

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

42

XML-based Execution Plan Format (XEP)

Christoph Koch

Computer Science Institute, Friedrich-Schiller-University Jena, D-07743 Jena, Germany,

christoph.koch@uni-jena.de

ABSTRACT

Execution plan analysis is one of the most common SQL tuning tasks performed by relational database

administrators and developers. Currently each database management system (DBMS) provides its own execution

plan format, which supports system-specific details for execution plans and contains inherent plan operators.

This makes SQL tuning a challenging issue. Firstly, administrators and developers often work with more than
one DBMS and thus have to rethink among different plan formats. In addition, the analysis tools of execution

plans only support single DBMSs, or they have to implement separate logic to handle each specific plan format

of different DBMSs. To address these problems, this paper proposes an XML-based Execution Plan format

(XEP), aiming to standardize the representation of execution plans of relational DBMSs. Two approaches are

developed for transforming DBMS-specific execution plans into XEP format. They have been successfully

evaluated for IBM DB2, Oracle Database and Microsoft SQL.

TYPE OF PAPER AND KEYWORDS

Regular Research Paper: Relational DBMS, execution plan, operator, standard, XML, format, SQL

1 INTRODUCTION

Within the world of relational databases SQL is the

standard descriptive query language, supported by

almost every relational database management system

(DBMS). Because the language standardizes only the

logical DBMS layer, physical details as well as system

internals are beyond the scope of SQL. Nevertheless

even these non-standardized areas are relatively similar

for common DBMSs. This also takes effect for the way

cost-based optimization works in such systems:

Multiple execution plans are built and, based on

calculated expected costs, the potentially cheapest plan
is executed for query processing. This “cheapest plan”

in general could be externalized to simplify and

visualize SQL tuning.

However, despite all the previously mentioned

similarities, the output format of the execution plan is

quite different for different DBMS. The plan details as

well as the contained plan operators vary across the

systems. To give an impression of these differences,

Figure 1 shows two visual execution plans for the same

SQL statement – Statement 3 (see Figure 2) of the
TPC-H benchmark [21]. These two execution plans are

built by IBM DB2 and Microsoft SQL Server

respectively and visualized by their administration

tools. Such execution plans cannot be directly

exchanged and shared among different DBMSs, and

the database administrators and SQL developers will

also be burdened by the big differences.

In previous work [15] we showed that contrary to

the differences in format, the main content of the

execution plans of most common DBMSs is very

similar. Main content refers plan and plan operator

details which are not closely coupled to DBMS
specifics. For example, almost every DBMS execution

plan contains assumptions for CPU, I/O or overall costs

 Open Access

Open Journal of Databases (OJDB)

Volume 3, Issue 1, 2016

www.ronpub.com/ojdb

ISSN 2199-3459

© 2016 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions
of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

C. Koch: XML-based Execution Plan Format (XEP)

43

Figure 1: Two execution plans from different DBMSs for the SQL statement in Figure 2

as well as common details like the number of rows,

projection lists, cost information or aliases for each

execution plan operator. Furthermore, [15] also showed

that for the used DBMSs – on an abstract level – their

specific execution plan operators like a table or index

scan are very similar. Because they are currently

presented in different proprietary formats, there is an
open space for creating a standard execution plan

format. It might not be suitable to create a full format,

which covers all DBMS specifics, and thus we want to

create a light-weight standard execution plan format,

which will contain general execution plan information.

In our current paper, we want to build such a light-

weight format based on the Extensible Markup

Language (XML) [22], which provides important

benefits of exchangeability and readability. Therefore,

we name our format as XML-based Execution Plan

format (XEP).

XEP can have multiple applications. One is to

simplify basic SQL-tuning1 for database administrators

and SQL developers working with multiple DBMSs. If

XEP is supported by the systems, no ongoing

rethinking among specific execution plan formats will

be necessary. The simplified characteristic of XEP also

makes it easier for non-tuning experts like application
developers to understand SQL execution plans. If a

graphical XEP representation layer is developed in

future, this benefit will further increase. In this context

it would be possible with XEP to build DBMS-

independent tools for execution plan analysis. Such

tools could better support application developers and

1 We want to address SQL tuning where DBMS speci-

fics are less important; e.g. to notice materializations

in access plans which in general are bad for SQL

performance.

Select

Cost: 0%

Sort

Cost: 12%

Hash Match (Aggregate)

Cost: 5%

Hash Match (Inner Join)

Cost: 13%

Hash Match (Inner Join)

Cost: 3%
Computer Scalar

Cost: 0%

Table Scan

[LINEITEM]

Cost: 53%

Table Scan

[CUSTOMER]

Cost: 2%

Clustered Index Scan (Clustered)

[ORDERS]. [PK_ORDERS_AAA6619DA4BFB...]

Cost: 11%

IBM DB2 Microsoft SQL Sever

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

44

Figure 2: Statement 3 of TPC-H benchmark [21]

database administrators during SQL tuning than
existing ones which currently support only proprietary

DBMSs.

For example a tool, which will be built on top of

XEP, could DBMS-independently analyze a set of

execution plans and automatically determine most

inefficient plans and plan operators within these plans.

In this way, application developers and database

administrators do not have to analyze all plans on their

own. Instead, they can focus on the determined

potential performance critical plans and plan operators

and how to tune them properly.
Another important capability of XEP is that it can

significantly improve the corporation between

federated DBMSs because XEP is tended to be

understandable and exchangeable by different DBMSs.

[15] showed that execution plans across different

DBMSs are reduced to rudimentary single remote

operators to represent the whole remote processing part

as a kind of black box. With the use of XEP instead of

such primitive remote operators, whole remote operator

“chains” could be communicated among XEP-

supportive DBMSs.

In contrast to these potential applications, there is
one thing for which XEP currently does not intend.

XEP aims to standardize the representation of

execution plans of different DBMSs, not their cost

models. Therefore, execution plan comparisons

between different DBMSs are not possible so far. This

means that for example an execution plan of Oracle

with costs of 10 is not automatically more efficient

than an execution plan of DB2 with costs of 12.

In order to better understand the purpose of XEP,

we also want to give a short overview about how query

processing in DBMSs takes place and at which point
XEP applies. Essentially, there are four different steps

of query processing (see Figure 3) [9]. In the first step

of query processing, a DBMS performs basic checks on

a SQL query, including verifying the syntax of SQL

statements, and translating the query into semantically

equivalent relational algebra expression (i.e. a logical

query plan) for efficient query optimization. The query

optimization decomposes in two steps: The logical and

the physical optimization.

Figure 3: Steps of query processing

The logical optimization attempts to build a best

relational algebra tree (i.e. a local execution plan) for

the query. The best execution plan is defined as the

plan with the lowest cost among all considered
candidate plans. Based on the best logical execution

plan, the physical optimization generate a DBMS-

specific execution plan. In the last step of query

processing, this DBMS-specific execution plan is

executed to compute the results of the query. XEP aims

to standardize the representation of the DBMS-specific

execution plans. Therefore, XEP becomes relevant

directly after physical query optimization and does not

affect all processing steps before.

The rest of the paper is structured as follow:

Section 2 describes in detail the content of XEP.
Section 3 focuses on the XEP-underlying XML schema

1.1 [23, 24] document, its specifics and its structure.

Section 4 addresses the implementation details how to

transform DBMS-specific execution plans to XEP

format. Section 5 discusses related work. Section 6

summaries and concludes this work.

2 XEP CONTENT

The idea behind XEP was to design a light-weight

format, which standardizes the (representation of) most

important and common execution plan details, is easily

exchangeable among multiple systems and also easily

readable by these systems as well as by humans.

Therefore, it uses XML technology and does not

contain DBMS-specific information. Instead, XEP

handles execution plans and plan operators on an

abstract level. In XEP, general plan information is

captured within an XEP executionPlan object and

different plan operators are captured by corresponding

XEP operator objects. A overview of XEP content is
outlined in Figure 4. This figure and the following

figures about XEP operators are represented using the

notation of Unified Modeling Language (UML) [18].

SELECT L_ORDERKEY,
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,
O_ORDERDATE, O_SHIPPRIORITY

FROM CUSTOMER, ORDERS, LINEITEM
WHERE C_MKTSEGMENT = 'BUILDING' AND

C_CUSTKEY = O_CUSTKEY AND
L_ORDERKEY = O_ORDERKEY AND
O_ORDERDATE < '1995-03-15' AND
L_SHIPDATE > '1995-03-15'

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY
ORDER BY REVENUE DESC, O_ORDERDATE

Query Parsing and Rewrite

Query Processing

Logical Optimization

Phyiscal Optimization

Query Execution

XEP

C. Koch: XML-based Execution Plan Format (XEP)

45

Figure 4: XEP overview

Each XEP execution plan consists of exactly one

executionPlan object (see section 2.1). This object con-

tains one overall parent XEP operator. This operator

can contain arbitrary other XEP operators, which can

also contain arbitrary other operators and so on. All

XEP operators are classified into three categories:
accessOperator that consists of the operators for data

access, intermediateOperator that comprises the

operators for processing intermediate results, and

manipulationOperator for data manipulation. The three

categories of operators will be detailed in the following

subsections.

2.1 General Details of Execution Plan

XEP includes one central executionPlan object, which

contains general details for the execution plan of an

SQL statement. The object is intended to represent

plans for SQL data query language (DQL) and data

manipulation language (DML), so it supports SELECT,

INSERT, UPDATE, DELETE and MERGE statement

types. The statement type (statementType), treated as

string as shown in Figure 4, is one of the executionPlan

object attributes. All other attributes are related to total

costs of different items, which are calculated by the

optimizer for the analyzed SQL statement. These cost

attributes are handled as decimal value, and reveal the
expected total efforts to process the whole statement.

The attribute rows indicates an expected number of

rows returned from execution of the statement.

Although it is obvious that there cannot be fractions

of a row, the number of rows in most DBMS execution

plans is handled as a decimal value, so XEP simply

conforms to the convention. Regarding cost

information XEP distinguishes between the overall

(totalCosts), CPU (totalCostsCPU) and I/O

(totalCostsIO) costs. [15] has showed that CPU and I/O

costs are not provided by all of the considered DBMSs,
so the corresponding attributes of the executionPlan

object for the cost information are marked as optional.

For the same reason the attribute rows for the number

of rows is also optional.

2.2 Operators of Execution Plan

Modern DBMSs support a number of different

operators of execution plan. [15] classified these

operators as data access operators (accessOperator),

the operators for processing intermediate results

(intermediateOperator) and data manipulation

operators (manipulationOperator). With a few

modifications, which we will explain in the next

subsections, XEP also uses this classification and the

operators in it. Independent of a specific operator there

is common operator content in XEP. Analogous to the
executionPlan object, the common content contains

several attributes for describing different cost

information (costs, costsCPU, costsIO), and the

number of rows (rows) that the operator is expected to

return after processing.

However, different from the executionPlan object,

the cost attributes of an XEP operator represent the

costs for processing only the operator. Therefore, they

are not cumulated cost information items. A XEP

operator also owns an attribute of projection list and an

attribute of alias. The projection list consists of all

columns that are returned by the operator. The alias
attribute contains the identifier of an object or a

subquery reference to distinguish among parts of

execution plan in cases where, for example, same

objects are involved several times but with different

aliases.

 All attributes of XEP operators are optional. This is

due to several reasons. First, [15] pointed out that for

almost every attribute there is one DBMS that does not

provide it. Secondly, even if a DBMS takes an attribute

into consideration, it is not unusual that its information

is missing in special situations. To become a standard
format, XEP intends to support all possible scenarios

and consequently treats all attributes as optional ones.

executionPlan

+ statementType: String [1]
+ totalCosts: Decimal [1]
+ totalCostsCPU: Decimal [0..1]
+ totalCostsIO: Decimal [0..1]
+ rows: Decimal [0..1]

operator

+ costs: Decimal [0..1]
+ costsCPU: Decimal [0..1]
+ costsIO: Decimal [0..1]
+ rows: Decimal [0..1]
+ projection: String [0..1]
+ alias: String [0..1]

1..1

1..*

1..1 0..*

accessOperator

intermediate
Operator

manipulation
Operator

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

46

Figure 5: XEP operators for data access (accessOperator)

As shown before in Figure 4, XEP operators can

contain other operators as well. Different from the
proprietary standards like Microsoft SQL Server

SHOW PLAN XML format [17], which in simplified

terms only describes the presence of operators, XEP

also defines the relationship between different

operators. This means that for each operator XEP

describes valid child operators and the number of

possible operator children. For example, XEP allows

an indexAccess operator to appear as child of a

tableAccess operator. That is because in many cases,

where an index is used in the next step, additional

column data needs to be accessed from its base table by
using the row identifiers read from this index.

Furthermore, XEP also requires intermediateOperators

to have at least one child operator, and XEP comprises

many such dependencies. Further detailed information

for XEP operators is described in our XEP-Schema

document [14], which is online free available.

The subsequent sections will give detailed

explanation for all XEP operators expect for one

special operator otherOperator. As mentioned several

times before, XEP does not intend to be and cannot be

an overall standard format for all DBMS-specific

execution plan details. Therefore, it only standardizes
common similar plan operators, which are the vast

majority of operators, but there are a few operators that

XEP does not support, e.g. OLAP operators like Cube

Scan, Pivot or Unpivot (Oracle), parallel processing

operators like Partition (Oracle), Parallelism (SQL

Server), Partition or Repartition (DB2).

To maintain a proper relationship among XEP

operators within an XEP execution plan, these

unsupported operators need to be included. XEP

therefore handles them as one generic operator

otherOperator, which is allowed at almost every
position within an execution plan, and it owns only the

attributes of the generalized XEP operator as shown in

Figure 4.

2.2.1 Data Access Operators (accessOperator)

The XEP accessOperator category contains the
operators for data access, which are outlined in Figure

5. Different kinds of data is accessed by different

access operators. The rows in a table is accessed by

tableAccess operators, the entries of an index by

indexAccess, the generated rows in memory by

generatedRowAccess, the cached contents by

cacheAccess, and the data on a remote server by

remoteAccess. Additionally XEP also supports the

simultaneous access of several data objects by the

multiObjectAccess operator. Compared to [15]

cacheAccess and multiObjectAccess are new access

operators added to the category for XEP.
Except for generatedRowAccess all other access

operators contain additional attributes. For tableAccess

the accessed table is listed with its schema, name and

type. The type differentiates among a standard table, a

temporarily created table, a materialized query table (in

some DBMSs also known as materialized view or

indexed view), a table function result, a transition table

and an external table that for example could be built on

external csv files [10].

Besides accessPredicateText attribute, tableAccess

operator also contains one filiterPredicateText
attribute, which is used to filter parts of data.

accessPredicateText is directly applied while accessing

some data, and filterPredicatetext is applied right after

the data is accessed. Because there could be more than

one accessPredicateText or one filterPredicateText, the

predicates from each type are put in conjunction and

then handled as a whole conjunction String.

tableAccess

+ accessPredicateText: String [0..1]
+ filterPredicateText: String [0..1]
+ tableSchema: String [1]
+ tableName: String [1]
+ tableType: String [1]

indexAccess

+ accessPredicateText: String [0..1]
+ filterPredicateText: String [0..1]
+ indexSchema: String [1]
+ indexName: String [1]
+ indexType: String [1]
+ baseTableSchema: String [1]
+ baseTableName: String [1]

generatedRowAccess

multiObjectAccess

+ accessPredicateText: String [0..1]
+ filterPredicateText: String [0..1]
+ multiObjectAccessType: String [1]

remoteAccess

+ remoteServer: String [1]

cacheAccess

+ cacheIdentifier: String [1]

accessOperator

C. Koch: XML-based Execution Plan Format (XEP)

47

Figure 6: XEP operators for processing intermediate results (intermediateOpertor)

The indexAccess and the multiObjectAccess

operator also own these two types of optional predicate

attributes. Like tableAccess, indexAccess also contains

additional attributes that identify the accessed index by

means of schema, name and base table schema and

base table name. An indexAccess object also contains

information about the type of index. XEP for the sake

of simplicity differentiates only among standard index,

bitmap index, index organized table, temporarily
created index and bloom filter (that strictly speaking is

not a real index).

In addition to the two optional predicate-related

attributes, the multiObjectAccess object also includes a

mandatory attribute multiObjectAccessType, which

describes the type of a multiObjectAccess object. This

type can be rowSet and rowIdSet. The rowSet type

indicates the simultaneous access to whole rows of

multiple objects, and rowIdSet means only access to

identifiers of rows from the objects

The remoteAccess operator only contains one

additional attribute remoteServer to identify the server
at which the remote data is located. The cacheAccess

operator also only owns one additional attribute

cacheIdentifier that identifies appropriate cached

results.

2.2.2 XEP Intermediate Operators

 (intermediateOperator)

The intermediateOperator category contains the

operators for further processing of data accessed

before. For such processing, XEP supports these

intermediate operators: join, bitmap, set, sort,

aggregate and filter as shown in Figure 6.

A join operator is used to join two (one left/outer

and one right/inner) interim results. It features a join

method and a join predicate text. XEP supports the

following join methods: nested loop, merge, hash and

bitmap join. For the sake of simplicity, XEP also treats
bloom filter usage as a kind of join between table data

and a bloom filter. All other mostly DBMS-specific

join methods are captured in XEP by a generic method

called otherJoin. The jointPredicateText attribute of a

join operator is similar to the accessPredicateText or

filterPredicateText attributes in the access operators in

the previous subsection. Therefore, if there are multiple

join predicates, they will be put into conjunction and

handled as one string. This is also true for the

bitmapPredicateText attribute of the bitmap operator

and filterPredicateText of filter operator

A bitmap operator implements bitmap processing,

i.e. interim results are processed depending on some

earlier created bitmap or some previously accessed

bitmap index data. The way bitmaps are used by the

bitmap operator (bitmap AND, bitmap OR and others

as well as arbitrary combinations of them) is described

by the bitmapPredicateText attribute, which therefore

contains a logical expression.

At best filtering takes place directly at data access

as described in section 2.2.1. Furthermore, interim

results can also be filtered after data access by using a

filter operator. The way of filtering data has to be
defined as a filter predicate, which therefore is a

mandatory attribute for XEP filter operator.

To combine multiple interim results as union,

intersection or exception, XEP provides a set operator.

The intended type of set operation is represented by a

mandatory attribute called setType.

Other two XEP intermediate operators are sort and

aggregate. The sort operator processes different types

of interim results and the aggregate operator is

responsible for data aggregations. Both operators have

similar structures. The sort operator has a sortKey
attribute that provides information of keys being sorted

for and the aggregate operator requires an

aggregateKey attribute. The aggregate key is used

analogously to the columns that the aggregation should

process. sortKey and aggregateKey, are both optional

attributes. If a key is missing, then the current interim

result is sorted or grouped using all available columns.

sort

+ sortKeys: String [0..1]

set

+ setType: String [1]

join

+ joinMethod: String [1]
+ joinPredicateText: String [0..1]

bitmap

+ bitmapPredicateText: String [0..1]

filter

+ filterPredicateText: String [1]

aggregate

+ aggregateKeys: String [0..1]

intermediate
Operator

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

48

Figure 7: XEP operators for data manipulation (manipulationOperator)

2.2.3 XEP Manipulation Operators

 (manipulationOperator)

The operator category manipulationOperator consists
of operators, which are directly responsible for data

manipulations in database objects like tables or

indexes. Like execution plans of common DBMSs,

XEP supports table and index manipulation by

INSERT, UPDATE, DELETE and MERGE operators.

XEP also defines four multi-object manipulation

operators and a special remote manipulation operator.

Figure 7 shows all manipulation operators in the

operator category.

A tableInsert operator is used to insert one or more

data rows in a table, which is identified by its schema,
name and type. All these attributes are treated as

mandatory string values. Analogous to the tableInsert

operator, the tableUpdate operator processes update of

one or more data rows, the tableDelete operator deletes

one or more data rows and the tableMerge operator

merges one or more data rows. All these operators

contain the same table attributes as the tableOperator

operator.

The processing of index is handled in a similar

manner as the processing of table. The indexInsert

operator describes the insert operation one or more data

rows in an index, indexUpdate operator performs the

update of one or more data rows of an index, the

indexDelete operator deletes one or more data rows of

an index, and the indexMerge operator merges one or

more data rows of an index. Each of these index

manipulation operators contains several attributes to

identify the manipulated index and its base table. These

attributes are listed in the indexManipulation operator,

and they are mandatory and represented as string.

As one of the four multi-object manipulation
operator, multiObjectInsert is used to express the

simultaneous insertion of one or more data rows in

several tables or indexes. Each considered table/index,

where an insertion takes place, is treated as a separate

tableInsert/indexInsert child operator. Therefore, the

multiObjectInsert operator does not need additional

attributes. For update, deletion and merge processing,

XEP provides the following operators:

multiObjectUpdate, multiObjectDelete and

multiObjectMerge. These attributes are analogous to

the operators for the processing of tables, and also
work in a similar manner.

Similarily to the remoteAccess operator described

in section 2.2.1, XEP additionally provides a

remoteManipulation operator. The operator represents

manipulations, which are processed on a remote server.

The server itself and its location are identified by the

attribute remoteServer.

indexManipulation

+ indexSchema: String [1]
+ indexName: String [1]
+ indexType: String [1]
+ baseTableSchema: String [1]
+ baseTableName: String [1]

remoteManipulation

+ remoteServer: String [1]

multiObjectManipulation

manipulation
Operator

multiObjectInsert

tableManipulation

+ tableSchema: String [1]
+ tableName: String [1]
+ tableType: String [1]

multiObjectUpdate

multiObjectDelete

multiObjectMerge

tableInsert tableUpdate tableDelete tableMerge

indexInsert indexUpdate indexDelete indexMerge

C. Koch: XML-based Execution Plan Format (XEP)

49

3 XEP SCHEMA

One of the main goals of designing XEP is to provide a

format for execution plans, and make them easily

exchangeable among multiple systems and easily
readable by these systems as well as by humans.

Exchangeability and readability are two of the biggest

advantages of XML, so we adopt this technology for

XEP. To describe the elements in an XML document

and the structure among them, several techniques exist.

Besides more rarely used technique like RELAX NG

[6] or Schematron [11], the most used technique is

XML schema [23]. For describing the structure of

XEP, we also use XML schema and design a XEP-

XML-Schema document, which is freely downloadable

[14]. We will explain the schema in this section.

As mentioned in Section 2, XEP describes not only
valid operators but also valid relationships between

them. In order to put this into practice and to make it as

modular and legible as possible, the salami slice [7]

XML schema design for structuring the XEP schema is

used. This means that each element (in our case mostly

an operator) is declared as a separate complex type

component as e.g. shown in the sort operator

declaration in Figure 8. To achieve relationship

definitions in the sense of valid child nodes, these

components are assigned to identically named

elements, which are assembled in sequence or choice
XML schema elements.

XML allows putting information into elements,

attributes and unstructured text nodes. XEP uses

elements of complex type to represent operators and

attributes of simple types to store detailed operator

information. Values for the attributes like tableType,

setType and joinMethod are pre-defined ones. XEP

does not allow data in text nodes. To combine similar

operators to one group, XEP uses XML

substitutionGroup in the XML schema document [23,

24]. The XEP schema defines one group for

accessOperator when the value of the attribute
substitutionGroup is “access”, one for

intermediateOperators (“intermediate”) and also one

for manipulationOperators (“manipulation”). Figure 9

shows some substitutionGroup assignments for

selected operators.

A big advantage of this grouping is the

simplification in defining “general” relationships

between XEP operators. SubstitutionGroup together

with XML schema ref constructs allows a whole group

as a child node for an operator, and thus the definitions

of separating children via an XML schema choice
element are not necessary. Figure 8 also illustrates this

behavior by the example of the complex type

declaration of the sort operator.

Figure 8: Complex type declaration of sort operator

Figure 9: Declarations of substitutionGroup

Figure 10: Assert to guarantee operator dependency

XEP schema is based on XML schema 1.1

recommendation, because XEP also uses its assert
elements to define detailed dependencies between

operators, which cannot be defined with XML schema

1.0 techniques in the same easy way. As an example,

Figure 10 describes an assert element, which defines

the following rule.

If a tableAccess operator accesses a temporarily

table and does not have any child operator, then

somewhere else in the execution plan there should be a

tableInsert operator inserting rows into the same table

as referenced within the tableAccess operator.

<xsd:complexType name="sort">

<xsd:complexContent>

<xsd:extension base="_operator">

<xsd:choice>

<xsd:element ref="intermediate" />

<xsd:element ref="access" />

<xsd:element name="otherOperator“

type="otherOperator" />

</xsd:choice>

<xsd:attribute name="sortKeys“

type="xsd:string“

use="optional" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="tableAccess" type="tableAccess"

substitutionGroup="access"/>

<xsd:element name="indexAccess" type="indexAccess"

substitutionGroup="access"/>

...

<xsd:element name="join" type="join"

substitutionGroup="intermediate"/>

<xsd:element name="set" type="set"

substitutionGroup="intermediate"/>

...

<xsd:element name="tableInsert" type="tableInsert"

substitutionGroup="manipulation"/>

<xsd:element name="indexInsert" type="indexInsert"

substitutionGroup="manipulation"/>

...

<xsd:assert

xpathDefaultNamespace="##defaultNamespace"

test="every $i in

//tableAccess[not(*) and

@tableType = 'tempTable']

/concat(@tableSchema,'.',@tableName)

satisfies

//tableInsert

/concat(@tableSchema,'.',@tableName) = $i"

/>

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

50

4 IMPLEMENTATION AND EVALUATION

XEP tends to be a light-weight standard execution plan

format for every relational DBMS. So proprietary

DBMSs (with closed source codes) are also included.
To enable XEP execution plans for each considered

DBMS, we have implemented a transformer of

execution plans on top of the DBMS interfaces, which

transforms DBMS-specific execution plans to our XEP

format. We have designed two approaches of

transformation: an transformation application and

Extensible Stylesheet Language Transformation

(XSLT) [25], as showed in Figure 11.

Among the most common relational DBMSs, half

of the systems (Oracle Database, Microsoft SQL

Server, PostgreSQL) are able to export SQL execution

plans in proprietary XEP-like XML format [15]. For
these XML execution plan supportive DBMSs, we

develop an XSLT-based approach as shown in the

lower path in Figure 11. This approach uses XSLT

stylesheets, which can transform an XML document

from a format to another.

With the XSLT-based approach, a DBMS-specific

execution plan is first exported into its proprietary

XML format. This XML document and a DBMS-

depending XSLT stylesheet are used as input of an (in

general external) XSLT processor, which accomplishes

the XEP transformation and outputs an appropriate
execution plan in XEP format. With this approach, the

core components are the XSLT processor (in our

implementation we use Saxon [20]), and the XSLT

stylesheet that has to be developed for each DBMS. In

some of our previous work, we have successfully built

an XSLT stylesheet for Oracle Database [13] and one

for Microsoft SQL Server [4]. These stylesheets are

online freely available [14].

Apart from these XML execution plan supportive

DBMSs, [15] showed some DBMSs, like MySQL,

IBM DB2 LUW, IBM DB2 z/OS, do not support XML

plan output. Because these systems are at least able to
export execution plans in a relational table structure,

we use the application-based approach (in our

implementation, a Java application is developed) for

XEP transformation as shown in the upper path in

Figure 11.

With the application-based approach, a DBMS-

specific execution plan is first exported into a relational

table. The transformation application reads the details

of the execution plan from the relational table, and

transform them according to DBMS specific rules to

appropriate XEP objects. Once all data of the execution
plan is processed, all XEP objects are serialized to one

XML document, which represents a valid XEP

execution plan. To make the transformation as much

platform independent as possible, we developed several

Figure 11: Approaches for XEP transformation

Figure 12: Shortened XEP example

DBMS-specific XEP mappers and the XEP serializer in

Java using Saxon [20] library. Currently we have

developed an XEP mapper for IBM DB2 LUW and one
for IBM DB2 z/OS, and a general XEP serializer. The

code of implementation is online freely available in

[14].

The two mappers have been successfully tested

with all queries of the TPC-H benchmark (Q1 – Q22)

[21]. Figure 12 shows the XEP document (in shortened

form nearly without attributes) for Statement 3 of the

TPC-H benchmark (see Figure 2) [21], which was

transformed from an IBM DB2 LUW execution plan.

In addition to these tests, we also verified that the

mapper for IBM DB2 z/OS was able to transform all
DB2-specific execution plans for the 99 queries of the

TPC-DS benchmark [21] into XEP format. We also

tested this XEP mapper in the DB2 environment of

DATEV eG, where it transformed all (dynamic) SQL

statements (over 10,000 different statements) from

DB2-specific execution plan format into XEP format

successfully.

Independent of the different approaches after

transforming DBMS-specific execution plans into

XEP, all the resulting execution plans are successfully

<?xml version="1.0" ...?>
<executionPlan ... >
<operationA ... >
<operationAA ... >
...

</operationAA>
</operationA>
<operationB ... >
...

</operationB>
...

</executionPlan>

XML

DBMS XEP

Java Objects

XSLTXML-Export

Table Structure

<?xml version="1.0" encoding="UTF-8"?>
<executionPlan xmlns="http://www.minet.uni-jena.de/

dbis/XEP" … >
<sort … >

<aggregate … >
<join … >
<left>

<sort… >
<join … >
<left>

<tableAccess name=“ORDERS" … />
</left>
<right>

<tableAccess name=“CUSTOMER" … />
</right>

</join>
</sort… >

</left>
<right>

<tableAccess name=“LINEITEM" … >
<indexAccess name=“L_OK" … />

</tableAccess>
</right>

</join>
</aggregate>

</sort>
</executionPlan>

C. Koch: XML-based Execution Plan Format (XEP)

51

validated based on the XML schema defined for XEP.

The validator that we use is the Xerces XML schema

1.1 validator [2]. The validating result shows the

correctness of two transformation approaches.

5 RELATED WORK

XEP is a format that aims to standardize the

representation of query execution plans of relational

DBMSs. In contrast, there are several techniques to

standardize the access to these (and mostly other non-

relational) DBMSs and therefore are consequently

responsible for generation of execution plans. For

example, these techniques include LINQ [16, 8] and

[12] and scalaQuery [26]. XEP wants to create a

standardized format for already generated plans to

simplify various tuning activities. In these scenarios, it
is not important by which (standardized) technique an

execution plans was built.

As mentioned before in this paper, some DBMSs

support XML representation of execution plans. These

formats are mostly build on top of XML to the

information of exection plans, e.g. the Microsoft

SHOW PLAN XML format [17] and the XML format

produced by the DBMS_XPLAN package in Oracle

[19]. Therefore, using XML to describe execution

plans of queries is not new. However, our work aims at

creating a standard XML-format that is understandable
by different DBMSs. There are also other formats for

execution plans like JSON [5] and YAML [3] and

other ones [15]. JSON, YAML as well as XML formats

are supported by PostgreSQL [1]. All these formats are

proprietary and only supported by the DBMSs where

these formats are developed. XEP is the first XML-

based format for representing execution plans from

different DBMSs. Therefore, XEP is currently the only

format that allows DBMS-independent execution plan

analysis by humans as well as by external tools.

6 SUMMARY AND CONCLUSIONS

In this paper, we described XEP, a light-weight, easily

exchangeable and easily readable standard format for

SQL execution plans. To ensure its targets, XEP is

built on XML technology, which provides the

advantages of being easily exchangeable and readable.

The content and structure of XEP is developed using

XML schema language. Because of some specific

concepts, XEP uses the XML schema 1.1
recommendation. Two approaches (application-based

and XSLT-based) are developed for transforming

DBMS-specific execution plans into XEP

representation. The two approaches have been

successfully evaluated on the DBMSs of IBM DB2,

Oracle Database and Microsoft SQL.

There are several issues to work on in the future.

Currently, XEP is only implemented for proprietary

common relational DBMSs. Thus, implementations for

open source systems like PostgreSQL or MySQL are

missing today. Due to the public availability of their

code bases, these systems offer even larger

opportunities for XEP integration. Therefore, it should

be possible to integrate the XEP execution plan format
directly and deeper into the DBMS kernel, as it has

been done for the proprietary XML, JSON or YAML

format. Proprietary database vendors like Oracle,

Microsoft or IBM could act in the same manner in the

future.

If these steps are taken, then the investigations into

federated access plans based on XEP should be

intensified. Currently, XEP is built by external

procedures, and such execution plan corporation would

only be possible within the external layer. However, in

terms of cross-DBMS optimization and similar issues
this does not make much sense.

We want to highlight that XEP tends to be easier

readable for humans than proprietary formats of

execution plans. Because of its simplicity and its focus

on important DBMS-independent information, the

structure of XEP is very clear. However, it is not

automatically a proof of its readability and

understandability by human beings. These are some

aspects – of course together with the predicted general

added value of XEP and a useful graphical XEP

representation layer – that should be investigated in

future work.
Finally, we want to mention the content of XEP.

Using the asserts property of XML Schema, a few

detailed dependencies among XEP operators were

described. However, there might be more

dependencies, which should be determined and

implemented to the XEP schema document. This also

should be investigated in the future.

REFERENCES

[1] I. Ahmed, A. Fayyaz, A. Shahzad, “PostgreSQL

Developer’s Guide”, Packt Publishing, February

2015.

[2] Apache Xerces, “The Apache Xerces™ Project”,

http://xerces.apache.org/, accessed July 28, 2016.

[3] O. Ben-Kiki, C. Evans, I. döt Net, "YAML Ain't

Markup Language (YAML™) Version 1.2",

October 1, 2009. http://www.yaml.org

/spec/1.2/spec.html.

[4] M. Birke. “Transformation of the SQL Server

Showplan XML Format into the generic

Execution Plan Format XEP” (in German),

Open Journal of Databases (OJDB), Volume 3, Issue 1, 2016

52

Project Work, Faculty of Mathematics and

Computer Sciences, Friedrich-Schiller-University

of Jena, August 2015.

[5] T. Bray, "The application/json Media Type for

JavaScript Object Notation (JSON)", March

2014. https://tools.ietf.org/html/rfc7159.

[6] J. Clark and M. Murata, "Relax NG

specification", December 2001. http://relaxng.org
/spec-20011203.html.

[7] R. L. Costello, “XML Schemas: Best Practices”,

http://www.xfront.com/BestPractices

Homepage.html, accessed July 28, 2016.

[8] S. W. Dietrich, “Is LINQ in your toolbox?”, In:

ACM Inroads, 4(1):31-33, March 2013.

[9] G. Graefe, “Query Evaluation Techniques for

Large Databases”, In: ACM Computing Surveys,

25(2):73-170, June 1993.

[10] Internet Engineering Task Force (IETF) Network

Working Group, “Common Format and MIME
Type for Comma-Separated Values (CSV) Files”,

October 2005. https://tools.ietf.org/html/rfc4180.

[11] R. Jelliffe and Academia Sinica Computing

Center, "The schematron assertion language 1.6",

January 1, 2002. http://xml.ascc.net/resource/

schematron/Schematron2000.html.

[12] M. Karjalainen, G. J. L. Kemp, “Uniform Query

Processing in a Federation of RDFS and

Relational Resources”. In: Proc. IDEAS'09,

September 2009.

[13] J. M. Keil. “Transformation of Oracle Execution

Plans into the generic Execution Plan Format
XEP” (in German), Project Work, Faculty of

Mathematics and Computer Sciences, Friedrich-

Schiller-University of Jena, October 2014.

[14] C. Koch. “XML-based Execution Plan format

(XEP) resources”, May 2015.

http://users.minet.uni-

jena.de/~ma47get/XEP/xep.html.

[15] C. Koch, K. Büchse. “Execution Plans and Plan

Operators of Relational DBMS” (in German), In:

Proc. GvDB'15, May 2015. http://ceur-

ws.org/Vol-1366/paper10.pdf.

[16] E. Meijer, B. Beckman, G. Bierman, “LINQ:

Reconciling Object, Relations and XML in the

.NET Framework”, In: Proc. SIGMOD'06,

January 2006.

[17] Microsoft Corporation. “SQL Server 2014 – SET

SHOWPLAN_XML (Transact-SQL)”,

https://msdn.microsoft.com/de-de/library/

ms187757.aspx, accessed July 28, 2016.

[18] Object Management Group (OMG), “OMG

Unified Modeling Language (OMG UML)

Version 2.5”, OMG Specification, March 2015.

http://www.omg.org/spec/UML/2.5/PDF

[19] Oracle, “Administrator’s Guide – 12c Release 1

(12.1)”, June 2016.
https://docs.oracle.com/database/121/ADMIN/E4

1484-11.pdf.

[20] SAXON, “The XSLT and XQuery Processor”,

October 2010. http://saxon.sourceforge.net/

[21] TPC. “TPC Benchmark H”, Standard

Specification, November 2014.

http://www.tpc.org/tpc_documents_current_versi

ons/pdf/tpch2.17.1.pdf.

[22] World Wide Web Consortium (W3C),

“Extensible Markup Language (XML) 1.0 (Fifth

Edition)”, Recommendation, November 2008.
http://www.w3.org/TR/xml/.

[23] World Wide Web Consortium (W3C), “XML

Schema Definition Language (XSD) 1.1 Part 1:

Structures”, Recommendation, April 2012.

http://www.w3.org/TR/xmlschema11-1/.

[24] World Wide Web Consortium (W3C), “XML

Schema Definition Language (XSD) 1.1 Part 2:

Datatypes”, Recommendation, April 2012.

http://www.w3.org/TR/xmlschema11-2/.

[25] World Wide Web Consortium (W3C), “XSL

Transformations (XSLT) Version 2.0”,

Recommendation, January 2007.
http://www.w3.org/TR/xslt20/.

[26] S. Zeiger, “ScalaQuery”, http://scalaquery.org,

accessed August 22, 2016.

 AUTHOR BIOGRAPHIES

Dipl. Inf. Christoph Koch

studied Computer Science at the

University of Jena and earned
his Diploma in 2012. Since 2012

he is an employee in the

departure databases at DATEV

eG in Nuremburg and also a

researcher at the group of

database and information systems at the university of

Jena. His main research areas are proactive model-

based database performance analysis and forecast.

