4 Hybrid Work Flow

Figure 5 shows the general processing flow. First the
user submits a query which is transformed into an
operator graph by the LUPOSDATE system. On the
operator graph several logical and physical optimizations
are applied [22]. Afterwards the optimized operator
graph is analyzed for unsupported operators5. In case
such an operator was found the query is evaluated
completely by the software engine on the host system.
Besides implementing more operators on the FPGA, in
the future we plan to break down this strict separation
as well. This means that the FPGA processes as much
as possible of the operator graph and the host system
covers the remaining operators. If all operators are
supported then our new extension traverses the operator
graph and generates a VHDL file which represents the
given query. A detailed description of this process
can be found in Section 4. The full FPGA tool chain
(synthesis, mapping, place & route) is applied on the
VHDL description of the circuit. The resulting bitfile
is programmed on the FPGA and the query is ready to
be executed. Again, in case of any error (e.g., translation
failed caused by lack of FPGA resources) the query is
evaluated in software. This always preserves a running
system. If no error occurred the query is executed on
the FPGA. In fact, during execution the host and FPGA
work in parallel. The host covers the following two tasks
during query execution:

5e.g., sorting operators are not implemented yet

1. Provision of input triples: Depending on the triple
patterns given in the query, a collation order for
each index scan is chosen. The underlying data
structure (B+-Tree) iteratively returns all ID triples
satisfying the triple pattern. The ID triples are
written in a buffer on the host and block-wisely
passed on to the PCIe engine.

2. Retrieval and post processing of results:
Concurrently the host is requesting resulting
bindings arrays by handing over an empty buffer
to the PCIe engine. Usually the buffer contains
multiple results. In further post processing steps
the result’s low level representation (array of
integer) is packed into higher data structures (literal
and bindings objects) in order to return the result
back to typical software flow and its modules for
presenting the result to the user or submitting it to
another application.

3.5 Hybrid Architecture

Figure 6 shows the architecture of the hybrid system
consisting of two parts: the host, which provides higher
functions (such as user interface, query optimization,
maintaining of evaluation indices, etc.), and the FPGA as
an accelerator for query execution. The communication
between both units is based on PCIe.

The FPGA is divided into two partitions: static
and dynamic. The static partition contains modules
which are independent of the actual query structure.
Typically, those are modules for communication and
memory interfaces. In this case it contains the PCIe
Endpoint (EP) and a managing module, the Query
Coordinator (QC). The main task of the QC covers
delivery of incoming triples to the corresponding index
scan operators in the dynamic partition as well as
retrieval and serialization of bindings arrays (forming the
final result). The dynamic partition can be reconfigured

26

S. Werner, D. Heinrich, S. Groppe, C. Blochwitz and T. Pionteck: Runtime Adaptive Hybrid Query Engine based on FPGAs

Parse Query Optimize & Analyze

suitable?

yes no
Software Execution

Display Result

Generate VHDL code

Synthesis

Place & Route

Bitgen & Program

errors?

yes

no

Supply Triples

Execution on FPGA

Collect Results

Preprocessing Execution

FPGA Toolchain

Figure 5: Flow chart of the hybrid system

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Static Partition FPGA

Host

User Application

PCIe EP PCIe EP
Query Coordinator

Dynamic Partition

I1 I2
. . .

. . .

Ik−1 Ik

◃▹

σ

◃▹

◃▹

∪
πR

P
O

S
P
S
O

O
S
P

S
O

P
S
P
O

Result

Query

QEP

Figure 6: Hybrid Query Execution Engine (EP=Endpoint, QEP=Query Execution Plan)

27

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

Table 3: Parts of the VHDL template for the dynamic
partition

Static signals & constants definition
Dynamic signals & constants definition
Dynamic signal assignment
Dynamic mapping of index scans
Static instantiations of entities
Dynamic instantiations of entities
Static glue logic

at runtime with a bitfile representing any arbitrary
operator graph (limited by chip space).

All operator graphs contain index scan operators In
with n ∈ {1..k} and k fixed, but adjustable at system
setup time (currently k = 8). Each index scan represents
a triple pattern (with possibly bound components)
and maps the incoming triple components into the
corresponding variable positions in the bindings array.
Succeeding operators (such as Join, Filter, Union, etc.)
consolidate and filter partly bounded bindings arrays to
combined final results. These results are returned to the
QC in the static partition in order to transfer them to the
host. On host-side, the result is materialized in higher
data structure for further processing such as displaying
the result to the user or delivery to the calling application.

Contrary to our previous approach, there is no
additional explicit control flow between host application
and hardware unit necessary. This is achieved by
using virtual streams which logically divide the PCIe
interface. In the FPGA and on the host, each stream
provides a dedicated interface including dedicated buffer
(BRAM respectively main memory). For incoming triple
data, each stream is associated with one index scan
operator. The result is always sent back on the first
stream. Remaining streams can be used in the future to
support processing of multiple queries on the FPGA at
the same time. In the following section we describe how
to automatically obtain a configuration for the dynamic
partition.

4 AUTOMATED COMPOSITION

The configuration of the dynamic partition is generated
automatically for each query. We developed a VHDL
template and a pool of operators to compose the VHDL
file which represents the query. In turn the template
consists of a static and dynamic part as well (shown in
Table 3). In the following, a detailed description for each
part of the template is given.

4.1 Template - Static Parts

Each query contains a result operator which is
connected using the signal results of the record type
op connection (see Listing 4). It is used as an
interface between the dynamically generated operator
graph and the static code which takes the query results
and serializes them into the PCIe TX engine. The record
type op connection plays an important role in the
dynamic part as well and will be explained in detail
in Section 4.2. Additionally, the static instantiation
of entities covers a reset generator, a cycle counter
(for debugging purposes and to evaluate the raw FPGA
performance) and the Query Coordinator (QC). The QC
is the interface between the PCIe Endpoint in the static
partition and an adjustable6 number of index scans.

Listing 4: Connection record
1 t y p e o p c o n n e c t i o n i s r e c o r d
2 r e a d d a t a : s t d l o g i c ;
3 d a t a : s t d l o g i c v e c t o r (DW−1 downto 0) ;
4 v a l i d : s t d l o g i c ;
5 f i n i s h e d : s t d l o g i c ;
6 end r e c o r d o p c o n n e c t i o n ;

4.2 Template - Dynamic Parts

The template is analyzed for the dynamic parts (see
Table 3) by LUPOSDATE at startup. Basically the
dynamic parts are marked with predefined markups as
comments. LUPOSDATE searches for those markups
and replaces them with VHDL code as follows.

4.2.1 Operator Instantiation and
Interconnects

The operator template is shown in Figure 7. It defines the
input and output signals which need to be implemented
by each operator. Operators can have up to two
preceding operators. If an operator needs only one
preceding operator (e.g., filter) then only the left input
is used. The second input is simply not used by the
operator and not connected to any other operator by
the automated composition algorithm. The following
synthesis implicitly detects those unused signals and
removes them accordingly. Furthermore, each operator
has exactly one succeeding operator. The signals are
grouped in such a way that the output of each operator
can be used as an input for any other operator. Each
group consists of (i) a vector data which corresponds to
the bindings array, (ii) a valid flag which indicates the
validity of data, (iii) a finished flag which indicates the

6We support up to 16 index scan operators

28

S. Werner, D. Heinrich, S. Groppe, C. Blochwitz and T. Pionteck: Runtime Adaptive Hybrid Query Engine based on FPGAs

T

T

read

data

valid

finished

read

data

valid

finished

read

data

valid

finished

Figure 7: Common operator interface

end of data, and (iv) a backward flag read which notifies
the proceeding operator that data was read. Reading
the data implicitly invalidates the data until new data
is provided by the preceding operator. It can be seen
that one group corresponds to the previously defined
record type op connection (Listing 4). The data
width (DW) of the signal data depends on the number
of variables in the bindings array and is dynamically set
for each query.

Thus, while traversing the optimized operator graph
for each visited operator, an ID X is assigned and
the signals opXinput1, opXinput2 and opXoutput1 are
defined (see lines 1 to 3 in Listing 5). Additionally,
an entity of a specific operator with type OperatorType
is instantiated (line 5). In the port map (lines 11 to
27) the internal operator signals are connected with
the previously defined op connection signals. The
generic map (lines 6 to 10) is used to parameterize
this particular operator. All operators have the
generics for the data and value width in common
which correspond to the width of the bindings array
and variables. Furthermore, each operator can have
additional individual generics. These extensions will
be described in Section 4.3. The actual wiring of two
consecutive operators is outlined in Listing 6. As the
output of operator X is used as (left) input of the operator
Y this implies that X is the predecessor of Y (see lines 2 to
4). The read data flag indicates operator X that operator
Y has read the provided data and thus can provide the
next data (see line 1).

4.2.2 Input Mapping

Contrary to our previous work [54] the input mapping
of triples to index scan operator is realized implicitly

Listing 5: Operator instatiation
1 s i g n a l opXinput1 : o p c o n n e c t i o n ;
2 s i g n a l opXinput2 : o p c o n n e c t i o n ;
3 s i g n a l opXoutput1 : o p c o n n e c t i o n ;
4 [. . .]
5 o p e r a t o r X : e n t i t y work . Opera to rType (a r c h)
6 g e n e r i c map (
7 DATA WIDTH => BINDINGS ARRAY WIDTH ,
8 VALUE WIDTH => BINDINGS WIDTH ,
9 −− [. . . more o p e r a t o r s p e c i f i c g e n e r i c s . . .]

10)
11 p o r t map (
12 [. . .]
13 l e f t r e a d => opXinput1 . r e a d d a t a ,
14 l e f t d a t a => opXinput1 . da t a ,
15 l e f t v a l i d => opXinput1 . v a l i d ,
16 l e f t f i n i s h e d => opXinput1 . f i n i s h e d ,
17

18 r i g h t r e a d => opXinput2 . r e a d d a t a ,
19 r i g h t d a t a => opXinput2 . da t a ,
20 r i g h t v a l i d => opXinput2 . v a l i d ,
21 r i g h t f i n i s h e d => opXinput2 . f i n i s h e d ,
22

23 r e s u l t r e a d => opXoutput1 . r e a d d a t a ,
24 r e s u l t d a t a => opXoutput1 . da t a ,
25 r e s u l t v a l i d => opXoutput1 . v a l i d ,
26 f i n i s h e d o u t => opXoutput1 . f i n i s h e d
27) ;

Listing 6: Linking of two operators X and Y
1 opXoutput1 . r e a d d a t a <= opYinput1 . r e a d d a t a ;
2 opYinput1 . d a t a <= opXoutput1 . d a t a ;
3 opYinput1 . v a l i d <= opXoutput1 . v a l i d ;
4 opYinput1 . f i n i s h e d <= opXoutput1 . f i n i s h e d ;

by assigning to each index scan one virtual stream.
This suits better the streaming fashion of the whole
architecture. The synchronization between the PCIe
endpoints at host and FPGA is implicit as well. This is a
great advantage if the triples of different index scans are
not consumed at the same speed, and thus the buffer of
the slower index scan gets filled on the FPGA side and
more triples for this particular index scan must not be
sent anymore until the buffer depletes. Assuming that all
triples for all index scans are sent using the same stream
this might cause that the triples of the blocked index scan
are blocking the commonly used stream.

As a consequence, the other index scans receive no
more triples and thus the whole query execution is
blocked. Of course this can be avoided by an explicit
and strict synchronization between host and FPGA, but
causes additional delays and protocol overhead. Thus,
we divide one physical stream into multiple virtual
streams, each implicitly synchronized and not effecting
other virtual streams. However, as all virtual streams
share one physical interface consequently the bandwidth

29

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

is shared too. The available bandwidth for each virtual
stream is not preassigned which means if only one virtual
stream is used to send data then this stream can utilize the
full bandwidth.

4.3 Parametrization of Operators

As mentioned before each operator type can have
individual generics. In the following the scheme to
parametrize operators is outlined.

4.3.1 RDF3XIndexScan

The RDF3XIndexScan is the link between the QC and
the inner operators. Typically the RDF3XIndexScan
provides data triples s, p, o but a bindings array can
have less or more than three variables and also not
all of the three triple components might be necessary
to evaluate the query. Thus, the main objective of
this operator is to receive triples from the QC and
map their required components to a position in the
bindings array. Therefore the RDF3XIndexScan has
three additional generic one-hot-coded bit vectors
(SUBJECT POSITION, PREDICATE POSITION,
OBJECT POSITION). Each vector consists of as much
bits as there are variables in the bindings array. During
synthesis these vectors are evaluated following a simple
scheme: If bit x is set in the bit vector of one triple
component then this triple component is connected to
position x in the bindings array. Unbound variables are
initialized with an invalid value (0xFFFFFFFF).

4.3.2 Join

This operator joins the intermediate results of two
preceding operators depending on one or more common
join attributes. Similar to the RDF3XIndexScan, the
position of the join attribute is determined by the one-
hot-coded bit vector JOIN VECTOR. As the structure
of the bindings array is globally the same in the whole
operator graph, only one set bit is necessary. However,
it is possible that a join on more than one common
variable is executed. Although this is not yet supported
by the proposed system it is possible to simply add
additional bit vectors for secondary, tertiary, etc. orders.
In fact, there are several different algorithms for join
computation such as Merge or Hash Join [53] but all are
equipped with the same generics.

4.3.3 Filter

In previous work [55] we presented two approaches
to implement the filter operator for Semantic Web
databases. Taking the optimizer of LUPOSDATE into
account we are able to break down complex filter

expressions into multiple simple filter operators of the
scheme VALUE COND VALUE, with COND as the
condition (e.g., equality) and VALUE either a constant
or variable. Specifically, this means that conjunctions
of filter expressions result in a chain of simple filter
operators each checking only one relational condition. In
case of disjunction the operator duplication takes place
and thus multiple disjunctive conditions are evaluated
by simple filter operators in concurrent branches of the
operator graph. In turn the intermediate results of two (or
more) branches simply need to be unified in a lower level
of the operator graph. As a result each filter operator is
equipped with the following generics.

The generic FILTER OP TYPE describes the
relational operation to be evaluated by the filter. Due to
the mapping from strings to integer IDs our approach
supports only equal and unequal comparators at the
moment. However, if the dictionary (ID→string) would
be available on the FPGA also other conditions such
as greater/smaller than are possible. Furthermore, we
have to distinguish between expressions comparing
a variable with a constant value and comparing
two variables of the bindings array. Therefore
FILTER LEFT IS CONST is set if the left value
is a constant. If so then the constant value is passed
through the generic FILTER LEFT CONST VALUE
by setting the actual value to be compared. Contrary if
the left value is not a constant then the one-hot-coded
bit vector FILTER LEFT VAR POS is considered.
Like in previously described operators a set bit in this
vector corresponds to the position of the variable in the
bindings array. By simply replacing the term LEFT with
RIGHT in the generics that scheme is applied for the
right value of the filter expression as well.

4.3.4 Projection

The Projection carries out the SELECT clause of the
SPARQL query. Therefore it is equipped with the bit
vector PROJECTION VECTOR. It has as much bits as
the bindings array has variables. If bit x is set to ’1’ in
the bit vector then the corresponding variable at position
x in the bindings array remains in the result. Otherwise
the corresponding variable is projected out.

4.3.5 (Merge) Union

The Union operator builds the union of the results
provided by its two predecessors. It is not necessary that
the same variables are bound at this point in the query
execution. An extension, the Merge Union, requires
sorted inputs and unifies the two input such that the result
is still sorted. Therefore, it is equipped with the one-hot-
coded bit vector UNION VECTOR, to indicate regarding

30

S. Werner, D. Heinrich, S. Groppe, C. Blochwitz and T. Pionteck: Runtime Adaptive Hybrid Query Engine based on FPGAs

which variable the order has to be preserved. Similar
to the generics of the join additional bit vectors might
be added to enable secondary, tertiary, etc. orders. The
simple Union has no additional generics.

4.3.6 Limit and Offset

The Limit operator is typically located directly before
the result operator and forwards a specific amount of
resulting bindings arrays. After its limit is reached
(by simply counting) or its preceding operator indicates
finish, it rises its finished flag which propagates through
the result operator to the QC. As a consequence the QC
will close the result stream to the host which can be
detected on application level. In turn the Offset operator
skips a specific number of the first resulting bindings
arrays and simply passes the remaining bindings array
to its successor. Combining Limit and Offset selects
different subsets of the query result. Therefore, both
operators are equipped with an integer generic, LIMIT
respectively OFFSET, to set its corresponding value.

4.3.7 Unsupported Operators

At this stage, we support a subset of SPARQL 1.0 using
the previously described operators. The Sorting and
Distinct operators are not implemented so far. Both
must temporarily store the whole intermediate result of
their predecessors, and thus have enormous memory
requirements which can not be satisfied by using only
BRAM. Koch et al. [34] utilize the entire FPGA in
their sorting architecture and thus is not applicable in
our approach. However, extending our approach with
additional memory interface such as DDR3 and with
support for mass storage devices like SSDs, we will be
able to implement these operators in the future.

The OPTIONAL operator (left outer join) can be
derived from already implemented join operators.
Furthermore, SPARQL tests such as isIRI and
aggregation functions are not implemented, yet.
Some redundant features like the SPARQL 1.1 paths
(restricted to those without repetitions) can be partly
covered by query rewriting. However, if an unsupported
operator is detected during query optimization the
proposed system always falls back to the software-only
execution covering full SPARQL 1.1. Additionally, as
a next step the operator graph could be partly located
on the FPGA and on the host system. Latter executes
the remaining not implemented operators. Updates are
always performed by the host system.

5 EVALUATION

This section describes the evaluation setup and analyzes
the proposed architecture with respect to the query
execution time and the resulting speedup compared to
the software-only system.

5.1 Preliminaries and System Setup

The host system is a Dell Precision T3610 (Intel Xeon
E5-1607 v2 3.0 GHz, 40 GB DDR3-RAM) which is
equipped with a Xilinx Virtex-6 FPGA (XC6VHX380T)
[60] board via PCIe 2.0 with 8 lanes. In previous work
[54], we presented only results obtained by simulations
on relatively small7 datasets due to instabilities and
performance lacks in our PCIe implementation. It
is expected that the throughput significantly impacts
the overall performance of the acceleration but still
it was shown that even at lower throughput the
presented approach outperforms the classical CPU-based
execution. As described in the previous sections the
overall architecture was re-factored in order to avoid
delaying synchronizations between host and FPGA, and
thus suits better to the streaming fashion of the query
execution.

However, these changes do not allow direct
comparisons to be made. The PCIe implementation is
realized using the freely available Xillybus core [63].
The used FPGA board is equipped with an 8-lane gen2
PCIe interface. The theoretical possible bandwidth
of this interface is noted with 4 GB/s. However, for
the used Xilinx Virtex-6 a data rate of 400 MByte/s
using only 4 PCIe lanes is reported8. Furthermore,
the developers of Xillybus report a reduction to 200
MByte/s (due to overhead of the data link layer and
TLP packet headers) and additionally mention that often
processing the data on application level turns out to be
the real bottleneck9.

Therefore, we evaluated the Xillybus core in our
environment with different buffer sizes at application
level. Writing from the application to the FPGA we
achieve throughputs between 100 and 300 MByte/s.
Mostly it depends on the total amount of data. With
a high amount of data the internal buffers are utilized
intensively and thus the data transactions are more
efficient. If a buffer is not filled then the actual data
transfer will be initiated after a timeout10 which results
in a lower total throughput due to higher overhead
compared to raw data. On the other hand, reading from
the FPGA is significantly slower in a range of only 10 up

71,000 up to 1 million triples [54]
8 http://xillybus.com/pcie-download
9 http://xillybus.com/doc/xillybus-bandwidth

10 Currently 5 ms; adjustable during core generation

31

http://xillybus.com/pcie-download
http://xillybus.com/doc/xillybus-bandwidth

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

to 200 MByte/s depending on the chosen buffer size on
application level (10 to 10,000 32-bit values). However,
we will show in the next sections that the PCIe interface,
although not even closely utilized at its specification, is
not the bottleneck of our architecture.

5.2 SP2Bench SPARQL Performance
Benchmark

As a first step in order to evaluate the presented
approach systematically we use the SP2Bench [46].
Besides example queries, it provides a data generator
which is able to generate datasets with different triple
cardinalities. The generated data itself is motivated by
the project Digital Bibliography & Library (DBLP) and
thus is supposed to mirror key characteristics of real
world data.

For the following runtime analysis we use datasets
with varying cardinalities starting at 1 million up to 262
million triple. Due to missing operators (e.g., sorting
and distinct) we choose five SPARQL queries (inspired
by the SP2B queries) to show the feasibility of our
approach. Query 1 consists of one join and a simple filter
expression. Query 2 consists of two joins which can be
executed independently. Both intermediate results are
unified. Query 3 consists of three joins. Two of them can
be executed independently as well, while the third join
combines the intermediate results of the previous two
operators. The last join operates in a pipelined fashion
concurrently to the other two joins. Query 4 introduces
an additional variable and thus another join, but the size
of the result set is the same as Query 3. Query 5 is
a further extension with one variable/join more and a
smaller result size. The complete test queries can be
found in the appendix. The size of the result depending
on the input dataset size is shown in Figure 8 for each
test query.

Table 4 gives an overview of the metrics used in
the following performance evaluation. The execution
time of the standard LUPOSDATE software system
Software is typically shown with the red line and
each circle represents the average of 1,000 single
executions with warm caches11. The execution times
of the hybrid system are labeled with FPGA but
covers the whole processing time on host and FPGA
including communication cost between them. Further,
we differentiate between FPGAfull and FPGApost.
FPGAfull includes the time of the whole evaluation
on the hybrid system and a final iteration through the
obtained result. FPGApost includes the previously
described post processing steps on the host (see
Section 3.4). Setting each of the both execution times

11Achieved by a single execution just before the actual performance
evaluation

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

#
re

su
lt

s
-

lo
g
 s

ca
le

#Triples - log scale

Number of resulting bindings arrays

Q1 Q2 Q3 Q4 Q5

Figure 8: Result size of test queries according to
different size of the SP2B dataset [47]

Table 4: Performance metrics used in the evaluation
of the software and hybrid system

Label Description
Software Query execution time using the

standard LUPOSDATE software
system. No FPGA is used.

FPGAfull Query execution time of hybrid
system including full iteration
through result on host.

Speedupfull Software / FPGAfull

FPGApost Query execution time of hybrid
system including post processing of
results on host.

Speeduppost Software / FPGApost

set in relation to the software-only approach results
in the achieved speedup Speedupfull respectively
Speeduppost.

Figure 9 to Figure 13 show the execution times of
the test queries for different dataset sizes. Regarding
the very simple query 1 (Figure 9), the software-only
and the hybrid approach scale linearly to the dataset.
However, FPGAfull grows slower on the hybrid system
which results in an increasing speedup of up to 21X.
However, post processing the result on the host causes
an higher overhead with increasing result size shrinking
the achieved speedup to 5X. As in both execution
times, FPGAfull and FPGApost, the communication
is completely included the software turns out to be the
bottleneck.

Query 2 (Figure 10) has the biggest result set of all
test queries. The speedup of the hybrid system is slightly
increasing up to 5X faster with a growing dataset size.

32

S. Werner, D. Heinrich, S. Groppe, C. Blochwitz and T. Pionteck: Runtime Adaptive Hybrid Query Engine based on FPGAs

Due to the enormous result size the post processing
on the host further shrinks the speedup. Besides the
enormous result size, the union operator causes the
speedup degradation. Although this operator is very
simple it tends to consume one intermediate result of
one preceding operator and stalls the other preceding
operator. In fact, it stalls a whole branch including a join
in this particular query.

Query 3 (Figure 11) contains 3 joins and has
significantly less results than Query 2, but more than
Query 1. Due to the previously described higher amount
of concurrent operators the hybrid system is able to show
steady speedup improvements of up to 28 time faster.
Again, post processing on the host shrinks the achieved
speedup significantly down to a still significant speedup
of 5.

Query 4 is an extension of Query 3 by introducing
a new variable and triple pattern resulting in another
join. The number of resulting bindings array stays
the same, but notice that regarding Query 4 each
bindings array contains one more variable causing a 25%
higher bandwidth need and post processing overhead.
Due to the additional join, the software-only execution
needs more time to evaluate the query (Figure 12).
Contrary, the FPGA-accelerated execution shows almost
no performance drop because the additional join lies in
another branch of the operator graph and is perfectly
integrated into the operator pipeline. As a result the
speedup rises up to 32. However, at some point the
speedup drops slightly but increases again. Contrary, the
host system is not able to counterbalance this drop and
post processing shrinks the speedup down to 5.

Query 5 further extends Query 4 by another join
respectively variable. This time the query causes a
significantly smaller results set than the other queries.
In Figure 13, it can be nicely seen that also this query
suffers a speedup drop at 66M but afterwards stabilizes
and increases. As the result is relatively small the post
processing on the host does not have a negative effect on
the execution time.

It is worth to stress again the fact that the reported
execution times and achieved speedups include the
whole communication between host and FPGA which
also cover (i) reading triples at host side from hard disk,
(ii) sending triples to the FPGA using PCIe and (iii) on
the other hand sending back the result from FPGA to host
and iterate through it on host side.

5.3 Billion Triples Challenge

In order to address real-world scenarios we imported
the Billion Triples Challenge (BTC) dataset [24] which
is a crawl of multiple sources (such as DBpedia and
freebase) containing more than one billion distinct triples

10
1

10
2

10
3

10
4

10
5

10
6

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

 0

 10

 20

 30

 40

 50

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

 -
 l

o
g

 s
ca

le

S
p

ee
d

u
p

 -
 l

in
ea

r
sc

al
e

#Triples - log scale

Query 1

Software
FPGAfull

Speedupfull
FPGApost

Speeduppost

Figure 9: Execution time of Query 1 for different
dataset sizes

10
1

10
2

10
3

10
4

10
5

10
6

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

 0

 10

 20

 30

 40

 50

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

 -
 l

o
g

 s
ca

le

S
p

ee
d

u
p

 -
 l

in
ea

r
sc

al
e

#Triples - log scale

Query 2

Software
FPGAfull

Speedupfull
FPGApost

Speeduppost

Figure 10: Execution time of Query 2 for different
dataset sizes

10
1

10
2

10
3

10
4

10
5

10
6

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

 0

 10

 20

 30

 40

 50

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

 -
 l

o
g

 s
ca

le

S
p

ee
d

u
p

 -
 l

in
ea

r
sc

al
e

#Triples - log scale

Query 3

Software
FPGAfull

Speedupfull
FPGApost

Speeduppost

Figure 11: Execution time of Query 3 for different
dataset sizes

33

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

10
1

10
2

10
3

10
4

10
5

10
6

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

 0

 10

 20

 30

 40

 50

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

 -
 l

o
g

 s
ca

le

S
p

ee
d

u
p

 -
 l

in
ea

r
sc

al
e

#Triples - log scale

Query 4

Software
FPGAfull

Speedupfull
FPGApost

Speeduppost

Figure 12: Execution time of Query 4 for different
dataset sizes

10
1

10
2

10
3

10
4

10
5

10
6

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

 0

 10

 20

 30

 40

 50

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

 -
 l

o
g

 s
ca

le

S
p

ee
d

u
p

 -
 l

in
ea

r
sc

al
e

#Triples - log scale

Query 5

Software
FPGAfull

Speedupfull
FPGApost

Speeduppost

Figure 13: Execution time of Query 5 for different
dataset sizes

(1,056,184,909 without duplicates). The dataset does
not provide any reference queries. Therefore, we chose
10 queries with different complexities regarding amount
of operators, join distribution and result sizes (BTC-1
to BTC-10). The actual queries can be found in the
appendix. Figure 14 shows the resulting execution times
for software-only and FPGA (full, post) as well as the
corresponding speedup. It can be seen that the FPGA-
accelerated approach is often slightly faster (except
Query 2) and many times significantly outperforms the
software-only approach. Again, all reported execution
times include the communication costs between host and
FPGA.

Although BTC-1 is a very simple query, consisting
of only one join, the hybrid system outperforms the
software-only approach. BTC-2 is an extension of BTC-
1 with an additional triple pattern and join, but the

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

B
TC

-1

B
TC

-2

B
TC

-3

B
TC

-4

B
TC

-5

B
TC

-6

B
TC

-7

B
TC

-8

B
TC

-9

B
TC

-1
0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

S
p
ee

d
u
p
 -

 l
in

ea
r

sc
al

e

Software
FPGAfull

FPGApost
Speedupfull

Speeduppost

Figure 14: Execution time of test queries on the BTC-
2012 dataset [24]

new pattern matches only a small number of triples.
Thus, one join causes only low workload and the query
execution does not benefit from the FPGA. However, the
performance loss is almost not notable. In turn, BTC-
3 has the same query structure as BTC-2, but the triple
patterns match more triples, and this results in a higher
utilization of the joins which has no effect on the hybrid
system but on the software-only approach due to higher
workload.

BTC-4 and BTC-5 further extend BTC-3 by one
respectively two additional triple patterns (with low
amount of matches) resulting in one respectively two
additional joins. The latter causes higher workload
on the software-only approach but has no impact on
the hybrid system. BTC-6 has the same structure as
BTC-5, but the distribution of triples between index
scans is more homogenous. Further, the involved joins
generate less intermediate results, and this results in a
significantly lower execution time than in the previous
queries. BTC-7 extends BTC-6 by another triple pattern
and join resulting in a 10 times smaller result, and this is
beneficial for the software-only approach but still slower
than the hybrid system.

BTC-8 results in a perfectly balanced operator graph
consisting of four index scans and three joins which
enables the hybrid system to make use of its inherent
advantages. BTC-9 adds another triple pattern without
any impact on the hybrid system but performance gain
of software-only system. BTC-10 extends BTC-9 by
adding two triple patterns resulting in two additional
joins. Again, while the execution time of the hybrid
system slightly changes, the performance of software-
only approach degrades due to the additional operators.
In summary, it can be seen that the hybrid system is
less sensible to the query structure but also the post

34

S. Werner, D. Heinrich, S. Groppe, C. Blochwitz and T. Pionteck: Runtime Adaptive Hybrid Query Engine based on FPGAs

processing on the host system is negligible.

6 FUTURE WORK AND SUMMARY

In the following we point out one remaining issue of the
presented architecture and sketch two possible solutions,
which will be investigated in the future. Finally, we
summarize this work.

6.1 Partition Granularity and Interconnects

One important aspect is not yet addressed in the
performance evaluation. Due to complexity of the
place and routing process, which maps the query to
actual resources on the FPGA, the bitfile generation
takes between 20 to 30 minutes. Thus, although fully
functional the system is not efficiently applicable in
a real-world scenario. A straightforward approach is
the generation of bitfiles of frequently issued queries
and reuse them during runtime. In fact, the detection
and reuse of known queries is already prototypically
implemented in the proposed system. However, in
a highly dynamic environment this approach is not
applicable as any arbitrary query is possible.

Therefore, we can divide the chip area into multiple
dynamic partitions (tiles). Each tile is able to take
one (but arbitrary) operator. Thus each tile should
provide the same resources. An efficient way for
identification of homogenous reconfiguration areas is
presented by Backasch et al. [1]. During system
design time the partial bitfile for each operator and
each possible tile needs to be generated. In order
to adjust operator specific properties (such as position
of join variable) it is necessary to store the operator’s
parameters in registers within the operator and modify
their content by manipulating the bitfile according to
the query. Another challenge is to establish a flexible
interconnection between the partitions. In the following
we discuss two approaches to overcome this problem in
the future.

Semi-static Operator Graph: In a static operator graph
a template of a general query structure without actual
operators would be pre-configured on the static design.
Obviously, this would significantly reduce the number
of possible queries because the connections between
two operators can not be changed. Adding additional
switching resources (with multiple predecessor and
successors), which can be triggered from within an
operator, reduces this problem. As the interconnection
can be modified during system runtime by exchanging
operator bitfiles, we call this approach Semi-static
Operator Graph. However, depending on the complexity
of the switching resources the possible graph structure is

still limited.

NoC-based Interconnect: Backasch et al. [2] presented
a generic hardware design which allows the composition
of application specific data paths at system runtime.
The interconnects between different tiles is realized by
using a Network on Chip (NoC) and allows not only
the communication between neighboring tiles but to any
other tile in the NoC. As this introduces delays in the
data propagation it is still desirable that neighbors in
the operator graph are placed beside each other in the
NoC. However, this approach enables a high degree of
flexibility in placing one or more operator graphs onto
an FPGA.

6.2 Conclusion

In this paper, we presented the first fully integrated
hardware-accelerated query engine in the context of
Semantic Web databases. An FPGA is used as an
runtime reconfigurable accelerator to flexibly address
the variety of SPARQL queries. The dynamic partition
in the FPGA is automatically assembled by using a
query template and a pool of operators. With respect
to the query the contained operators are connected
with each other and parametrized by operator specific
generics. As all operators provide a common interface,
the presented framework can be easily extended by new
operator implementations. Furthermore, we executed
several queries on large-scale synthetic and real-world
data from the Billion Triples Challenge to show the
architecture’s feasibility and potential to speedup query
execution significantly.

However, it was shown that not all queries remarkably
benefit from the hardware-accelerated execution and
thus it is reasonable to develop an estimator, which
is able to predict the expected performance gain. At
this stage, the host systems holds all the initial data to
be queried. As our FPGA is equipped with a SATA
interface it might be reasonable to store triple data at
hard drives attached on the FPGA. Consequently, the
communication overhead and the load on the host will be
significantly reduced because only the result of a query
needs to be sent to and processed on the host system.
Additionally, we intend to take advantage of FPGAs in
other computationally intensive database tasks such as
index generation as well.

ACKNOWLEDGEMENTS

This work is funded by the German
Research Foundation (DFG) project
GR 3435/9-1.

35

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

REFERENCES

[1] R. Backasch, G. Hempel, S. Groppe, S. Werner,
and T. Pionteck, “Identifying Homogenous
Reconfigurable Regions in Heterogeneous
FPGAs for Module Relocation,” in International
Conference on ReConFigurable Computing and
FPGAs (ReConFig), Cancun, Mexico, Dec. 2014.

[2] R. Backasch, G. Hempel, T. Pionteck, S. Groppe,
and S. Werner, “An Architectural Template for
Composing Application Specific Datapaths
at Runtime,” in International Conference
on ReConFigurable Computing and FPGAs
(ReConFig), Cancun, Mexico, Dec. 2015.

[3] A. Becher, F. Bauer, D. Ziener, and J. Teich,
“Energy-Aware SQL Query Acceleration through
FPGA-Based Dynamic Partial Reconfiguration,” in
Proceedings of the 24th International Conference
on Field Programmable Logic and Applications
(FPL 2014). IEEE, 2014, pp. 662–669.

[4] T. Berners-Lee, J. Hendler, and O. Lassila, “The
semantic web,” Scientific American, vol. 284, no. 5,
pp. 34–43, May 2001.

[5] S. Borkar and A. A. Chien, “The future of
microprocessors,” Commun. ACM, vol. 54, no. 5,
pp. 67–77, May 2011.

[6] S. Breß, “Efficient Query Processing in Co-
Processor-accelerated Databases,” Ph.D.
dissertation, Otto-von-Guericke-Universität
Magdeburg, 2015.

[7] S. Breß, B. Köcher, M. Heimel, V. Markl,
M. Saecker, and G. Saake, “Ocelot/hype:
Optimized data processing on heterogeneous
hardware,” Proc. VLDB Endow., vol. 7, no. 13, pp.
1609–1612, Aug. 2014.

[8] S. Breßand G. Saake, “Why it is time for a hype:
A hybrid query processing engine for efficient gpu
coprocessing in dbms,” Proc. VLDB Endow., vol. 6,
no. 12, pp. 1398–1403, Aug. 2013.

[9] J. Casper and K. Olukotun, “Hardware acceleration
of database operations,” in Proceedings of the 2014
ACM/SIGDA International Symposium on Field-
programmable Gate Arrays, ser. FPGA ’14. New
York, NY, USA: ACM, 2014, pp. 151–160.

[10] X. Cheng, B. He, and C. T. Lau, “Energy-
efficient query processing on embedded cpu-
gpu architectures,” in Proceedings of the 11th
International Workshop on Data Management on
New Hardware, ser. DaMoN’15. New York, NY,
USA: ACM, 2015, pp. 10:1–10:7.

[11] C. Dennl, D. Ziener, and J. Teich, “On-the-
fly Composition of FPGA-Based SQL Query
Accelerators Using a Partially Reconfigurable
Module Library,” 20th Annual IEEE Symposium
on Field-Programmable Custom Computing
Machines, vol. 20, pp. 45–52, 2012.

[12] C. Dennl, D. Ziener, and J. Teich, “Acceleration
of SQL Restrictions and Aggregations Through
FPGA-Based Dynamic Partial Reconfiguration,”
in Proceedings of the 2013 IEEE 21st Annual
International Symposium on Field-Programmable
Custom Computing Machines, ser. FCCM ’13.
Washington, DC, USA: IEEE Computer Society,
2013, pp. 25–28.

[13] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H. I. Hsiao, and R. Rasmussen, “The
gamma database machine project,” IEEE Trans. on
Knowl. and Data Eng., vol. 2, no. 1, pp. 44–62,
Mar. 1990.

[14] D. DeWitt, “Direct - a multiprocessor organization
for supporting relational database management
systems,” Computers, IEEE Transactions on, vol.
C-28, no. 6, pp. 395–406, June 1979.

[15] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park,
and D. J. DeWitt, “Query processing on smart ssds:
Opportunities and challenges,” in Proceedings of
the 2013 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’13. New
York, NY, USA: ACM, 2013, pp. 1221–1230.

[16] W. Fang, B. He, and Q. Luo, “Database
compression on graphics processors,” Proc. VLDB
Endow., vol. 3, no. 1-2, pp. 670–680, Sep. 2010.

[17] J. Gantz and D. Reinsel, “Te Digital Universe
in 2020: Big Data, Bigger Digital Shadow
s, and Biggest Grow th in the Far East,”
http://www.emc.com/collateral/analyst-reports/
idc-the-digital-universe-in-2020.pdf, December
2012, accessed: 2016-05-05.

[18] G. Giannikis, G. Alonso, and D. Kossmann,
“Shareddb: Killing one thousand queries with one
stone,” Proc. VLDB Endow., vol. 5, no. 6, pp. 526–
537, Feb. 2012.

[19] N. Govindaraju, J. Gray, R. Kumar, and
D. Manocha, “Gputerasort: High performance
graphics co-processor sorting for large database
management,” in Proceedings of the 2006
ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’06. New
York, NY, USA: ACM, 2006, pp. 325–336.

36

http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf

S. Werner, D. Heinrich, S. Groppe, C. Blochwitz and T. Pionteck: Runtime Adaptive Hybrid Query Engine based on FPGAs

[20] G. Graefe, “Query evaluation techniques for large
databases,” ACM Comput. Surv., vol. 25, no. 2, pp.
73–169, Jun. 1993.

[21] S. Groppe, “LUPOSDATE Open Source,” https://
github.com/luposdate, 2013.

[22] S. Groppe, Data Management and
Query Processing in Semantic Web
Databases. Springer Verlag, Heidelberg, 2011.
[Online]. Available: http://www.ifis.uni-luebeck.
de/∼groppe/SemWebDBBook/

[23] S. A. Guccione, “Chapter 3 - reconfigurable
computing systems,” in Reconfigurable
Computing, ser. Systems on Silicon, S. Hauck and
A. Dehon, Eds. Burlington: Morgan Kaufmann,
2008, pp. 47–64.

[24] A. Harth, “Billion Triples Challenge
data set,” Downloaded from
http://km.aifb.kit.edu/projects/btc-2012/, 2012.

[25] B. He, M. Lu, K. Yang, R. Fang, N. K.
Govindaraju, Q. Luo, and P. V. Sander, “Relational
query coprocessing on graphics processors,” ACM
Trans. Database Syst., vol. 34, no. 4, pp. 21:1–
21:39, Dec. 2009.

[26] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju,
Q. Luo, and P. Sander, “Relational joins on
graphics processors,” in Proceedings of the
2008 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’08. New
York, NY, USA: ACM, 2008, pp. 511–524.

[27] B. He and J. X. Yu, “High-throughput transaction
executions on graphics processors,” Proc. VLDB
Endow., vol. 4, no. 5, pp. 314–325, Feb. 2011.

[28] J. He, S. Zhang, and B. He, “In-cache query
co-processing on coupled cpu-gpu architectures,”
Proc. VLDB Endow., vol. 8, no. 4, pp. 329–340,
Dec. 2014.

[29] D. Heinrich, S. Werner, M. Stelzner, C. Blochwitz,
T. Pionteck, and S. Groppe, “Hybrid FPGA
Approach for a B+ Tree in a Semantic Web
Database System,” in Proceedings of the 10th

International Symposium on Reconfigurable
Communication-centric Systems-on-Chip
(ReCoSoC 2015). Bremen, Germany: IEEE, Jun.
2015.

[30] IBM Corp., “The Netezza Data Appliance
Architecture: A Platform for High Performance
Data Warehousing and Analytics,” IBM, 2011.

[31] Z. Istvan, L. Woods, and G. Alonso, “Histograms
as a side effect of data movement for big
data,” in Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data,
ser. SIGMOD ’14. New York, NY, USA: ACM,
2014, pp. 1567–1578.

[32] Y. Kang, Y. suk Kee, E. L. Miller, and C. Park,
“Enabling cost-effective data processing with smart
ssd,” in the 29th IEEE Symposium on Massive
Storage Systems and Technologies (MSST 13), May
2013.

[33] K. Keeton, D. A. Patterson, and J. M. Hellerstein,
“A case for intelligent disks (idisks),” SIGMOD
Rec., vol. 27, no. 3, pp. 42–52, Sep. 1998.

[34] D. Koch and J. Torresen, “Fpgasort: a high
performance sorting architecture exploiting run-
time reconfiguration on fpgas for large problem
sorting,” in Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable
gate arrays, ser. FPGA ’11. New York, NY, USA:
ACM, 2011, pp. 45–54.

[35] S.-W. Lee, B. Moon, and C. Park, “Advances
in flash memory ssd technology for enterprise
database applications,” in Proceedings of the
2009 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’09. New
York, NY, USA: ACM, 2009, pp. 863–870.

[36] H.-O. Leilich, G. Stiege, and H. C. Zeidler,
“A search processor for data base management
systems,” in Proceedings of the fourth international
conference on Very Large Data Bases - Volume 4,
ser. VLDB’1978. VLDB Endowment, 1978, pp.
280–287.

[37] Linked Open Data, “Connect Distributed Data
across the Web.” [Online]. Available: http:
//linkeddata.org/

[38] S. Manegold, P. A. Boncz, and M. L. Kersten,
“Optimizing database architecture for the new
bottleneck: Memory access,” The VLDB Journal,
vol. 9, no. 3, pp. 231–246, Dec. 2000.

[39] C. Meenderinck and B. H. H. Juurlink, “(When)
Will CMPs Hit the Power Wall?” in Euro-Par 2008
Workshops - Parallel Processing, VHPC 2008,
UNICORE 2008, HPPC 2008, SGS 2008, PROPER
2008, ROIA 2008, and DPA 2008, Las Palmas de
Gran Canaria, Spain, August 25-26, 2008, Revised
Selected Papers, 2008, pp. 184–193.

[40] R. Mueller, J. Teubner, and G. Alonso, “Streams
on Wires: A Query Compiler for FPGAs,” Proc.
VLDB Endow., vol. 2, pp. 229–240, August 2009.

[41] R. Mueller, J. Teubner, and G. Alonso, “Glacier: A
Query-to-Hardware Compiler,” in Proceedings of
the 2010 International Conference on Management

37

https://github.com/luposdate
https://github.com/luposdate
http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/
http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/
http://linkeddata.org/
http://linkeddata.org/

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

of Data, ser. SIGMOD ’10. New York, NY, USA:
ACM, 2010, pp. 1159–1162.

[42] M. Najafi, M. Sadoghi, and H.-A. Jacobsen,
“Flexible Query Processor on FPGAs,” Proc.
VLDB Endow., vol. 6, no. 12, pp. 1310–1313, Aug.
2013.

[43] M. Najafi, M. Sadoghi, and H.-A. Jacobsen,
“The FQP Vision: Flexible Query Processing on
a Reconfigurable Computing Fabric,” SIGMOD
Rec., vol. 44, no. 2, pp. 5–10, Aug. 2015.

[44] K. Papadimitriou, A. Dollas, and S. Hauck,
“Performance of partial reconfiguration in fpga
systems: A survey and a cost model,” ACM Trans.
Reconfigurable Technol. Syst., vol. 4, no. 4, 2011.

[45] M. Sadoghi, R. Javed, N. Tarafdar, H. Singh,
R. Palaniappan, and H.-A. Jacobsen, “Multi-
query Stream Processing on FPGAs,” in ICDE,
A. Kementsietsidis and M. A. V. Salles, Eds. IEEE
Computer Society, 2012, pp. 1229–1232.

[46] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel,
“SP2Bench,” http://dbis.informatik.uni-freiburg.
de/index.php?project=SP2B/download.php, 2009.

[47] M. Schmidt, T. Hornung, G. Lausen, and
C. Pinkel, “SP2Bench: A SPARQL Performance
Benchmark,” in Proceedings of the 25th
International Conference on Data Engineering,
ICDE 2009, March 29 2009 - April 2 2009,
Shanghai, China, 2009, pp. 222–233.

[48] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker,
A. De, Y. Jin, Y. Liu, and S. Swanson, “Willow:
A user-programmable ssd,” in Proceedings of
the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’14.
Berkeley, CA, USA: USENIX Association, 2014,
pp. 67–80.

[49] A. Shatdal, C. Kant, and J. F. Naughton,
“Cache conscious algorithms for relational
query processing,” in Proceedings of the 20th
International Conference on Very Large Data
Bases, ser. VLDB ’94. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1994, pp.
510–521.

[50] C. Sun, D. Agrawal, and A. El Abbadi, “Hardware
acceleration for spatial selections and joins,”
in Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data,
ser. SIGMOD ’03. New York, NY, USA: ACM,
2003, pp. 455–466.

[51] J. Teubner and R. Mueller, “How Soccer Players
Would do Stream Joins,” in Proceedings of the
2011 International Conference on Management of

Data, ser. SIGMOD ’11. New York, NY, USA:
ACM, 2011, pp. 625–636.

[52] The W3C SPARQL Working Group, “SPARQL
1.1 Overview,” https://www.w3.org/TR/
sparql11-overview/, 2013, W3C Recommendation.

[53] S. Werner, S. Groppe, V. Linnemann, and
T. Pionteck, “Hardware-accelerated Join
Processing in Large Semantic Web Databases with
FPGAs,” in Proceedings of the 2013 International
Conference on High Performance Computing &
Simulation (HPCS 2013). Helsinki, Finland:
IEEE, Jul. 2013, pp. 131–138.

[54] S. Werner, D. Heinrich, J. Piper, S. Groppe,
R. Backasch, C. Blochwitz, and T. Pionteck,
“Automated Composition and Execution of
Hardware-accelerated Operator Graphs,” in
Proceedings of the 10th International Symposium
on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC 2015). Bremen,
Germany: IEEE, Jun. 2015.

[55] S. Werner, D. Heinrich, M. Stelzner, S. Groppe,
R. Backasch, and T. Pionteck, “Parallel
and Pipelined Filter Operator for Hardware-
Accelerated Operator Graphs in Semantic Web
Databases,” in Proceedings of the 14th IEEE
International Conference on Computer and
Information Technology (CIT2014). Xi’an,
China: IEEE, Sep. 2014, pp. 539–546.

[56] S. Werner, D. Heinrich, M. Stelzner,
V. Linnemann, T. Pionteck, and S. Groppe,
“Accelerated join evaluation in Semantic Web
databases by using FPGAs,” Concurrency and
Computation: Practice and Experience, vol. 28,
no. 7, pp. 2031–2051, May 2015. [Online].
Available: http://onlinelibrary.wiley.com/doi/10.
1002/cpe.3502/abstract

[57] L. Woods, Z. István, and G. Alonso, “Ibex:
An intelligent storage engine with support for
advanced sql offloading,” Proc. VLDB Endow.,
vol. 7, no. 11, pp. 963–974, Jul. 2014.

[58] L. Woods, J. Teubner, and G. Alonso, “Less
watts, more performance: An intelligent storage
engine for data appliances,” in Proceedings of the
2013 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’13. New
York, NY, USA: ACM, 2013, pp. 1073–1076.

[59] World Wide Web Consortium (W3C), “RDF 1.1
Concepts and Abstract Syntax,” https://www.w3.
org/TR/2014/REC-rdf11-concepts-20140225/,
2014, W3C Recommendation.

38

http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/download.php
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/download.php
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/
http://onlinelibrary.wiley.com/doi/10.1002/cpe.3502/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpe.3502/abstract
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

S. Werner, D. Heinrich, S. Groppe, C. Blochwitz and T. Pionteck: Runtime Adaptive Hybrid Query Engine based on FPGAs

[60] Xilinx, “Virtex-6 Family Overview,”
http://www.xilinx.com/support/documentation/
data sheets/ds150.pdf, January 2012, DS150
(v2.5).

[61] Xilinx, “Virtex-6 FPGA CLB - User Guide,”
February 2012.

[62] Xilinx, “Partial Reconfiguration User Guide,”
http://www.xilinx.com/support/documentation/
sw manuals/xilinx14 5/ug702.pdf, April 2013,
UG702 (v14.5).

[63] Xillybus Ltd., “Xillybus Website,” http://xillybus.
com, May 2016, accessed: 2016-05-05.

APPENDICES

Used prefixes
1 PREFIX bench : <h t t p : / / l o c a l h o s t / v o c a b u l a r y /

bench />
2 PREFIX dbo : <h t t p : / / d b p e d i a . o rg / o n t o l o g y />
3 PREFIX dbp : <h t t p : / / d b p e d i a . o rg / p r o p e r t y />
4 PREFIX dc : <h t t p : / / p u r l . o rg / dc / e l e m e n t s /1 .1 / >
5 PREFIX d c t e r m s : <h t t p : / / p u r l . o rg / dc / t e r m s />
6 PREFIX f o a f : <h t t p : / / xmlns . com / f o a f /0 .1 / >
7 PREFIX r d f : <h t t p : / / www. w3 . org /1999/02/22− r d f

−syn t ax−ns #>
8 PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−

schema #>
9 PREFIX swrc : <h t t p : / / swrc . on toware . o rg /

o n t o l o g y #>

Query 1
1 # Get a l l a r t i c l e s w i th p r o p e r t y swrc : pages .
2 SELECT ? a r t i c l e
3 WHERE { ? a r t i c l e r d f : t y p e bench : A r t i c l e .
4 ? a r t i c l e ? p r o p e r t y ? v a l u e .
5 FILTER (? p r o p e r t y =swrc : pages) }

Query 2
1 # Get incoming and outcoming p r o p e r t i e s o f

p e r s o n s .
2 SELECT ? p r e d i c a t e
3 WHERE {
4 { ? p e r s o n r d f : t y p e f o a f : Pe r so n .
5 ? s u b j e c t ? p r e d i c a t e ? p e r s o n
6 } UNION {
7 ? p e r s o n r d f : t y p e f o a f : Pe r so n .
8 ? p e r s o n ? p r e d i c a t e ? o b j e c t
9 }

10 }

Query 3
1 # Get a l l a r t i c l e s wi th t i t l e , number o f pages

and c r e a t o r .
2 SELECT ? a r t i c l e ? t i t l e ? pages ? c r e a t o r
3 WHERE { ? a r t i c l e r d f : t y p e bench : A r t i c l e .
4 ? a r t i c l e dc : t i t l e ? t i t l e .
5 ? a r t i c l e swrc : pages ? pages .
6 ? a r t i c l e dc : c r e a t o r ? c r e a t o r }

Query 4
1 # Get a l l a r t i c l e s wi th t i t l e s , number o f

pages , t h e c r e a t o r and t h e j o u r n a l where
p u b l i s h e d .

2 SELECT ? a r t i c l e ? t i t l e ? pages
3 ? c r e a t o r ? j o u r n a l
4 WHERE { ? a r t i c l e r d f : t y p e bench : A r t i c l e .
5 ? a r t i c l e dc : t i t l e ? t i t l e .
6 ? a r t i c l e swrc : pages ? pages .
7 ? a r t i c l e dc : c r e a t o r ? c r e a t o r .
8 ? a r t i c l e swrc : j o u r n a l ? j o u r n a l }

Query 5
1 # Get a l l a r t i c l e s wi th t i t l e s , number o f

pages , t h e c r e a t o r , j o u r n a l and month
when p u b l i s h e d .

2 SELECT ? a r t i c l e ? t i t l e ? pages
3 ? c r e a t o r ? j o u r n a l ? month
4 WHERE { ? a r t i c l e r d f : t y p e bench : A r t i c l e .
5 ? a r t i c l e dc : t i t l e ? t i t l e .
6 ? a r t i c l e swrc : pages ? pages .
7 ? a r t i c l e dc : c r e a t o r ? c r e a t o r .
8 ? a r t i c l e swrc : j o u r n a l ? j o u r n a l .
9 ? a r t i c l e swrc : month ? month}

BTC-1
1 s e l e c t ∗ where {
2 ? book1 dbp : a u t h o r ? a u t h o r .
3 ? book1 dbp : name ? t i t l e }

BTC-2
1 s e l e c t ∗ where {
2 ? book1 dbp : a u t h o r ? a u t h o r .
3 ? book1 dbp : name ? t i t l e .
4 ? book1 dbp : pubDate ? d a t e }

BTC-3
1 s e l e c t ∗ where {
2 ? book1 dbp : a u t h o r ? a u t h o r .
3 ? book1 dbp : name ? t i t l e .
4 ? book1 dbp : c o u n t r y ? c o u n t r y }

39

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug702.pdf
http://xillybus.com
http://xillybus.com

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

BTC-4
1 s e l e c t ∗ where {
2 ? book1 dbp : a u t h o r ? a u t h o r .
3 ? book1 dbp : name ? t i t l e .
4 ? book1 dbp : c o u n t r y ? c o u n t r y .
5 ? book1 dbp : pages ? pages}

BTC-5
1 s e l e c t ∗ where {
2 ? book1 dbp : a u t h o r ? a u t h o r .
3 ? book1 dbp : name ? t i t l e .
4 ? book1 dbp : c o u n t r y ? c o u n t r y .
5 ? book1 dbp : pages ? pages .
6 ? book1 r d f : t y p e dbo : Book}

BTC-6
1 s e l e c t ∗ where {
2 ? book1 dbp : a u t h o r ? a u t h o r .
3 ? book1 dbo : i s b n ? i s b n .
4 ? book1 dbp : c o u n t r y ? c o u n t r y .
5 ? book1 dbp : pages ? pages .
6 ? book1 r d f : t y p e dbo : Book}

BTC-7
1 s e l e c t ∗ where {
2 ? book1 dbp : a u t h o r ? a u t h o r .
3 ? book1 dbo : i s b n ? i s b n .
4 ? book1 dbp : c o u n t r y ? c o u n t r y .
5 ? book1 dbp : pages ? pages .
6 ? book1 r d f : t y p e dbo : Book .
7 ? book1 dbp : pubDate ? d a t e .}

BTC-8
1 s e l e c t ∗ where {
2 ? s dbp : c o u n t r y o f b i r t h ? o1 .
3 ? s dbo : b i r t h D a t e ? o3 .
4 ? s r d f : t y p e dbo : A t h l e t e .
5 ? s dbp : f u l l n a m e ? o5}

BTC-9
1 s e l e c t ∗ where {
2 ? s dbp : c o u n t r y o f b i r t h ? o1 .
3 ? s dbp : c o u n t r y o f d e a t h ? o2 .
4 ? s dbo : b i r t h D a t e ? o3 .
5 ? s dbo : d e a t h D a t e ? o4 .
6 ? s r d f : t y p e dbo : A t h l e t e }

BTC-10
1 s e l e c t ∗ where {
2 ? s r d f : t y p e dbo : A t h l e t e .
3 ? s dbp : c o u n t r y o f b i r t h ? o1 .
4 ? s dbp : c o u n t r y o f d e a t h ? o2 .
5 ? s dbo : b i r t h D a t e ? o3 .
6 ? s dbo : d e a t h D a t e ? o4 .
7 ? s dbp : f u l l n a m e ? o5}

40

S. Werner, D. Heinrich, S. Groppe, C. Blochwitz and T. Pionteck: Runtime Adaptive Hybrid Query Engine based on FPGAs

AUTHOR BIOGRAPHIES

Stefan Werner received his
Dipl.-Inf. degree in Computer
Science in March 2011 at the
University of Lübeck, Germany.
Now he is a research assistant
and PhD candidate at the
Institute of Information Systems
at the University of Lübeck. His
research focuses on multi-query
optimization and the integration
of a hardware accelerator for
relational databases by using

run-time reconfigurable FPGAs.

Dennis Heinrich received his
M.Sc. in Computer Science
in 2013 from the University
of Lübeck, Germany. At
the moment he is employed
as a research assistant at
the Institute of Information
Systems at the University
of Lübeck. His research
interests include FPGAs
and corresponding hardware

acceleration possibilities for Semantic Web databases.

Sven Groppe earned his
diploma degree in Informatik
(Computer Science) in 2002 and
his Doctor degree in 2005 from
the University of Paderborn. He
earned his habilitation degree
in 2011 from the University
of Lübeck. He worked in the
European projects B2B-ECOM,
MEMPHIS, ASG and TripCom.
He was a member of the DAWG
W3C Working Group, which

developed SPARQL. He was the project leader of the
DFG project LUPOSDATE, an open-source Semantic
Web database, and one of the project leaders of two
research projects, which research on FPGA acceleration
of relational and Semantic Web databases. His research
interests include databases, Semantic Web, query and
rule processing and optimization, Cloud Computing,
peer-to-peer (P2P) networks, Internet of Things, data
visualization and visual query languages.

Christopher Blochwitz
received his M.Sc. in Computer
Science in September 2014
at the University of Lübeck,
Germany. Now he is a research
assistant/ PhD student at
the Institute of Computer
Engineering at the University of
Lübeck. His research focuses on
hardware acceleration, hardware
optimized data structures,
and partial reconfiguration of

FPGAs.

Thilo Pionteck is head of the
chair of “Hardware-Oriented
Technical Computer Science”
at the Otto von Guericke
University Magdeburg,
Germany. He received his
Diploma degree in 1999 and
his Ph.D. (Dr.-Ing.) degree
in Electrical Engineering both
from the Technische Universität
Darmstadt, Germany. In 2008
he was appointed as an assistant
professor for “Integrated

Circuits and Systems” at the Universität zu Lübeck.
From 2012 to 2014 he was substitute of the chair of
“Embedded Systems” at the Technische Universitt
Dresden and of the chair of “Computer Engineering” at
the Technische Universität Hamburg-Harburg. Before
moving to Magdeburg in 2016 he was an associate
professor for “Organic Computing” at the Universität zu
Lübeck. His research work focus on adaptive system
design, runtime reconfiguration, hardware/software
codesign and network-on-chips.

41

	Introduction
	Related Work
	Smart Storages
	General Purpose Computing on GPUs
	Reconfigurable Computing

	Architectural Overview
	Field Programmable Gate Array (FPGA)
	LUPOSDATE
	Data Representation and Queries
	Hybrid Work Flow
	Hybrid Architecture

	Automated Composition
	Template - Static Parts
	Template - Dynamic Parts
	Operator Instantiation and Interconnects
	Input Mapping

	Parametrization of Operators
	RDF3XIndexScan
	Join
	Filter
	Projection
	(Merge) Union
	Limit and Offset
	Unsupported Operators

	Evaluation
	Preliminaries and System Setup
	SP2Bench SPARQL Performance Benchmark
	Billion Triples Challenge

	Future Work and Summary
	Partition Granularity and Interconnects
	Conclusion

