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ABSTRACT 
 

With the advent of the Internet of Things and smart city applications, massive cyber-physical interactions between 

the applications hosted in the cloud and a huge number of external physical sensors and devices is an inevitable 

situation. This raises two main challenges: cloud cost affordability as the smart city grows (referred to as 

economical cloud scalability) and the energy-efficient operation of sensor hardware. We have developed Cloud-

Edge-Beneath (CEB), a multi-tier architecture for large-scale IoT deployments, embodying distributed 

optimizations, which address these two major challenges. In this article, we summarize our prior work on CEB to 

set context for presenting a third major challenge for cloud sensor-systems, which is latency. Prolonged latency 

can potentially arise in servicing requests from cloud applications, especially given our primary focus on 

optimizing energy and cloud scalability. Latency, however, is an important factor to optimize for real-time and 

cyber-physical applications with limited tolerance to delays. Also, improving the responsiveness of any IoT 

application is bound to improve the user experience and hence the acceptability and adoption of smart city 

solutions by the city citizens. In this article, we aim to give a formal definition and formulation for the latency 

optimization problem under CEB. We propose a Prioritized Application Fragment Caching Algorithm (PAFCA) to 

selectively cache application fragments from the cloud to lower layers of CEB, as a key measure to optimize 

latency. The algorithm itself is an extension of one of the existing optimization algorithms of CEB (AFCA-1). As 

will be shown, PAFCA takes into account the expectations of cloud applications on real-timeliness of responses. 

Through experiments, we measure and validate the effect of PAFCA on latency and cloud scalability. We also 

introduce and discuss the trade-off between latency and sensor energy in this given context. 
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1 INTRODUCTION 

 

As the smart city concept proliferates into a massive 

scale, smart city applications are bound to be pushed to 

the cloud where they can be hosted and executed. This 

is not only due to the cloud’s economies of scale but 

also because numerous stakeholders will demand 

access to sensor data and the services (applications), 

which is difficult to achieve without a neutral and a 

common platform like the cloud. But connecting 
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hundreds of millions of sensors and devices directly to 

the cloud is bound to result in massive traffic and 

unbounded use of cloud resources. Utilizing edge 

computing and connecting devices to the cloud through 

edge computers have been shown to be a promising 

approach to manage growth in the smart city and to 

achieve economical scalability of the cloud, by slowing 

down its elasticity rate as more devices and 

applications are deployed [22].  We have developed the 

cloud-edge-beneath (CEB) architecture to address the 

economical scalability challenge and to minimize the 

energy used by the sensors and devices.  

CEB embodied a distributed optimization 

framework deployed at all three layers of the 

architecture. Four optimization algorithms in CEB have 

been designed to minimize movements of application 

requests down to the sensors, and movements of data 

updates from the sensors up to the applications. Also, 

sensor sampling is minimized and a new guiding 

principle which we call sentience efficiency is applied. 

In a nutshell, sentience efficiency refers to the extent 

that data sampled from sensors and moved up or made 

available to applications is actually necessary to the 

proper execution of the application. In other words, a 

sentient efficient cloud-sensor system is one that 

cleverly avoids any unnecessary sensing. To implement 

our optimization algorithms which we will briefly 

summarize in this paper, we introduced a bi-directional 

waterfall optimization framework that coordinates the 

interplay among the four algorithms, and that correlates 

application characteristic dynamics with data change 

dynamics, again to minimize all movements. While our 

prior work focused on energy savings in the beneath 

layer and the cloud economical scalability in the cloud 

layer, it left latency and real-timeliness unaddressed.  

In this paper, we extend our CEB optimization 

approach to address latency, and to continue to 

optimize cloud scalability and sensor energy use under 

deadline constraints. We formally capture time and 

deadlines into the architecture and introduce a new, 

fifth algorithm that aims to bridge the gap between our 

prior optimization goals and its potential latency side 

effect. 

 

2 STRUCTURE OF ARTICLE 
 

This paper is organized as follows. Section 3 gives an 

overview of the CEB architecture, states the challenges 

that are addressed, and briefly discusses the distributed 

optimization framework of CEB. Section 4 presents the 

important related works. Section 5 formally defines and 

formalizes latency in CEB and analyzes the potential 

causes for high latency inherent in the architecture. It 

also discusses the different possible latency 

optimization problems and states the ones addressed in 

this paper. Section 6 proposes a solution to the chosen 

latency optimization problem, discusses the trade-off 

between latency and sensor energy and presents the 

proposed algorithm. Section 7 evaluates the 

effectiveness of the proposed algorithm and shows the 

trade-off between cloud scalability and latency through 

simulation experiments. Conclusion and future work 

are presented in section 8. 

 
3 BACKGROUND 

 
In this section, we briefly describe our prior work on 

Cloud-Edge-Beneath (CEB) architecture whose 

understanding is required for our proposed work in this 

article to be clearly explained. CEB is a three-tier 

architecture and a framework for deploying and 

managing cloud-sensor systems whose applications are 

programmed, hosted and run on the cloud [22]. The 

architecture is intended to enable an ecosystem for 

developing and deploying smart city applications in the 

cloud. Figure 1 shows an abstracted high level view of 

the architecture. The beneath layer refers to the 

sensors/devices and their sensor platforms which are 

low power computing and communication platforms, 

connecting related sensors (e.g., belonging to same 

geographical area, organization or an authority) to a 

corresponding edge. Edge layer groups related sensors 

and connects them to the cloud. Deploying and 

powering up devices under CEB makes the devices 

automatically externalized and represented in the cloud 

as software services. This “externalization” concept 

introduced by CEB has panned out to other emerging 

architectures such as the ARM mbed [1] in which 

device cloud services can be generated as RESTful 

services. 

Automatic externalization immediately enables 

developers to program and deploy smart city 

applications in a practical fashion that decouples 

physical device deployment from application 

development. CEB is built on top of Atlas [7], which is 

an implementation of the Service Oriented Device 

Architecture (SODA) model [5]. For every beneath 

device connected to an Atlas node, a corresponding 

basic service is automatically created on the edge. And 

for every basic edge service, there exists a 

corresponding replica basic service created also 

automatically on the cloud, and managed by an 

instance of the Atlas Cloud Middleware (ACM) at the 

cloud layer. ACM acts as a cloud gateway to the edge. 

It hosts all cloud sensor service bundles passed from 

the edge and provisions them (and makes them 

accessible) to developers with permissions as services 

ready to be subscribed to, by other cloud services and 

applications.  
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Figure 1: Overview of CEB Architecture 

Sensor based services and applications are 

developed, deployed and run in a container called 

Cloud Application Runtime (CAR) at  the  cloud  layer. 

Both the edge and the cloud layers use the Open 

Services Gateway Initiative - OSGi [13] as their basis 

to provide service registration, discovery, activation 

and configuration. The current implementation of CEB 

is based on an event driven application model called E-

SODA [22], where the applications do not only utilize 

raw sensor data, but are also able to tune to specific 

events ranging from simple to complex events. We 

describe E-SODA briefly in section 3.2. 

 
3.1  Challenges Addressed 
 

The two key challenges that have been addressed by 

CEB are the cloud scalability challenge and the sensor 

energy challenge. We first discuss cloud scalability. 

Extensive interactions between sensors and cloud 

services could pose a challenge on the scalability of the 

cloud. In a smart city scenario, with millions of sensors 

requiring ‘cloud attention’ for every duty cycle, there 

would be billions of interactions every day which 

requires tremendous processing power, memory and 

huge incoming/outgoing cloud traffic, leading to a 

heavy draw on the costly cloud elasticity. Given the 

existing use based price models, the cloud would 

become too expensive as the economies of scale per 

sensor will not stand. This will be a major show 

stopper given that smart cities’ main motivation is 

bridging supply and demand in face of increased 

urbanization and decline of resources and budget to 

spend per capita. So it would not make any sense to 

spend unbounded amount of money on cloud services 

monthly while trying to meet ends and bridge gaps! 

CEB has been architected to slow down cloud elasticity 

in face of growing demands of applications or 

expanding instrumentation of the smart city. CEB 

utilize optimizing algorithms to lean back on and 

exploit power-unconstrained edge servers and even 

beneath nodes to tackle some of the work, which 

effectively contains elasticity and enhances cloud 

economic scalability. 

The second key challenge is maintaining the energy 

constraints of the sensor devices. Most of the sensors 

are generally battery powered, and this makes them 

vulnerable to power drainage. In a smart city scenario, 

a sensor may be queried by hundreds of applications, 

each requiring continuous evaluation of events based 

on sensor readings. This could lead to continuous 

sampling of the sensors. Without optimizations, the 

energy of the sensors might deplete rapidly, rendering 

them unreliable and unavailable. We have addressed 

this challenge by several optimization algorithms 

coordinated via a bi-directional waterfall optimization 

framework [20], which essentially renders a distributed 

optimization occurring at each layer of CEB. The same 

framework is used as the context in which our 

proposed latency optimization algorithm is 

coordinated, and hence, we briefly explain this 

framework first in the next section. 

 

3.2  Bi-Directional Waterfall Optimization 
 

In CEB, cloud applications request data from the 

physical layer which reaches the cloud through the 

edge layer. In our Bi-directional waterfall optimization 

framework [20], in addition to data being cached up 

from beneath to the edge and ultimately to the cloud, 

“application fragments” are also cached down from the 

cloud to the edge and even beneath, opening up a 

number of optimization opportunities. Application 

caching requires that the application model is 

inherently divisible (that is, an app can be divided into 

communicating parts easily). Pub/Sub, Event-driven 

and functional programming based application models 

are inherently divisible. CEB utilizes an event-driven 

model known as E-SODA which enables the concept of 

application fragment caching.  

Under E-SODA, a complex event (cloud 

application) could be diced into a number of smaller 

complex events each represented by an Event 

Representation Tree (ERT), which can be cached at the 

lower layers. Caching an application fragment means 

caching a subtree of events from an ERT. A cached 

event is evaluated at the layer it is cached to and its 

event value is pushed back to its upper layers only 

when the value changes from its previous state. This is 

called ‘selective push’. For any event cached to a lower 

layer, a ‘shadow event’ is created to act as a proxy of 

the cached event at the upper layers. This shadow event 

receives the selective push messages from the layer 
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below it. The edge is of strategic importance here, 

because it has a view of both the data and the 

application domains and could potentially analyze how 

the data and applications interplay. This enables 

powerful optimizations which take the sensor data and 

the cloud applications as inputs to the optimization 

equation, thereby addressing the two key challenges 

mentioned above. The four optimization algorithms 

implemented at the three layers of CEB are briefly 

described below and their interplay explained. 

Cloud-to-Edge Application Fragment Caching 

Algorithm (AFCA-1) [21] – cloud scalability: AFCA-1 

selects application fragments (ERTs) from the cloud to 

cache at the edge layer to address the cloud scalability 

challenge and at the same time, staying within the 

limitations of the resources in edge servers (memory 

and processing power). Edge servers are not elastic as 

cloud. 

Shortcut Evaluation and Branch Permutation 

Algorithm (BPA) [19] – saving sensor energy: In 

processing the application fragments cached at the edge 

layer, shortcut evaluation can be utilized when a subset 

of sensor data is sufficient to derive the occurrence of 

an event, saving the sensor power due to the skipped 

sensor samplings. For example, consider an event A, 

represented as an ERT, which is evaluated as A = B 

AND C, where B and C are two other ERTs (children 

or subtrees of A) and the value of A is calculated by 

performing a Boolean AND operation on its children B 

and C. If the value of B is known to be 0, then there is 

no necessity to evaluate and calculate C’s value to 

determine the value of A. Branch permutation 

algorithm does exactly this and prunes ERTs if the 

occurrence of those events could be figured out without 

looking at the events that are not yet explored. Had the 

same equation been A = C AND B, and B is more likely 

to be 0, it would be better if we evaluated B first which 

might shortcut C’s evaluation. Thus, the order in which 

children are evaluated is the key to enable more 

shortcuts and hence improve sensor energy savings. 

BPA permutes the branches of the ERT affecting the 

order of sensor sampling and sub-event evaluation to 

enhance the chances of shortcuts happening.  

Application-Aware Adaptive Sampling Algorithm 

(AAAS) [19] – saving sensor energy: Atomic events 

are the events which are directly associated with the 

sensors and immediately evaluated from the sensor 

readings (the most primitive application fragment). 

These events are at the leaves of any ERT. Atomic 

events could be cached at the beneath layer to save 

more sensor energy. For every atomic event cached at 

the beneath, AAAS algorithm uses ARMA (Auto-

Regressive Moving Average) model [18] to predict 

sensor data and skip subsequent samplings, if the 

predicted value is close to the sampled value. However, 

there should be a limit on the number of samplings 

skipped and AAAS uses a modified version of the 

algorithm proposed in [4], bringing in some 

characteristics from the cloud applications to fix the 

maximum skip limit and better optimize sensor energy. 

Edge-to-Beneath Application Fragment Caching 

Algorithm (AFCA-2) [19] – saving sensor energy: 

AFCA-2 selects the atomic events to cache at the 

beneath layer to achieve more optimized energy 

efficiency of the sensor nodes. Atomic events when 

cached at the beneath layer, would miss out on the 

energy savings happening because of shortcuts during 

the evaluation of ERTs at the edge. AFCA-2 calculates 

the overall benefit that could be obtained by caching an 

atomic event to the beneath but potentially missing out 

on savings because of shortcuts. If the calculated 

benefit is greater than a certain threshold, AFCA-2 

caches the atomic event at the beneath and does not 

cache it otherwise. 

 
4 RELATED WORKS 
 

Several research projects focused on minimizing 

network latency in cloud based systems. One of the 

most significant work is the cloudlet approach by 

Satyanarayanan et al [16], in which the cloud is 

brought closer to the applications/mobile devices (one 

hop away) by introducing a new architectural element 

called cloudlet in the three-tier hierarchy: mobile 

device – cloudlet – cloud. In contrast to the cloudlet 

approach, in our cloud-sensor systems approach, the 

applications are on the cloud and the edge is used to 

bring the physical world (sensors and devices) closer to 

the cloud. In CEB, edge is used to either bring the 

physical world closer to the cloud or cache application 

fragments down closer to the physical world.  

A power and latency aware optimum cloudlet 

selection strategy was proposed by Mukherjee et al 

[12] for multi-cloudlet environment. A computation 

model combining the characteristics of fog computing 

[3] [17] and in-cooperating Complex Event Processing 

(CEP) [14] at the edge of the network, to achieve low 

latency and real-time responses that cloud applications 

demand, was proposed by Madumal et al [9]. A 

mathematical model of fog computing which assesses 

the applicability of fog computing in Internet of Things 

to meet the demands of latency-sensitive applications 

running at network-edge, was proposed by Sarkar et al 

[15]. It also showed that as the number of latency 

sensitive applications increase, fog computing 

outperforms cloud computing. A service oriented 

network architecture named Application Assist 

Network (AAN), with an adaptive network cache 

algorithm achieving lower response times than the 

traditional caching algorithms was proposed by Matoba 
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et al [10]. To effectively manage data latency, [8] 

provided a framework for a responsive data 

architecture (RDA), based on patterns seen in real IoT 

projects that leverage the public cloud.   

AirBox – a performant and scalable edge service 

platform that can execute functionality onloaded on 

behalf of remote, cloud-based services, in order to 

address the bandwidth use and latency requirements of 

device-cloud interactions was proposed by Bhardwaj et 

al [2]. Unlike AirBox, where edge can directly handle 

application requests, in CEB all the application 

requests are addressed by the cloud. Zhang et al [23] 

introduced Mobile Edge Computing (MEC) into 5G 

architecture and evaluated the network end-to-end 

latency. Low-latency services with a requirement not 

smaller than 17ms are supported by MEC. Drolia et al 

[6] discussed about leveraging spatio-temporal context 

at the edge to dynamically create caches in edge 

servers and across mobile devices to decrease latency 

for vision-based applications. In this article, we model 

latency inherent in evaluating events in an event-driven 

application model and propose a greedy optimization 

algorithm within CEB to minimize latency. 

 

5 LATENCY FORMULATION AND 

OPTIMIZATION 
 

The time elapsed from the moment an application 

places an event evaluation request to the cloud 

application runtime (CAR) until the moment it gets 

back a response from the CAR, is defined as the 

latency involved with the request. As we mentioned 

before, the current implementation of CEB with bi-

directional waterfall optimization framework has not 

considered latency optimization (minimization) as one 

of its key challenges. This section formulates and 

analyzes the latency under CEB as defined above and 

explains the potential reasons for high latency in the 

existing implementation of CEB. The section also 

introduces the two ways to think about latency 

optimization, and the type of latency optimization 

problem that this work aims to address. 

Since selective push is employed when an event is 

cached at the edge, the event’s value is pushed into the 

cloud from edge, only when it changes from its 

previous value. This means that any point in time, the 

cloud layer has the most updated value of the cached 

event. Thus, when an application requests the value of 

a cached event, it can directly be given the value from 

the shadow event service in the ACM. No request 

needs to be passed to the edge layer or the beneath and 

no sampling needs to be done to service the request. 

When an atomic event is not cached by AFCA-1 at 

the edge, it is not cached at the beneath as well. This is 

because, AFCA-2 chooses atomic events to cache at 

the beneath, only from the set of events that are already 

present in the edge. Every event evaluation request of a 

non-cached atomic event at the cloud layer, results in a 

sampling of the sensor corresponding to that atomic 

event. 

 

5.1  Formulation 
 

Let 𝑇𝑒𝑐(𝐸) denote the time taken to evaluate an event 𝐸 

already cached in the edge, whose cloud event service 

is denoted as 𝐸𝑆(𝐸). 
 

𝑇𝑒𝑐(𝐸) = 𝑇𝐶𝐴𝑅
𝐴𝐶𝑀 + 𝑐𝑝𝑢_𝑡(𝐸𝑆(𝐸)𝑠ℎ𝑎𝑑𝑜𝑤) + 𝑇𝐴𝐶𝑀

𝐶𝐴𝑅 (1) 
 

Here, 𝑐𝑝𝑢_𝑡(𝐸𝑆(𝐸)𝑠ℎ𝑎𝑑𝑜𝑤) represents the time taken 
to fetch the event’s value from the shadow event 
service corresponding to the cloud event service 
𝐸𝑆(𝐸). 𝑇𝑥

𝑦
 denotes the time taken to send a request or 

response from ′𝑥′ to ‘𝑦′ (communication time). 

 The time taken to evaluate an atomic event not 

cached at the edge, denoted by 𝑇𝑒𝑎(𝐸), is given by the 

following equation: 

 
𝑇𝑒𝑎(𝐸) = (𝑇𝐶𝐴𝑅

𝐴𝐶𝑀 + 𝑇𝐴𝐶𝑀
𝐸𝑑𝑔𝑒

+  𝑇𝐸𝑑𝑔𝑒
𝐵𝑒𝑛𝑒𝑎𝑡ℎ) × 2

+ 𝑇𝑠𝑎𝑚𝑝𝑙𝑒(𝐸) 
(2) 

 
Here, 𝑇𝑠𝑎𝑚𝑝𝑙𝑒(𝐸) denotes the time taken to sample the 

sensor corresponding to the atomic event 𝐸. The time 

taken to evaluate any non-atomic event is given by the 

maximum time taken to evaluate each of the children 

of that event, assuming parallel evaluations of child 

events. Let 𝑆𝐶(𝐸) denote the set of all child events of 

event 𝐸. The time taken to evaluate an event 𝐸 in 

general, denoted by 𝑇𝑒(𝐸), is given by the following 

recurrence: 

 
𝑇𝑒(𝐸)

= {

𝑇𝑒𝑐(𝐸), 𝑖𝑓 𝐸 𝑖𝑠 𝑐𝑎𝑐ℎ𝑒𝑑

𝑇𝑒𝑎(𝐸), 𝑖𝑓 𝐸 𝑖𝑠 𝑎𝑡𝑜𝑚𝑖𝑐, 𝑛𝑜𝑡 𝑐𝑎𝑐ℎ𝑒𝑑

𝑐𝑝𝑢_𝑡(𝐸𝑆(𝐸)) + max(𝑇𝑒(𝐸𝑖 ∈ 𝑆𝐶(𝐸))), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3) 

 
The overall latency for any event evaluation request 

is formulated as follows: 

 
𝑇(𝐸) =  𝑇𝐴𝑝𝑝

𝐶𝐴𝑅 + 𝑇𝑒(𝐸) +  𝑇𝐶𝐴𝑅
𝐴𝑝𝑝

 (4) 

 

Here, 𝑇𝐴𝑝𝑝
𝐶𝐴𝑅  is the time taken for the evaluation request 

to reach CAR from a cloud application and 𝑇𝐶𝐴𝑅
𝐴𝑝𝑝

 is the 

time taken to send back the response from CAR to the 

cloud application after event evaluation which takes 

𝑇𝑒(𝐸) time. 
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5.2 Analysis of Latency 
 

In order to minimize latency, 𝑇𝑒(𝐸) has to be 

minimized. Observed latency is least when 𝐸 is cached 

at the edge. In this case, the most recently updated 

value of the event from the cloud shadow event service 

is directly given to the application. Also, it is the 

maximum when no atomic event in the ERT of 𝐸 is 

cached at the edge by AFCA-1, and the evaluation of 

each of them results in a sampling of the corresponding 

sensors. It could be seen that the latency directly 

depends on whether AFCA-1 caches an event in the 

edge or not. Hence, it must be made sure that AFCA-1 

caches events that are of great interest to the 

application at the moment. Caching an event in the 

edge also gives the event a chance to be a part of all the 

optimizations at the edge and the beneath, which might 

also improve the energy savings of the sensors 

corresponding to the cached event. 

 

5.2.1 Potential Reason for High Latency 
 

AFCA-1 right now cares only about the cloud 

dimension with a constraint on the edge resources and 

does not take into account the interest of cloud 

applications on a particular event and the expectations 

of the applications on how fast event evaluations need 

to be done. When events are considered for caching at 

the edge by AFCA-1 without any prioritization (based 

on applications’ interests and expectations) among 

them, there’s a possibility that an event which is of 

more interest to the application or whose evaluation 

should not take more time, not getting cached at the 

edge, as the edge resources might already be exhausted 

with other cached application fragments, each of which 

might not be of use to any application at that moment. 

Similar to how the order in which the branches are 

evaluated in an ERT is important in shortcut 

evaluation, the order in which events are considered by 

AFCA-1 for caching at the edge is important, so that 

the lower layers are totally application aware. Also, 

without prioritization among events in AFCA-1, AAAS 

is only partially application aware because it is based 

on the range of values of a particular sensor on which 

cloud applications work. However, AAAS is not aware 

if some application is actually interested in that 

particular sensor’s value in the first place, at that point 

in time. Hence, AFCA-1 needs to include a 

prioritization model for events, and try to cache events 

to the edge in the order given by the model. 

 

5.3  Optimization Problems 
 

Latency optimization can be looked in two ways. First, 

there could be a single constraint on the system saying 

any event evaluation request made by any cloud 

application should not suffer a latency more than a 

certain threshold, say 𝐾 time units. The optimization 

problem would be to minimize the threshold 𝐾. 

Second, every event could be associated with a real-

time constraint on the latency, which implies the 

expectation of applications on how fast the event’s 

evaluation is to be done and the optimization problem 

would be to satisfy the maximum possible number of 

such constraints. This work aims to address the second 

type of latency optimization problem. 

 

6 EVENT PRIORITIZATION MODEL 
 

As suggested in the previous section, an event 

prioritization model needs to be included in AFCA-1 to 

optimize latency in the system. This section discusses 

in detail one such model we propose. The three key 

parameters involved in the model are (see Listing 1): 

Listing 1: Three key parameters of event 

prioritization model 

(1) Event Evaluation Rate, 𝑅𝑒𝑟(𝐸) 

(2) Latency Threshold, 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) 

(3) Event Value Change Rate, 𝑅𝑣𝑐(𝐸) 
 

𝑅𝑒𝑟(𝐸) implies how fast evaluation requests for an 

event 𝐸 comes from the cloud applications. This is a 

direct measure of how excited the applications are 

about 𝐸. 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) is assigned by the applications to 

each event. This parameter is a measure of the 

expectation of applications on how fast the evaluation 

of 𝐸 needs to be completed. 𝑅𝑣𝑐(𝐸) measures how fast 

the value of an event changes and how often selective 

pushes to the cloud could happen if 𝐸 is cached at the 

edge. 

Based on 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸), the set of all events can be split 

into two broad categories namely critical and non-

critical events. If 𝑇(𝐸), as defined by equation (4), of 

an event 𝐸 is greater than 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) at any point in 

time, the latency constraint on the event can be 

satisfied only by caching 𝐸, or some or all of the sub-

events of 𝐸 to the edge, thereby reducing the latency. 

Such events are called critical events. Events for which 

𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) is greater than 𝑇(𝐸) already satisfy the 

latency constraint. Such events are called non-critical 

events. Also, based on 𝑅𝑒𝑟(𝐸), events could be broadly 

categorized into “Hot events” and “Cold events” 

depending on if 𝑅𝑒𝑟(𝐸) is greater or lesser than a 

constant 𝑅𝑒𝑟
𝑡ℎ𝑟𝑒𝑠, respectively. 𝑅𝑒𝑟

𝑡ℎ𝑟𝑒𝑠 is a common 

constant across any event belonging to any cloud 

application. Based on the combination of both these 

factors, events are classified into the following four 

categories (see Listing 2). 
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Listing 2: Four event categories 

(1) Critical and Hot 

(2) Critical and Cold 

(3) Hot and Non-critical 

(4) Cold and Non-critical 

 

Caching category 1 and 2 events to the edge would 

result in achieving the latency optimization goal and 

caching category 3 events would result in a better user 

experience.  

 

6.1  Application Fragments Redundancy 

Problem 
 

Every cloud application is a combination of events. 

There is a possibility that multiple applications work on 

some common subset of events. However, each 

application has its own copy of every event it works on 

and this leads to redundant events in the CAR. This can 

be visualized as two ERTs from two different cloud 

applications, each having its own copy of a common 

subtree. In the current CEB implementation, this 

problem is not addressed and there is a possibility that 

two exactly same events from different ERTs of 

different applications redundantly getting cached at the 

edge, which is not an efficient way of utilizing edge 

resources. Hence, there needs to be a single unique 

view of every event in the cloud which is what AFCA-

1 should be looking at.  

Redundant application fragment/event is also 

problematic because the notion of criticality/latency 

threshold of the same redundant event might differ for 

different applications. Thus, for the same event 𝐸, one 

application might assign a latency threshold of say 

10ms and another application might assign a latency 

threshold of 1s. Once there is a single unique view of 

every event, it becomes easy to define latency 

constraints on the events. For instance, the minimum of 

all the latency thresholds assigned for an event by all 

the cloud applications accessing it, would be the 

latency threshold of that event. Similarly, the event 

evaluation request rate of any event would be the sum 

of all the event evaluation request rates on that event by 

all the applications accessing it. 

 

6.2  Energy Latency Trade-off 
 

Caching an event to the edge reduces the latency 

involved in its evaluation. This could also potentially 

save sensor energy because of the lower layer 

optimizations acting on the cached event. However, 

there is a scenario where caching an event to the edge 

might deplete sensor energy faster than the scenario 

when the event is not cached at the edge. If 𝑅𝑣𝑐(𝐸) is 

much higher than 𝑅𝑒𝑟(𝐸), and if 𝐸 is cached at the 

edge, the rate at which sampling of sensors associated 

with 𝐸 is done and the rate at which selective pushes 

happen to the cloud from the edge might be much 

higher than 𝑅𝑒𝑟(𝐸). However, had 𝐸 not been cached 

at the edge, the rate of sampling of sensors associated 

with 𝐸 would be equal to 𝑅𝑒𝑟(𝐸), which might be 

much lesser than the rate of sampling (and hence 

sensor energy depletion) in the former scenario. More 

formally, let 𝐶𝑒𝑔𝑦
1 (𝐸), as given by (5), denote the 

overall energy spent per unit time in evaluating 𝐸, 

when 𝐸 is cached at the edge by AFCA-1.  

In Equation (5), 𝛼4 is the energy spent in 

communication (selective push) from edge to cloud, 

𝑃𝑛𝑠(𝑒𝑎) is the probability of shortcut not happening at 

event 𝑒𝑎, 𝛽(𝑒𝑎) is the actual energy spent in the 

sampling, done for evaluating atomic event 𝑒𝑎, and 𝛼2 

is the energy spent in communication of sampled value 

from beneath to the edge. 

 

𝐶𝑒𝑔𝑦
1 (𝐸) = (𝑅𝑣𝑐(𝐸) × 𝛼4

+ ∑ 𝑃𝑛𝑠(𝑒𝑎) × 𝑅𝑣𝑐(𝑒𝑎)

∀ 𝑎𝑡𝑜𝑚𝑖𝑐 𝑒𝑣𝑒𝑛𝑡
𝑒𝑎∈𝐸

× (𝛽(𝑒𝑎) + 𝛼2) 

 

(5) 

 

If 𝐸 is not cached at the edge by AFCA-1, the cost 

is given by 

 

𝐶𝑒𝑔𝑦
2 (𝐸) = 𝑅𝑒𝑟(𝐸)

× ∑ 𝛽(𝑒𝑎)
∀ 𝑎𝑡𝑜𝑚𝑖𝑐 𝑒𝑣𝑒𝑛𝑡

𝑒𝑎∈𝐸

+ (𝛼1 + 𝛼2 + 𝛼3 + 𝛼4) 

 

(6) 

 

Here, 𝛼1 is the energy spent in communication from 

edge to beneath and 𝛼3 is the energy spent in 

communication from cloud to edge. 

The benefit of caching 𝐸 to edge is given by 

 

𝐵𝑒𝑐(𝐸) = 𝐶𝑒𝑔𝑦
2 (𝐸) − 𝐶𝑒𝑔𝑦

1 (𝐸) (7) 

  

If 𝐵𝑒𝑐(𝐸) is greater than 0, then caching 𝐸 to the edge 

saves sensor energy and if 𝐵𝑒𝑐(𝐸) is less than 0, not 

caching 𝐸 to the edge would result in better sensor 

energy saving. Thus, we could see that sensor energy 

could be saved by not caching certain events to the 

edge. However, not caching 𝐸 to edge increases the 

latency involved in the evaluation of 𝐸. Thus, there 

exists a clear trade-off between energy savings and 

latency. This trade-off should also be taken into 

account when caching events from the cloud to edge. 
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6.3  Model 
 

The key factors to consider while prioritizing events 

are their criticality (critical or non-critical), 

applications’ interest (Hot or Cold), the scalability 

benefit obtained on caching them to the edge, given by 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) [21], and the energy benefit obtained by 

caching them to the edge, given by 𝐵𝑒𝑐(𝐸). The steps 

involved in the prioritization are as follows. 

1. Start with an empty event list 𝐸𝐿. 

2. Add all the critical events (category 1 and 2) sorted 

in decreasing order of 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) to 𝐸𝐿.  

3. Add all the Hot and Non-critical events (category 3) 

with 𝐵𝑒𝑐(𝐸) > 0, sorted in decreasing order of 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) to 𝐸𝐿. 

4. Add all the remaining events (category 4) with 

𝐵𝑒𝑐(𝐸) > 0, sorted in decreasing order of 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) to 𝐸𝐿. 

5. Consider events for caching to the edge in the order 

given by 𝐸𝐿. 

Category 2 events are given more priority than 

category 3 events by this model to maximize the 

number of events whose latency constraints are 

satisfied, which is the goal of our optimization. The 

improved AFCA-1, which is called PAFCA to better 

optimize latency, is given below. 

 

Prioritized Application Fragment Caching Algorithm 

1.  Initialize 𝐸𝐿, 𝐶𝐿, 𝑅𝐿, 𝑇𝐿  to ɸ 

2.  for every event 𝐸 in CAR 

3.  if 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) − 𝑇(𝐸) ≥ 0 

4.    add 𝐸 to 𝐶𝐿 

5.  end for 

6.  sort events of 𝐶𝐿 in decreasing order of 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) 

7.  add events of 𝐶𝐿 to 𝐸𝐿 in the sorted order 

8.   for every event 𝐸 not in 𝐸𝐿 

9.   if 𝑅𝑒𝑟(𝐸) > 𝑅𝑒𝑟
𝑡ℎ𝑟𝑒𝑠 and 𝐵𝑒𝑐(𝐸) > 0 

10.      add 𝐸 to 𝑅𝐿 

11. end for 

12. sort events of 𝑅𝐿 in decreasing order of 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) 

13. add events of 𝑅𝐿 to 𝐸𝐿 in the sorted order 

14. for every event 𝐸 not in 𝐸𝐿 

15.    if 𝐵𝑒𝑐(𝐸) > 0 

16.       add 𝐸 to 𝑇𝐿 

17. end for 

18. sort events of 𝑇𝐿 in decreasing order of 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) 

19. add events of 𝑇𝐿 to 𝐸𝐿 in the sorted order 

20. for every event 𝐸 in 𝐸𝐿, construct its ERT 𝑇 

21.    Partition 𝑇 into areas (based on edges) 

22.     for each area 𝐴 in 𝑇 

23.       𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 = 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑉2(𝐴, 𝐸) 

24.       send 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 to edge, wait for the response; 

25.       receive the events approved to cache from edge; 

26.    end for 

27. end for 

The 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑉2() method at line 23 of the 

algorithm is an extension of 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡() [21] 

method of AFCA-1. 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡() selects events to 

obtain maximal total scalability 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 [21] of 

selected events and also makes sure that at most one 

event from each branch of the ERT is chosen. 

𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑉2() filters out some of the events from 

those selected by 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡(). For a critical event 

𝐸𝑐, only those events in 𝐸𝑐’s subtree that have an 

evaluation time greater than 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸𝑐) need to be 

cached in order to satisfy the latency constraint of 𝐸𝑐. 

On the other hand, for a non-critical event 𝐸𝑛𝑐, any 

event in 𝐸𝑛𝑐’s subtree with 𝐵𝑒𝑐 < 0 should not be 

cached as that would result in greater sensor energy 

loss. The algorithm implementing the above-mentioned 

steps is given below. 

 

EventSelectV2(Area 𝑨, Event 𝑬) Algorithm 
 

1.  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡 = 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡(𝐴) 

2.  if 𝐸 is critical 

3.   for every event 𝐸𝑖 in 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡 

4.      if 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) − 𝑇(𝐸𝑖) ≤ 0 

5.         add 𝐸𝑖 to 𝑓𝑖𝑛𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡 

6.     end for 

7.  else 

8.     for every event 𝐸𝑖 in 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡  

9.      if 𝐵𝑒𝑐(𝐸𝑖) > 0 

10.        add 𝐸𝑖 to 𝑓𝑖𝑛𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡 

11.   end for 

12. return 𝑓𝑖𝑛𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡 
 

 
7 EXPERIMENTAL EVALUATION 

 
The goals of our experiments were to validate how 

PAFCA proves to be an efficient solution to the stated 

latency optimization problem, and to show how 

reactive and dynamic the algorithm is, when events are 

accessed at varying rates by the cloud applications. 

Real-timeliness of responses is very important for 

critical and real-time tasks, and the responsiveness of 

any IoT application is the key for improving user 

experience and possibly user satisfaction. Extending 

the algorithm to optimize latency, we also made sure 

that we did not lose much on the scalability benefit 

obtained with AFCA-1 on place, at least for a practical 

proportion of critical events in the event set. The trade-

off between improving cloud scalability (major goal of 

AFCA-1) and latency optimization (major goal of 

PAFCA) is also presented in this section. 

 Our experiments were based on a simulated set of 

about 99,400 events and 100 edges, with their 

properties set to match the real-world events and edge 

computers well, respectively. AFCA-1 and PAFCA 

were simultaneously executed on the simulated event 
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set and several metrics like the number of critical 

events cached, latency in evaluating “Hot Events”, the 

overall scalability benefit obtained by both algorithms 

were extracted and compared, after every execution 

cycle of both algorithms, to validate the effectiveness 

of PAFCA. 

 The simulated event set consisted of atomic events 

(no child) and events with 1 to 4 children, with their 

ERTs having up to 15 levels. Experiments were done 

on multiple such sets, each having a different number 

of atomic events, and different number of composite 

events at multiple levels. For any event 𝐸 cached at the 

edge, the time taken to retrieve its value from its 

corresponding shadow service at ACM was modeled 

with a discrete probability function. The probability of 

the memory region being unavailable during retrieval 

of a cached event’s value was set to be 0.05. The other 

case was the memory region being available during 

retrieval and the probability of that was set as 0.95. The 

evaluation time for atomic events, 𝑇𝑒𝑎(𝐸), as given by 

Equation (2) was modeled as a normal distribution 

around a mean (300ms) with a standard deviation of 

20ms. 

The time taken to evaluate composite events was 

calculated using the recursive formulation given by 

Equation (3). The expected evaluation times of events 

𝐿𝑡ℎ𝑟𝑒𝑠(𝐸), that are fixed by the cloud applications were 

modeled as a uniform distribution within a fixed range 

of time values. The number of CPU cycles required to 

evaluate an atomic event 𝐸 was also modeled using a 

normal distribution. Also, the number of CPU cycles 

required to evaluate a composite event 𝐸 was 

calculated as the sum of the number of CPU cycles 

required to evaluate all of 𝐸’s children recursively 

because of our assumption that evaluation of child 

events happen in parallel. In order to model the event 

value change rate 𝑅𝑣𝑐(𝐸), we used the PLCouple1 

dataset collected from PlaceLab [11] to learn how 

frequently the sensor values change and used that 

information to model 𝑅𝑣𝑐(𝐸) for all the atomic events. 

For every composite event 𝐸, 𝑅𝑣𝑐(𝐸) was calculated as 

the maximum event value change rate of all the 

children of 𝐸. 

 With the events simulated and their properties 

modeled as mentioned above, we ran an instance of 

AFCA-1, an instance of PAFCA and an instance of an 

event evaluation request simulator on three different 

threads. The request simulator was designed to pick 

events at random and simulate event evaluation 

requests from cloud applications, thereby changing 

𝑅𝑒𝑟(𝐸), for every picked event. As 𝑅𝑒𝑟(𝐸) becomes 

 

 

 

 high for certain events, we could see that PAFCA 

detects this and tries caching those events to the edge to 

improve the responsiveness of the application. 

 

7.1  Experiment 1 
 

The goal of this experiment was to compare the amount 

of critical events whose latency constraints as set by 

the cloud applications, were satisfied. 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) for 

every event 𝐸, was modeled as a uniform distribution 

with a lower limit close to the minimum evaluation 

time of all atomic events. The upper limit of the 

distribution was assigned a much higher value than the 

maximum evaluation time of all events, and was 

decreased at regular intervals, until it became equal to 

the lower limit. For each {lower limit, upper limit} pair, 

𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) was generated for all the events and AFCA-1 

and PAFCA were simultaneously executed. As the 

upper limit of the distribution decreased, the number of 

critical events increased and PAFCA prioritized the 

critical events while caching events to edge. This 

resulted in a decrease in the evaluation times of the 

edge cached events such that their latency constraints 

were satisfied.  

The result of performing this experiment with edge 

computers being Dell Latitude E6520 is shown in 

Figure 2. We could see that the amount of satisfied 

critical events with PAFCA is always greater than that 

with AFCA-1. When the number of critical events was 

10% of the total events, PAFCA satisfied about 4.5% 

more critical events than AFCA-1, and when the 

amount was 20% PAFCA satisfied about 9% more 

critical events than AFCA-1. Figure 3 shows the results 

of the same experiment but done with a different edge 

computer (Raspberry Pi). The memory capacity of the 

edge was set to be 256MB and the processor speed was 

700MHz. As the edge resources are very limited, the 

number of satisfied critical events is significantly 

lower. 

Figure 4 shows the results of the experiment done 

with the upper limit of the distribution mentioned 

above, set to a value lower than the minimum of 

𝑇𝑒𝑎(𝐸) of all the atomic events. The lower limit was set 

to 0. All the events in the event set were critical with 

this setting. As we could see, when all the events were 

set with 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) = 0, no latency constraint could be 

satisfied by both AFCA-1 and PAFCA as it is 

impossible to achieve a response time of 0ms even with 

caching. As the upper limit on 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) increases, 

PAFCA could satisfy up to 97.37% of critical events 

while AFCA-1 satisfied up to 52.03% of critical events. 

 

 



 

 
 

 

A. Balasubramanian, S. Helal, Y. Xu: Latency Optimization in Large-Scale Cloud-Sensor Systems   
 

 
27 

 

 

Figure 2: Comparison of number of critical events 

satisfied with Dell Latitude E6520 as Edge node 

 

Figure 3: Comparison of amount of critical events 

satisfied with Raspberry Pi as Edge node 

7.2  Experiment 2 

 
The goal of this experiment was to compare the 

evaluation times of “hot events” under AFCA-1 and 

PAFCA and understand how PAFCA dynamically 

caches events that are of most interest to cloud 

applications at the moment, in an attempt to improve 

the responsiveness of the cloud applications. The event 

evaluation request simulator was implemented in such 

a way to figure out events that are not cached by both 

AFCA-1 and PAFCA and simulate application requests 

on those events, which would increase 𝑅𝑒𝑟(𝐸) of those 

events.  When  𝑅𝑒𝑟(𝐸)  >  𝑅𝑒𝑟
𝑡ℎ𝑟𝑒𝑠,  we  could  see  that  

 

Figure 4: Comparison of amount of critical events 

satisfied with all events critical 

 

Figure 5: Comparison of 𝑻(𝑬) of Hot Events which 

is key to the responsiveness of cloud applications  

PAFCA would cache it while AFCA-1 would be 

unaware of that. Figure 5 shows the results of the 

experiment. The lowest possible latency in our 

experiment was 7ms, which is the time needed to fetch 

an event’s value from its corresponding shadow service 

at the cloud and give it to the cloud application. 
 

7.3  Experiment 3 
 

The goal of this experiment was to compare the 

scalability benefit obtained by AFCA-1 and PAFCA in 

caching events to edge. The setup for this experiment 

was the same as the one for the Experiment 1. The 

results of the experiment are shown in Figure 6. 
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Figure 6: Comparison of scalability benefit with 

Dell Latitude E6520 as edge node  

It could be seen that regardless of the number of 

critical events, the sum of scalability benefit 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) of all events cached at edge servers is the 

same for AFCA-1 and is the optimum. However, 

because PAFCA follows a greedy strategy with event 

prioritization, critical events that have negative 

scalability benefit also gets cached at the edge 

decreasing the overall sum. We could see that if the 

percentage of critical events is up to 5% of the total 

events (about 5000 events in our case), the scalability 

benefit obtained by PAFCA is up to 3.5% less than that 

obtained by AFCA-1. If the percentage of critical 

events is 10%, scalability benefit given by PAFCA is 

about 8% less than that obtained with AFCA-1. When 

the number of critical events increases to 20%, the 

scalability benefit decreases by 16%.  

The reason for this drop is the greedy strategy of 

PAFCA which tries to satisfy critical events first even 

if that would decrease the overall scalability benefit. 

However, from a practical standpoint, assuming that 

the number of critical events would be less than 20% of 

the total events looks fair. Figure 7 shows the results of 

the same experiment with the edge computer being 

Raspberry Pi with the memory capacity of 256MB and 

processing speed of 700MHz. It could be seen that as 

the edge computers become saturated and has no more 

space or processing power to allow further caching, 

critical events with negative scalability benefit do not 

get cached at the edge and the sum of scalability 

benefit given by PAFCA becomes as good as AFCA-1 

when the number of critical events is more than 50% of 

the total number of events. 
 

 

Figure 7: Comparison of scalability benefit with 

Raspberry Pi as edge node  

8 CONCLUSION AND FUTURE WORK 
 

Latency is a major challenge for any cloud-sensor 

system or Internet of Things application. Our work 

gave a formal definition and formulation of latency 

inherent in event evaluation for any event-driven 

application model, and proposed an extension of the 

AFCA-1 optimization algorithm of our CEB 

architecture to include latency in its optimization goals 

and equations. The results of our simulation 

experiments prove the effectiveness of PAFCA in 

handling Critical and Hot events (as defined in this 

paper). Our ongoing and future work is focused on 

improving the scalability benefit obtained with 

PAFCA, even with a high number of critical events. 

We are also designing mobile sensor and device 

support and optimization in CEB, in which a device 

may change the edge it belongs to dynamically. 
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