
c© 2017 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Databases (OJDB)
Volume 4, Issue 1, 2017

http://www.ronpub.com/ojdb
ISSN 2199-3459

An NVM Aware MariaDB Database System
and Associated IO Workload on File Systems

Jan Lindström A, Dhananjoy Das B, Nick Piggin C , Santhosh Konundinya D,
Torben Mathiasen D, Nisha Talagala B, Dulcardo Arteaga B

A MariaDB Corporation, Joensuu, Finland, jan.lindstrom@mariadb.com
B Parallel Machines, USA, firstname.lastname@ParallelMachines.com

C SanDisk (now IBM), npiggin@gmail.com
D Yellowbrick, firstname@yellowbrick.io

ABSTRACT

MariaDB is a community-developed fork of the MySQL relational database management system and originally
designed and implemented in order to use the traditional spinning disk architecture. With Non-Volatile memory
(NVM) technology now in the forefront and main stream for server storage (Data centers), MariaDB addresses the
need by adding support for NVM devices and introduces NVM Compression method. NVM Compression is a novel
hybrid technique that combines application level compression with flash awareness for optimal performance and
storage efficiency. Utilizing new interface primitives exported by Flash Translation Layers (FTLs), we leverage
the garbage collection available in flash devices to optimize the capacity management required by compression
systems. We implement NVM Compression in the popular MariaDB database and use variants of commonly
available POSIX file system interfaces to provide the extended FTL capabilities to the user space application. The
experimental results show that the hybrid approach of NVM Compression can improve compression performance by
2-7x, deliver compression performance for flash devices that is within 5% of uncompressed performance, improve
storage efficiency by 19% over legacy Row-Compression, reduce data writes by up to 4x when combined with
other flash aware techniques such as Atomic Writes, and deliver further advantages in power efficiency and CPU
utilization. Various micro benchmark measurement and findings on sparse files call for required improvement in file
systems for handling of punch hole operations on files.

TYPE OF PAPER AND KEYWORDS

Regular research paper: MariaDB, Non-Volatile Memory, NVM, Compression, Flash Translation Layer, FTL,
garbage collection, optimization, file system

1 INTRODUCTION

Traditionally compression has been extensively used to
save expensive resources of capacity and bandwidth.
Compression is also extremely attractive for flash based
systems to improve cost/capacity and to improve lifetime
by reducing media writes. In non-volatile memory
devices Flash Translation Layer (FTL) is an matching

location to perform compression, because it already
performs sophisticated data management [44, 32, 20]. A
Flash Translation Layer is responsible for the mapping
of Logical Block Address (LBA) updates into physical
block updates (PBA), and thus can concurrently perform
the compression. Flash devices have a quite high
cost, lower capacity compared to traditional disk drives,

1

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojdb

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

and lower write endurance [15, 42]. These make
compression even more attractive since it can reduce the
write amplification, and increase the endurance for flash
devices. Furthermore, FTL can provide compression
functionality transparent to applications [44]. Integrating
compression to FTL may be ideal for flash devices,
but benefits of application level compression originating
from better knowledge of application patterns can be
lost. Compression has been successfully used e.g. on
key-value stores [1, 22]. Furthermore, non-volatile
memory device drivers and file systems have started to
appear [25, 27, 26].

Previous research on non-volatile memory storage
have been concentrated on specific sub-systems of
database architecture like checkpointing [16], combining
main-memory and non-volatile memory [41, 27, 19],
page size selection [33] or buffer replacement algorithm
[13].

In this paper we propose a hybrid design where
applications can have a control of compression
techniques, while gaining some of the benefits that can
come from integrating with an FTL for Flash Aware
Compression. We implement such a hybrid design in the
context of the MariaDB/MySQL open source database.
MySQL legacy compression was designed for the
traditional disk drives, thus the implementation seems
outdated on modern storage devices and hardware.
Current MySQL implementations is both complex and
its performance compared to uncompressed tables is
poor leaving many users concerned on robustness and
usability of this feature.

The paper makes the following contributions:

• Design and implementation of a novel compression
mechanism that combines the advantages of
application level awareness and FTL integration.

• Integration of such an approach into an operating
system stack through a combination of new
interface primitives and file system support.

• Performance study showing that this approach
can improve compression performance by 2-3x
compared to the legacy Row based compression
technique.

• Improving Transaction throughput of NVM
Compression, which is within 5% of uncompressed
workload performance.

• Improving overall storage efficiency by 19%,
compared to the legacy Row based compression.

• Reducing overall transactional data writes to the
underlying NVM media by 4x when used in

combination of Atomic Writes, also reducing the
transactional IO latency.

• A performance study of NVM Compression method
on various file systems, calling for the needs and
potential benefits of usage of NVM primitives by
filesystems.

2 BACKGROUND

MySQL supports various different storage-engine
options. InnoDB and XtraDB are the two most popular
storage engines used by the MySQL community today.
MariaDB1 [4] is a community-developed fork of the
MySQL relational database management system. The
intent is to maintain high compatibility with MySQL,
ensuring a ”drop-in” replacement capability with library
binary equivalence and exact matching with MySQL
APIs and commands. In InnoDB storage engine, data
records are stored in files with pre-configured page size
units, default at 16KB per page. As shown in Figure
1(a), MySQL Row Compression compresses data rows
into a predefined compressed data block. The size of
the data block is defined by an administration command
at database table-create time. Each of the compressed
blocks contains compressed data and a modify log-
region (mlog) where further block changes are logged.
As the table content changes, deltas are appended to
the mlog until it runs out of space, at which point the
compressed data is de-compressed, the mlog entries
applied, and the resulting data-block is re-compressed.

This opens up the possibility of Compression Insert
Failure, where the newly compressed block is too big
to fit in the predefined fixed compressed block size.
This failure leads to a node (page) split where attempts
are made to fit this block into an alternate location in
the block map, with the need to re-balanced the tree
until all the data is successfully inserted. This can lead
to a need to re-balance the block map. Figure 1(b)
shows the steps involved to handle a compression insert
failure. An adjacent page first needs to be read and
decompressed. Entries are then inserted into these pages
and the allocation maps are re-balanced until all the data
is successfully inserted.

Depending on the workload and the frequency of
insert failures, performance may suffer since insert
failures consume CPU cycles and add other data
management overhead. This complexity leads to much
of the performance issues seen today in MySQL Row-
Compression deployments. Substantial work has been
done in the last several years to attempt to solve this
problem [6, 5, 28, 35].

1 www.mariadb.org

2

J. Lindström, D. Das, N. Piggin: An NVM Aware MariaDB Database System and associated IO workload on File Systems

(a) MySQL Row Compression. (b) Insert Failure

Figure 1: Traditional MySQL Row Compression

3 NVM COMPRESSION

The goals of our compression solution, NVM
Compression, are to deliver a high-speed and high-
efficiency flash compression that combines the benefits
of application level data knowledge and the FTL’s
awareness and operation of management. FTLs benefit
from the inherent presence of an indirection map that
translates logical addresses into physical addresses,
and the existing high performance garbage collection
that coalesces available free space. To combine
these benefits, we create an architecture where the
compression is performed at the application level while
the free space and the compressed data block are
managed at the FTL level.

Figure 2 shows the high level approach. NVM
compression is applied to database pages and whole page
content is compressed. As a result we have a new page
where compressed page header is added. Rest of the
page is garbage and unused. Finally, the trim operation
is applied leaving a “hole”, i.e. an empty location,
in the remainder of the space allocated for the fully
uncompressed block.

FTL responsibility on NVM compression is to
perform thin provisioning, i.e. allocating physical
capacity only to the populated virtual addresses. The
virtual address holes are unpopulated. Under this model,
the FTL will have populated virtual addresses and some
empty virtual addresses. FTL garbage collection will
naturally coalesce the populated addresses in physical
space and thus allow for re-provisioning of the available
physical space to be used for new writes.

As database records are overwritten, the size of

compressed data content can change. In particular,
blocks may compress to smaller sizes than they did
previously. Since, in the NVM Compression design,
re-compressed blocks are always rewritten to the same
virtual locations, it becomes necessary to punch a hole
in the address space, i.e. creating a hole in the virtual
address space where previously there may have been
data.

To benefit from the FTL thin provisioning as discussed
above, we need a way to expose that capability to the
layer above, in this case, a user space application. We
expose native characteristics of flash translation layers
through a series of primitives that are exported by the
FTL. This is similar in approach to other flash specific
optimizations for KV stores, File Systems and Caches as
described in [14, 22, 42, 36]:

• We modify the MySQL database to utilize
these flash primitives in order to create a new
compression design.

• In order to allow the database to operate on
regular files (as is the norm for nearly all
MySQL deployments), we modify a file system
to effectively export the primitives from the flash
translation layer to the user space application.

• To ease the integration process, we also map these
primitives to existing Linux system calls.

Specifically, NVM Compression uses three FTL
exposed primitives: a sparse address space, persistent
TRIMs and atomic writes. These flash characteristics are
then exported by the Non-Volatile Memory File System

3

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

Figure 2: NVM Compression on sparse address space

Table 1: NVM Primitives

Primitives Detail
Sparse Sparse address space allows consuming applications to offload data allocation

management to the FTL.
PTRIMs Persistent TRIMs enable guaranteed deletes of a data block at a given virtual address.
Atomics Atomic-write guarantees that no part of the buffer will be partially written.

(NVMFS) [14, 39] to a POSIX compliant file system
that is developed specifically to efficiently access flash
and export native flash control to user space applications.
NVMFS is an extension of the work done in [14].
MySQL is then modified to support a new compression
mode, NVM compression, which uses the primitives on
files stored in the NVM file system.

The NVMFS POSIX compliant file system [8] re-
exports the functionality as file level interfaces as
described in Table Table 1. The sparseness required
for NVM Compression is provided through sparse files
in NVMFS. The files are pre-allocated to be the size
required for uncompressed data. As data is compressed
during database operation, holes are created within the
file through the fallocate(PUNCH HOLE) Linux system
call operation.

It is important to note that the NVM Compression
design does not specifically require NVMFS [14, 39]
and also work on other file systems such as EXT4 [7]
and XFS [40]. However, NVMFS is able to process
operations like Persistent TRIM very efficiently since
its design is also based on the FTL sparse address

space (see Figure 2). NVMFS offloads the complexity
of remapping and translation to the FTL, leveraging
the capabilities of the underlying flash device. This
architecture (see Figure 3) implies that NVMFS does
not need any additional data operations to optimize file
system layouts for sparse files.

NVMFS exports the Persistent TRIM capability
through the fallocate(PUNCH HOLE) operation. This
operation is converted by NVMFS into a PTRIM
primitive to the underlying FTL. Atomic Writes are
exported as conventional writes, which are configured
to be atomic by default when issued to specific files.
Atomic writes issued by the application are passed by
NVMFS directly into the FTL as atomic operations.
Effects of atomic writes have been researched more
thoroughly in [31]. MariaDB offers application
developers a way to specify which tables are stored on
a file system supporting atomic writes:

1: create table atomictable (x int unsigned not null
primary key)

2: engine = innodb
3: data directory = ’/mnt/fusionio/data’;

4

J. Lindström, D. Das, N. Piggin: An NVM Aware MariaDB Database System and associated IO workload on File Systems

Figure 3: NVMFS architecture

Instead of storing both compressed and uncompressed
pages in the buffer pool, we store only a uncompressed
16KB pages in the buffer pool. This avoids very complex
logic when a page needs to be re-compressed or when
adding a change to mlog. Similarly, there is no need to do
page splits etc. Before creating a page compressed table,
make sure the innodb file per table configuration option
is enabled, and innodb file format is set to Barracuda.

MariaDB also provides a way to define tables that
should use page compression and what compression
level is used if available by used compression algorithm:

1: create table atomictable (x int unsigned not null
primary key)

2: engine = innodb
3: page compressed =

[none—lz4—lzo—snappy—zlib]
page compression level = 6

4: data directory = ’/mnt/fusionio/data’;
All these are stored into InnoDB data dictionary

persistently and all values can be changed with the
normal alter table SQL-clause. If a compression level
or algorithm is not specified, a system global value is
used. Compression level can be specified using the
innodb compression level option and algorithm with
innodb compression method configuration variables.
Both of these can be changed dynamically without a
server shutdown.

When a page is modified, it is compressed just before
it is written and only a compressed size (aligned to sector

boundary) is written (see Figure 2). If compression
fails we write uncompressed page to the file space.
The compressed page is stored with the resulting size
in the virtual address allocated to the uncompressed
block. A PTRIM operation is issued for the remainder
of the address range (using fallocate(PUNCH HOLE))
to inform NVMFS and the FTL of that the remainder of
the virtual addresses are now empty and can be garbage
collected as appropriate.

This has been implemented with the special page type
FIL PAGE PAGE COMPRESSED and a new field to
indicate which compression algorithm is used. Support
for LZ42, LZO3, bzip24, LZMA 5 and snappy6 has been
added in addition to the existing LZ77[45] originally
used by Row Compression. When a page is read, it is
decompressed before it is stored in the buffer pool.

4 MULTI-THREADED FLUSH

MySQL storage engines InnoDB and XtraDB use a
caching region in a memory named buffer pool. The
buffer pool hosts parts of the on-disk table space and
system space for optimal performance. The buffer
management is the key to service performance for query

2 http://lz4.github.io/lz4/
3 http://www.oberhumer.com/opensource/lzo/
4 http://www.bzip.org/
5 http://tukaani.org/xz/
6 http://google.github.io/snappy/

5

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

and update requests. The buffer pool comprises of data-
pages clean and dirty, which have to be committed to
the underlying media atomically. Buffer pool pages are
flushed asynchronously using POSIX interfaces (AIO)
to the underlying system, allowing for various methods
of pool management including LRU and percentile dirty
in cache for write intensive workload. In addition to
delayed updates, underlying media allows for multiple
overwrites and updates to the table space.

NVM page compression is designed to enable
compression only at the point of the flush of dirty pages.
In order to perform efficient compression, Multiple
Threaded Flush (MT-Flush) framework was designed.
The framework takes into consideration the system setup
core count for any compression workloads, and based
on the available system resources the buffer-pool is split
for optimal flush operation. The framework essentially
allows for optimal use of available CPU compute cycles
to perform compression using the specified compression
algorithm on individual pages. Threads created as part of
the framework allow for sets of data pages being flushed
to be compressed in parallel thus reducing compression
related latency, while maintaining an optimal I/O queue
depth, which is critical for an optimal storage system
performance.

This new feature is implemented as a traditional
producer multiple consumers concept like:

• Work tasks are inserted into the work-queue (wq)

• The completion thread will look at the operation
type and in case of a WRITE do the compression

• Operation completions get posted to return queue
wr cq.

The producer is single threaded and pseudocode
is presented in Algorithm 1. Furthermore,
there is a configurable number of consumers
(innodb mtflush threads) doing both compression
and actual IO requests and their pseudocode is presented
in Algorithm 2.

5 EVALUATION

In this section we evaluate NVM Compression
across various metrics ranging from populate time to
performance. All experiments were conducted on Intel
Xeon E5-2690 @ 2.9GHz CPU containing 2 sockets
with 8 cores each using hyper threading, thus 32 total
cores and Linux 3.4.12 with 132G main memory. The
database is stored on a Fusion-io ioDrive3. The database
filesystem is NVMFS and all test logs and outputs are
stored on the second ioDrive using EXT4.

We have selected following benchmarks:

Algorithm 1 Producer

1: while not shutdown do
2: sleep so that one iteration takes roughly one

second
3: if flush LRU then
4: for each buffer pool instance send a work item

to flush LRU scan depth pages in chunks do
5: send work items to multi-threaded flush

work threads
6: wait until we have received reply for all work

items
7: end for
8: else if flush flush list then
9: calculate target number of pages to flush

10: for each instance set up a work item to flush
(target number / # of instances) number pages
do

11: send work items to multi-threaded flush
work thread

12: wait until we have received reply for all items
13: end for
14: end if
15: end while

Algorithm 2 Consumers

1: while not shutdown do
2: wait until a work item is received from work

queue
3: if work item type is EXIT then
4: insert a reply message to return queue
5: pthread exit();
6: else if work item type is WRITE then
7: call buf mtflu flush pool instance() for this

work item
8: when we reach to os layer we compress the

page if
9: table uses page compression

10: set up reply message containing number of
flushed pages

11: insert a reply message to return queue
12: end if
13: end while

6

J. Lindström, D. Das, N. Piggin: An NVM Aware MariaDB Database System and associated IO workload on File Systems

LinkBench7 [3]: which is based on the traces of
production databases that store social graph data from
Facebook, a major social network. LinkBench provides
a realistic and challenging test for persistent storage of
social and web service data. The LinkBench measure
phase uses 64 client threads and the measure time is
86300 seconds (24 hours), and the warm-up time is 180
seconds.

Percona8 provides an on-line transaction processing
(OLTP) benchmark, which is an implementation of
TPC Benchmark C [34]. Approved in July of 1992,
TPC Benchmark C (TPC-C) is an on-line transaction
processing (OLTP) benchmark. TPC-C is more complex
than previous OLTP benchmarks such as TPC-A because
of its multiple transaction types, more complex database
and overall execution structure. TPC-C involves a
mix of five concurrent transactions of different types
and complexity either executed on-line or queued for
deferred execution. The database is comprised of
nine types of tables with a wide range of record and
population sizes. TPC-C is measured in transactions per
minute (TpmC). For TPC-C, we use the default number
of threads, i.e. 64 client threads (if not something else
mentioned) and the measure time is 10800 seconds (3
hours), and the warm-up time is 30 seconds.

We use LinkBench with 10x database size i.e. about
100G, and TPC-C with 1000 warehouses. InnoDB buffer
pool is set to 50G, thus on both benchmarks the database
does not fit in main-memory. The database management
system, which we use, is MariaDB 10.0.129. Only
difference on configuration is that row-compressed (i.e.
ROW FORMAT = COMPRESSED) and uncompressed
tables do not use atomic writes, trim and multi-threaded
flush, and they use doublewrite buffer. We will use
InnoDB storage engine (5.6.15) on following tests.

Furthermore, Fusion-io ioDrive 3 is about 25 times
faster compared to modern hard disk. This is a
significant difference such that we decided that on rest
of the results only Fusion-IO ioDrive is used as storage.

5.1 Micro-Benchmarks

In this paper we have presented atomic writes, page
compression and persistent trims methods. In Figure
4 we present performance differences when different
parts of these methods are enabled. We used LinkBench
with 10x database and 10h measure time on all tests.
Firstly, uncompressed tables not using atomic writes are
compared to uncompressed tables using atomic writes.

7 Source code can be obtained by git clone
https://github.com/facebook/linkbench.git

8 Source code can be obtained by bzr branch lp: percona-
dev/perconatools/tpcc-mysql

9 Source code can be obtained by bzr branch lp:maria/10.0-FusionIO

Atomic writes increases performance about 13%.
Similarly, we experimented row compressed tables not
using atomic writes and using atomic writes, however
performance increase is only about 4% and could
result on statistical fluctuations. For page compressed
tables atomic writes increase the performance about 3%.
Persistent trims are used only on page compressed tables
and using persistent trims increase the performance
about 7%.

5.2 LinkBench Evaluation

We start discussion on experimental results by showing
time to populate LinkBench 10x database (100G) in
Figure 5. Clearly loading a row compressed tables
take significantly longer than uncompressed or page
compressed tables.

We did not include loading time of page compressed
tables using compression method lzma, because its
loading time was 7800 seconds this could be from
the fact that database pages are relative small
16KB. Loading page compressed tables is faster than
uncompressed at least when lz4, lzo and bzip2 are used.
Clearly, bzip2 compression method provided the fastest
compression speed. Compression speed is not the only
significant factor when choosing compression methods.
Therefore, in Figure 6 we compare storage saving using
different methods.

Row-compressed and page compressed using lz4
or lzo offer similar compression savings compared to
uncompressed. There is additional storage saving when
using zip, lzma or bzip2 compression algorithms and
lzma proved to be a little bit better. Compression
can save between 32–48% of storage space when
compared to uncompressed tables. Furthermore, page
compression can save another 3-23% of storage space
depending on used compression method. However,
compression efficiency is also not the only deciding
factor, since compression and decompression speed is
also a significant factor when choosing compression
algorithms. In Figure 7 is shown the number of
LinkBench operations performed per second over the
24h measure time.

Now there is significant differences between
compression and decompression speeds on different
compression methods. Clearly, lz4 provides best
compression and decompression speed matching almost
the speed of uncompressed workload results. The
difference between uncompressed and lz4 compressed
is 6% meaning about 1800 operations in second, thus
inside a statistical variation. However, performance
difference between page compressed tables using lz4
and row-compressed tables is 30% meaning about 8000
operations in second. Clearly bzip2 and lzma could not

7

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

Figure 4: Atomic writes, page compression and persistent trim compared

Figure 5: Load time of the LinkBench 100G database

8

J. Lindström, D. Das, N. Piggin: An NVM Aware MariaDB Database System and associated IO workload on File Systems

Figure 6: Storage saving of different methods

Figure 7: Number of LinkBench operations per second at the measure phase

9

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

offer very fast compression and decompression speed
for the LinkBench benchmark.

The average latencies of NVM Compression are
generally comparable to those of Uncompressed (see
Figure 8). Row Compression throughput is much lower
compared to NVM Compression and Uncompressed.
The 99th percentile latency for NVM Compression
are 2.5x to 5.5x lower than that for the default Row
Compression. The NVM Compression latency is also
close to that of the Uncompressed workload, with
lower latency than the Uncompressed workload for some
operations like Update Node, Deleted Node and Get
Node.

The above results confirm that the hybrid NVM
Compression approach can deliver benefits by removing
some of the complexities inherent in the Row
Compression scheme. However, NVM Compression is
also able to keep up with, and occasionally outperform,
the Uncompressed configuration. To better understand
this, we measured the write behavior of all three
configurations. Figure 9 highlights the data written
per LinkBench operation measured across 30 second
intervals during a six hour run.

NVM Compression writes far less data than
uncompressed, which leads to better performance
in the fast device over time since less garbage collection
has to occur. We also found, that although Row-
Compression stores less data than Uncompressed, it also
generates more data writes per unit of operation than
Uncompressed or NVM Compression. This is likely
a result of insert failures leading to node splits and
allocation maps requiring additional writes, and thereby
further contributes to its poor performance.

5.3 OLTP-like Evaluation

Next we study compression performance for an On-
Line Transaction Processing (OLTP) benchmark. This
TPC-C like workload involves a mix of five concurrent
transaction types executed on-line or queued for deferred
execution. The database is comprised of nine tables with
a wide range of record and population sizes. Results are
measured in terms of transactions per minute (TpmC).
In Figure 10 we present TpmC results when number of
client threads is 32.

Clearly, the row-compressed method provides
a significantly lower performance while lz4 and
lzo could provide a similar performance compared
with uncompressed workload. Difference between
uncompressed and lz4 page compressed is about 2500
TpmC, i.e. less than 3%. Page Compression using lz4
provides about 6x performance compared with Row-
Compressed. Again lzo and bzip2 methods provided
a significantly lower performance but is still better

compared to Row-Compressed.
Figure 11 presents the number of New Order

transactions per second when the number of TPC-C
clients threads is 32. Lz4 and lzo methods provide
a similar performance compared to uncompressed
workload, and Row-Compressed is significantly
slower than any of page-ompressed methods.
Difference between lz4 and lzo methods compared
to uncompressed is between 0–6%, i.e between 50-1000
transactions/second. Both lz4 or lzo can provide between
5-7x performance compared to Row-Compressed.

Finally, Figure 12 shows TpmC results when the
number of the TPC-C client threads are varied from 4
to 512. Again lz4 and lzo methods provide a similar
performance compared to uncompressed workloads, and
even a better performance when the number of client
threads is higher than the number of the cores in the
system.

The performance of lz4 or lzo methods is between 3-
5x better compared to Row-Compressed. Similarly, lzma
and bzip2 offer a lower performance compared to other
page-compression methods, but they can also provide
better performance than uncompressed when the number
of client threads is higher than 128.

5.4 Page Size Evaluation

MariaDB’s InnoDB and XtraDB storage engines use
16Kb page size by default. However, MariaDB offers
a support of up to 64Kb page sizes for uncompressed
and page compressed tables in MariaDB 10.1. In the
following we present the measurement with MariaDB
10.1.9 using LinkBench with 20x database (about
200Gb) and 5 hours of measure phase. The buffer pool
size used is 20Gb. These tests are run with different
hardware from previously, i.e. CentOS Linux release
7.1.1503 (Core) using the 3.10.0-229.el7.x86 64 Linux
kernel, ioMemory SX300-1600 with VSL driver 4.2.1
build 1137 and NVMFS 1.1.1. Thus, these results can
not directly be compared to the earlier results in this
paper.

In Figure 13 we compare total database storage
sizes using uncompressed, lz4 compressed, lzo
compressed and zlib compressed tables. Other supported
compression methods lzma, bzip2 and snappy were
not suitable for this kind of workload. We measured
total database storage sizes after the LinkBench load
and 5 hour measure phase. Clearly, zlib provides the
best compression and lz4, and lzo provide a similar
compression efficiency.

In Figure 14 we compare the results from LinkBench
5 hour measure phase comparing the reported operations
per second at the end of measure phase. These
results show that lz4 provides the best performance in

10

J. Lindström, D. Das, N. Piggin: An NVM Aware MariaDB Database System and associated IO workload on File Systems

Figure 8: The average latencies of operations

Figure 9: Data amount (Kilobytes) written per linkbench operation (KB/OP) measured across 30 second
intervals during a six hour run

11

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

Figure 10: TPC-C compression performance of Percona measured in transactions per minute (TpmC) with
32 threads

Figure 11: The number of New Order transactions of TPC-C per second

12

J. Lindström, D. Das, N. Piggin: An NVM Aware MariaDB Database System and associated IO workload on File Systems

Figure 12: TPC-C compression performance of Percona measured in transactions per minute (TpmC) with
different numbers of theards

Figure 13: Database sizes after LinkBench database loading and 5-hour measure phase

13

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

Figure 14: The average number of LinkBench operations per second after a 5-hour measure phase

different page sizes. The difference between lz4 and
uncompressed is only 5% at 16Kb and lz4, and actually
outperforms uncompressed when the page size is larger
than 16Kb.

In Figure 15 we show the results of the operations
per second over time using LinkBench 5 hour
measure phase comparing lz4 compressed tables and
uncompressed tables. These results clearly show that
after the buffer pool is full both lz4 compressed tables
and uncompressed tables provide an almost identical
performance (the difference is about 5%). When the
database page size is increased from the default 16Kb to
32Kb or 64Kb, lz4 compressed tables clearly outperform
uncompressed tables. This is mainly due to fact that
there is significantly less data written to the media.

Finally in Figure 16 we show the mean latencies
of different LinkBench benchmark operations using
lz4 compressed tables and uncompressed tables with
different database page sizes.

5.5 File system comparison

In order to understand and evaluate the value proposition
of an IO model exporting sparse and other primitives to
the application, we performed some micro-benchmark
experiments. The evaluation was restricted to NVMFS,
XFS and EXT4 file systems, and the underlying block
device used was the identical flash device in all the
experiments.

Figure 17 presents the result of TRIM operation.
The micro benchmark simulates the I/O patterns of
NVM Compression on the underlying file systems for
persisting the data set. This micro benchmark workload
comprises of writes of size 16KB (default page size),
and the TRIM operation of 4KB. The micro-benchmark
evaluates the performance of the various file systems
with a workload like MySQL NVM compression. In
this test EXT4 provides the best latency for the TRIM
operation, NVMFS is about 2x slower than EXT4.
However, NVMFS is 4x faster compared to XFS.

Figure 18 presents the og write operation. In this
micro benchmark, we measure the write amplification
of the underlying file systems using the log write
operation of 4KB followed by the fdatasync operation.
Micro benchmark on NVMFS has a number of writes
comparable to the operations on a raw block device
(write operations without a file system), XFS has 2x
write amplification compared to NVMFS and EXT4
has 5x write amplification. These write amplifications
can contribute to lower transaction throughput: (i)
due to higher transaction latency for individual
transaction commits, (ii) as the system ages due to
significant resources being used for operations like
garbage collection and inhibiting IO throughput on
the underlying block device, thu further impacting the
limited number of write cycles on the underlying flash
storage.

In Figure 19 we compare NVM compression on

14

J. Lindström, D. Das, N. Piggin: An NVM Aware MariaDB Database System and associated IO workload on File Systems

Figure 15: The number of LinkBench operations per second over a 5-hour measurement phase

Figure 16: Latencies of LinkBench operations using lz4 compressed tables (lz4) and uncompressed tables
(unc) with different database page sizes

15

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

Figure 17: Trim operation: Punch hole comparison on different file systems

Figure 18: Write amplification on different file systems

16

J. Lindström, D. Das, N. Piggin: An NVM Aware MariaDB Database System and associated IO workload on File Systems

different file systems using TPC-C like benchmark with
1000 warehouses, the buffer pool was sized to 75GB and
the run time for the experiment is 1 hour. The throughput
of Benchmark on NVMFS outperforms both XFS and
EXT4 file systems. Not shown in the graph, as the file
system ages with additional runs throughput on NVMFS
is significantly better compared to XFS and EXT4 due
to write amplication improvements and reduced garbage
collection on the underlying flash storage.

The latency of generic operations like Drop Table have
also been evaluated. The findings point to significant
latency spike in drop table operations using NVM
Compression technique on XFS and EXT4 file systems
over similar tables uncompressed or the tables using
legacy compression. Efficient usage of NVM primitives
bring the performance improvement of NVMFS.

The evaluation of NVM Compression on various file
systems provides insight into the workloads that require
tuning on the respective file systems. Various micro
benchmarks as described in the evaluation section can
be used for rework and tuning as required for file systems
on block devices that used FTL exposed NVM primitives
for efficient file system operations.

6 RELATED WORK

[18] found that storing data too densely in compressed
pages incurs many future page splits similarly as
in MySQL legacy row compression, which require
exclusive locks. In order to avoid lock contention, [18]
reduced page splits by sacrificing a couple of percent
of space savings. Similar methods like adding padding
can be used on MySQL. Such methods reserve enough
space in each compressed page for future updates of
records and prevent page merges that are prone to incur
page splits in the near future. The experimental results
using TPC-C benchmark and MySQL/InnoDB showed
that their method gives 1.5 times higher throughput with
33% space savings compared with the uncompressed
counterpart and 1.8 times higher throughput with only
1% more space compared with the state-of-the-art row
compression method. NVM-compression achieved 2-7x
better performance compared to same row compression
method and improved storage efficiency by 19% and
therefore seems to outperform their proposal.

Database compression technologies in general have
been researched extensively earlier and one of best
general introduction on this area is given in [24].

There has been active research on using NVM to
reduce logging overhead, e.g., removing the disk and
using NVM as the sole logging device [41, 11, 17, 19].
Similarly, there has been research on using NVM as
virtual memory to optimize checkpoint writing [16]. In

[23] Meng et. al. present experiences on flash-based
database system FlashDB.

Another active research area on NVM is how to extend
the endurance or lifetime of the devices [42]. In [15]
Kaiser et. al. propose a method to extend lifetime of
SSDs in databases using page overwrites. Similarly, the
page size selection on databases using SSD storage has
been researched in [33].

In [22] Marmol et. al. show how NVM primitives
can be used to improve scalability and performance of
key-value stores. In [1] Abadi et. al. show how
compression can be used to improve the performance in
column-oriented database systems. In [37, 38] Schwalb
et. al. present how NVM primitives can be leveraged
in database startup and crash recovery for in-memory
databases.

Furthermore, there has been research on using new
storage class memories as main memory [21, 30] and
in main-memory databases [12]. [29] presents how
database performance can be improved by using flash-
based write cache. [13] proposes an AD-LRU method
to improve buffer replacement for flash-based databases.
Similarly, in [43] Yang et. al. propose an efficient buffer
scheme for flash-based databases.

MariaDB is one kind of consistent database sytems.
A comprehensive review on the state of the art of
consistent databases can be found in [9][10]. A survery
of performance on NoSQL database systems is presented
in [2].

7 CONCLUSIONS

NVM-Compression is designed to combine the best
of the application level compression and flash aware
integration. The block management and high-speed
garbage collection of flash are leveraged through
FTL primitives. File system support ensures that
standard database deployment practices, such as
placing tables in files, are preserved. Various micro
benchmarks as described in the evaluation section can
be used for rework and tuning file systems using
block devices exposing NVM primitives for efficiency
improvement. The performance results are dramatic,
with a performance close to or sometimes exceeding
the uncompressed method on both Linkbench and OLTP
workloads due to less garbage collection.

NVM Compression used in combination with Atomic
Writes also improves endurance by about 4x. NVM
compression has been released by all three MySQL
distributions, MariaDBTM 10 PerconaTM 11 and OracleTM

10 available at https://github.com/MariaDB/server/tree/10.0-FusionIO
11 available at http://code.launchpad.net/˜gl-az/percona-server/5.6-

pagecomp mtflush

17

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

Figure 19: NVM compression on different file systems using TPC-C like benchmark

5.7.9(GA) 12.
MariaDB has been the reference implementation, and

all development and analysis have been done on that
code base. Other MySQL vendors have followed the suit
and added their own implementation based on the work
by MariaDB. The code for the MySQL storage engine
implementation of NVM Compression is available as
open source for all of the three distributions.

REFERENCES

[1] D. J. Abadi, S. Madden, and M. Ferreira,
“Integrating compression and execution in
column-oriented database systems,” in SIGMOD
Conference, 2006, pp. 671–682.

[2] V. Abramova, J. Bernardino, and P. Furtado,
“Which nosql database? a performance overview,”
Open Journal of Databases (OJDB), vol. 1, no. 2,
pp. 17–24, 2014. [Online]. Available: https://www.
ronpub.com/ojdb/OJDB-v1i2n02 Abramova.html

[3] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and
M. Callaghan, “LinkBench: a database benchmark

12 available at http://http://dev.mysql.com/downloads/mysql/

based on the Facebook social graph,” in SIGMOD
Conference, 2013, pp. 1185–1196.

[4] D. Bartholomew, ”Getting Started with MariaDB”.
Packt Publishing, 2013.

[5] M. Callaghan, “Making InnoDB compression
adaptive,” https://www.facebook.com/note.php?
note id=10150345355665933, 2011.

[6] M. Callaghan, “The efect of page
size on InnoDB compression,”
https://www.facebook.com/note.php?
note id=10150348315455933, 2011.

[7] M. Cao, S. Bhattacharya, and T. Ts’o, “Ext4: The
Next Generation of Ext2/3 Filesystem,” in Linux
Storage & Filesystem Workshop, 2007.

[8] Dhananjoy Das, “NVMFS,”
http://itblog.sandisk.com/in-a-battle-of-hardware-
software-innovation-comes-out-on-top, 2014.

[9] M. M. Elbushra and J. Lindström, “Eventual
consistent databases: State of the art,” Open
Journal of Databases (OJDB), vol. 1, no. 1, pp.
26–41, 2014. [Online]. Available: https://www.
ronpub.com/ojdb/OJDB-v1i1n03 Elbushra.html

[10] M. M. Elbushra and J. Lindström, “Causal
consistent databases,” Open Journal of Databases

18

https://www.ronpub.com/ojdb/OJDB-v1i2n02_Abramova.html
https://www.ronpub.com/ojdb/OJDB-v1i2n02_Abramova.html
https://www.ronpub.com/ojdb/OJDB-v1i1n03_Elbushra.html
https://www.ronpub.com/ojdb/OJDB-v1i1n03_Elbushra.html

J. Lindström, D. Das, N. Piggin: An NVM Aware MariaDB Database System and associated IO workload on File Systems

(OJDB), vol. 2, no. 1, pp. 17–35, 2015. [Online].
Available: https://www.ronpub.com/ojdb/OJDB
2015v2i1n02 Elbushra.html

[11] R. Fang, H. Hsiao, B. He, C. Mohan, and Y. Wang,
“High performance database logging using storage
class memory,” in Proceedings of the 27th
International Conference on Data Engineering,
April 11-16, 2011, Hannover, Germany, pp. 1221–
1231.

[12] Y. Gottesman, J. Nider, R. I. Kat, Y. Weinsberg,
and M. Factor, “Using Storage Class Memory
Efficiently for an In-memory Database,” in
Proceedings of the 9th ACM International on
Systems and Storage Conference, 2016.

[13] P. Jin, Y. Ou, T. Härder, and Z. Li, “AD-LRU:
An efficient buffer replacement algorithm for flash-
based databases,” Data Knowl. Eng., vol. 72, pp.
83–102, 2012.

[14] W. K. Josephson, L. A. Bongo, D. Flynn, and
K. Li, “DFS: A File System for Virtualized Flash
Storage,” in 8th USENIX Conference on File and
Storage Technologies, 2010, pp. 85–100.

[15] J. Kaiser, F. Margaglia, and A. Brinkmann,
“”extending SSD lifetime in database applications
with page overwrites”,” in Proceedings of the
6th International Systems and Storage Conference,
2013, pp. 1–12.

[16] S. Kannan, A. Gavrilovska, K. Schwan, and D. S.
Milojicic, “Optimizing Checkpoints Using NVM
as Virtual Memory,” in IPDPS, 2013, pp. 29–40.

[17] A. Khekdar and V. Kumar, “Flash-based logging
for database updates,” in CTS, 2011, pp. 540–547.

[18] K. Lee, “Performance Improvement of Database
Compression for OLTP Workloads,” IEICE
Transactions, vol. 97-D, no. 4, pp. 976–980, 2014.

[19] S.-W. Lee, B. Moon, C. Park, J. Y. Hwang, and
K. Kim, “Accelerating In-Page Logging with Non-
Volatile Memory,” IEEE Data Eng. Bull., vol. 33,
no. 4, pp. 41–47, 2010.

[20] R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and
C.-Y. M. Wang, “NVM duet: unified working
memory and persistent store architecture,” in
ASPLOS, 2014, pp. 455–470.

[21] G. S. Lloyd and M. Gokhale, “Evaluating
the feasibility of storage class memory as
main memory,” in Proceedings of the Second
International Symposium on Memory Systems,
2016, pp. 437–441.

[22] L. Marmol, S. Sundararaman, N. Talagala,
R. Rangaswami, S. Devendrappa, B. Ramsundar,

and S. Ganesan, “NVMKV: A scalable and
lightweight flash aware key-value store,” in 6th
USENIX Workshop on Hot Topics in Storage and
File Systems, Jun. 2014.

[23] X. Meng, L. Yue, and J. Xu, “Flash-Based
Database Systems: Experiences from the FlashDB
Project,” in DASFAA Workshops, 2011, p. 240.

[24] N. J. Muller, “Database Compression
Technologies,” in High-Performance Web
Databases, Design, Development, and
Deployment, 2001, pp. 705–716.

[25] S. Oikawa, “Towards New Interface for Non-
volatile Memory Storage,” in PECCS, 2014, pp.
174–179.

[26] S. Oikawa and S. Miki, “File-Based Memory
Management for Non-volatile Main Memory,” in
COMPSAC, 2013, pp. 559–568.

[27] S. Oikawa and S. Miki, “Future Non-volatile
Memory Storage Architecture and File System
Interface,” in CANDAR, 2013, pp. 389–392.

[28] N. Ordulu, “Getting InnoDB
compression ready for Facebook scale,”
http://www.percona.com/live/mysql-conference-
2012/sessions/ getting-innodb-compression-ready-
facebook-scale, 2012.

[29] Y. Ou and T. Härder, “Improving Database
Performance Using a Flash-Based Write Cache,” in
DASFAA Workshops, 2012, pp. 2–13.

[30] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and
W. Lehner, “FPTree: A Hybrid SCM-DRAM
Persistent and Concurrent B-Tree for Storage Class
Memory,” in Proceedings of the International
Conference on Management of Data, 2016, pp.
371–386.

[31] X. Ouyang, D. W. Nellans, R. Wipfel, D. Flynn,
and D. K. Panda, “”beyond block I/O: Rethinking
traditional storage primitives”,” in HPCA, 2011,
pp. 301–311.

[32] Y. Park and J.-S. Kim, “zFTL: power-efficient
data compression support for NAND flash-
based consumer electronics devices,” IEEE Trans.
Consumer Electronics, vol. 57, no. 3, pp. 1148–
1156, 2011.

[33] I. Petrov, R. Gottstein, T. Ivanov, D. Bausch, and
A. P. Buchmann, “Page Size Selection for OLTP
Databases on SSD Storage,” JIDM, vol. 2, no. 1,
pp. 11–18, 2011.

[34] F. Raab, “TPC-C - The Standard Benchmark for
Online transaction Processing (OLTP),” in The
Benchmark Handbook, 1993.

19

https://www.ronpub.com/ojdb/OJDB_2015v2i1n02_Elbushra.html
https://www.ronpub.com/ojdb/OJDB_2015v2i1n02_Elbushra.html

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

[35] I. Rana, “InnoDB compression
improvements in MySQL 5.6,”
https://blogs.oracle.com/mysqlinnodb/entry/
innodb compression improvements in mysql,
2012.

[36] M. Saxena, M. M. Swift, and Y. Zhang, “FlashTier:
a lightweight, consistent and durable storage
cache,” in European Conference on Computer
Systems, Proceedings of the Seventh EuroSys
Conference, 2012, pp. 267–280.

[37] D. Schwalb, M. Faust, M. Dreseler, P. Flemming,
and H. Plattner, “Leveraging non-volatile memory
for instant restarts of in-memory database
systems,” in 32nd IEEE International Conference
on Data Engineering, 2016, pp. 1386–1389.

[38] D. Schwalb, G. Kumar, M. Dreseler, A. S.,
M. Faust, A. Hohl, T. Berning, G. Makkar,
H. Plattner, and P. Deshmukh, “Hyrise-NV:
Instant Recovery for In-Memory Databases Using
Non-Volatile Memory,” in Database Systems
for Advanced Applications - 21st International
Conference, 2016, pp. 267–282.

[39] N. Talagala, “Native flash support for applications,”
http://www.flashmemorysummit.com/English/
Collaterals/Proceedings
/2012/20120823 S304B Talagala.pdf, 2012.

[40] R. Y. Wang and T. E. Anderson, “xFS: A Wide Area
Mass Storage File System,” in Proceedings Fourth
Workshop on Workstation Operating Systems,
1993, pp. 71–78.

[41] T. Wang and R. Johnson, “Scalable Logging
through Emerging Non-Volatile Memory,” PVLDB,
vol. 7, no. 10, pp. 865–876, 2014.

[42] J. Yang, N. Plasson, G. Gillis, and N. Talagala,
“HEC: improving endurance of high performance
flash-based cache devices,” in SYSTOR, 2013,
p. 10.

[43] L. H. Yang, J. Wang, Z. Huang, W. Gong, and
L. Chen, “An Efficient Buffer Scheme for Flash-
based Databases,” JCP, vol. 6, no. 7, pp. 1307–
1318, 2011.

[44] K. S. Yim, H. Bahn, and K. Koh, “A flash
compression layer for SmartMedia card systems,”
IEEE Trans. Consumer Electronics, vol. 50, no. 1,
pp. 192–197, 2004.

[45] J. Ziv and A. Lempel, “A universal algorithm for
sequential data compression,” IEEE Transactions
on Information Theory, vol. 23, no. 3, pp. 337–343,
1977.

AUTHOR BIOGRAPHIES

Dr. Jan Lindstrm is the
principal engineer at MariaDB
working on InnoDB storage
engine and Galera cluster.
Before joining SkySQL he
was software developer for
IBM DB2 and development
manager for IBM solidDB core
development. He joined IBM
with the acquisition of Solid

Information Technology in 2008. Before joining Solid
in 2006, Jan worked on Innobase and spent almost 10
years working in the database field as a researcher,
developer, author, and educator. He has developed
experimental database systems, and has authored, or
co-authored, a number of research papers. His research
interests include real-time databases, in-memory
databases, distributed databases, transaction processing
and concurrency control. Jan has an MSc. and Ph.D.
in Computer Science from the University of Helsinki,
Finland.

Dhananjoy Das is Sr. Architect
at parallel machines working in
new technologies in machine
learning space. Before
joining Parallel Machines,
he was Principal Architect at
SanDisk (formally Fusion-io,
acquired by WD) working for
more than 5 years in areas
of advanced development,

persistent memory, flash, distributed systems and
application acceleration. His recent work includes the
application of acceleration IO AMP stack to enhancing
applications like MariaDB, MySQL and Cassandra for
transactional efficiencies, write amplication reduction
and flash endurance, providing improvement using FTL
techniques for atomic updates and data compression
methods. Prior to joining Fusion-io, He worked at
NetApp for about 10 Years and designed infrastructure
for fault tolerance, high availability for distributed
systems across all storage platforms, worked on
high speed interconnects and NVRAM infrastructure
processing WAFL transactions. He is an active
contributor to open source community and holds an MS.
Computer Science from University of Pune, India.

20

J. Lindström, D. Das, N. Piggin: An NVM Aware MariaDB Database System and associated IO workload on File Systems

Nick Piggin is now a software
engineer at IBM. Before joining
IBM, Nick Piggin worked for
SanDisk (formally Fusion-io),
and has interests in memory
management, filesystems, and
the Linux kernel, new storage
and memory technologies. He
has been working with these for
the past several years.

Santhosh Kumar Koundinya
is a software engineer at
YellowBrick. Before joining
YellowBrick, Santhosh worked
at SanDisk, and was a core
developer of the Non-Volatile
Memory File System (NVMFS).
NVMFS serves to connect
applications to modern, high-
speed persistent memories, and

NVMFS v1.0 is availabe to customers.

Torben Mathiasen is now
a principal engineer at
YellowBrick and works on new
technologies in the analytical
space. He worked at Fusion-io
and SanDisk where he has
been evaluating software stacks
for optimal performance and
reliability for both internal R&D
and customers. He has spent 11

years at Hewlett-Packard, architected firmware for the
ProLiant BladeServer portfolio and worked as a Linux
kernel developer. He also held a senior system architect
position at Prevas, designed the next generation of
embedded systems, which are used by customers from
all over the world. He has made contributions to the
Linux kernel in the areas like ethernet, PCI hotplugging,
storage controller drivers and the SCSI stack.

Dr. Nisha Talagala is vice
president of Engineering
at Parallel Machines. Before
joining Parallel Machines, Nisha
was Fellow at SanDisk, where
she worked on innovation in non
volatile memory technologies
and applications. Nisha has
more than 10 years of expertise
in software development,

distributed systems, storage and I/O solutions, and
non-volatile memory. She has worked as technology
leader of server flash at Intel, CTO at Gear6 and Sun
Microsystems. Nisha earned her PhD at UC Berkeley
research clusters and distributed storage. Nisha holds
more than 30 patents.

Dr. Dulcardo Arteaga
currently works as software
engineer at Parallel Machines.
He obtained his Ph.D. in
Computer Sciences at Florida
International University (FIU)
under the supervision of
Dr. Ming Zhao in the
Virtualized Infrastructure,
Systems and Applications

(VISA) Laboratory. Dulcardo obtained his Master
of Science degree in Computer Science from FIU.
Dulcardo’s research focus is in block-level caching and
virtualization.

21

	Introduction
	Background
	NVM Compression
	Multi-Threaded Flush
	Evaluation
	Micro-Benchmarks
	LinkBench Evaluation
	OLTP-like Evaluation
	Page Size Evaluation
	File system comparison

	Related Work
	Conclusions

