

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

18

Latency Optimization in

Large-Scale Cloud-Sensor Systems

Adhithya Balasubramanian A, Sumi Helal B, Yi Xu C

A University of Florida, CISE department, Gainesville, FL 32611, USA, adhithyab@ufl.edu

B Lancaster University, School of Computing and Communication, Bailrigg, Lancaster LA1 4YW, UK,

s.helal@lancaster.ac.uk
C Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA, yix@google.com

ABSTRACT

With the advent of the Internet of Things and smart city applications, massive cyber-physical interactions between

the applications hosted in the cloud and a huge number of external physical sensors and devices is an inevitable

situation. This raises two main challenges: cloud cost affordability as the smart city grows (referred to as

economical cloud scalability) and the energy-efficient operation of sensor hardware. We have developed Cloud-

Edge-Beneath (CEB), a multi-tier architecture for large-scale IoT deployments, embodying distributed

optimizations, which address these two major challenges. In this article, we summarize our prior work on CEB to

set context for presenting a third major challenge for cloud sensor-systems, which is latency. Prolonged latency

can potentially arise in servicing requests from cloud applications, especially given our primary focus on

optimizing energy and cloud scalability. Latency, however, is an important factor to optimize for real-time and

cyber-physical applications with limited tolerance to delays. Also, improving the responsiveness of any IoT

application is bound to improve the user experience and hence the acceptability and adoption of smart city

solutions by the city citizens. In this article, we aim to give a formal definition and formulation for the latency

optimization problem under CEB. We propose a Prioritized Application Fragment Caching Algorithm (PAFCA) to

selectively cache application fragments from the cloud to lower layers of CEB, as a key measure to optimize

latency. The algorithm itself is an extension of one of the existing optimization algorithms of CEB (AFCA-1). As

will be shown, PAFCA takes into account the expectations of cloud applications on real-timeliness of responses.

Through experiments, we measure and validate the effect of PAFCA on latency and cloud scalability. We also

introduce and discuss the trade-off between latency and sensor energy in this given context.

TYPE OF PAPER AND KEYWORDS

Regular research paper: cloud-sensor systems, latency optimization, application caching, cloud scalability

1 INTRODUCTION

As the smart city concept proliferates into a massive

scale, smart city applications are bound to be pushed to

the cloud where they can be hosted and executed. This

is not only due to the cloud’s economies of scale but

also because numerous stakeholders will demand

access to sensor data and the services (applications),

which is difficult to achieve without a neutral and a

common platform like the cloud. But connecting

 Open Access

Open Journal of Internet of Things (OJIOT)

Volume 3, Issue 1, 2017

www.ronpub.com/ojiot

ISSN 2364-7108

This paper is accepted at the International Workshop on Very

Large Internet of Things (VLIoT 2017) in conjunction with the

VLDB 2017 Conference in Munich, Germany. The proceedings

of VLIoT@VLDB 2017 are published in the Open Journal of

Internet of Things (OJIOT) as special issue.

© 2017 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

A. Balasubramanian, S. Helal, Y. Xu: Latency Optimization in Large-Scale Cloud-Sensor Systems

19

hundreds of millions of sensors and devices directly to

the cloud is bound to result in massive traffic and

unbounded use of cloud resources. Utilizing edge

computing and connecting devices to the cloud through

edge computers have been shown to be a promising

approach to manage growth in the smart city and to

achieve economical scalability of the cloud, by slowing

down its elasticity rate as more devices and

applications are deployed [22]. We have developed the

cloud-edge-beneath (CEB) architecture to address the

economical scalability challenge and to minimize the

energy used by the sensors and devices.

CEB embodied a distributed optimization

framework deployed at all three layers of the

architecture. Four optimization algorithms in CEB have

been designed to minimize movements of application

requests down to the sensors, and movements of data

updates from the sensors up to the applications. Also,

sensor sampling is minimized and a new guiding

principle which we call sentience efficiency is applied.

In a nutshell, sentience efficiency refers to the extent

that data sampled from sensors and moved up or made

available to applications is actually necessary to the

proper execution of the application. In other words, a

sentient efficient cloud-sensor system is one that

cleverly avoids any unnecessary sensing. To implement

our optimization algorithms which we will briefly

summarize in this paper, we introduced a bi-directional

waterfall optimization framework that coordinates the

interplay among the four algorithms, and that correlates

application characteristic dynamics with data change

dynamics, again to minimize all movements. While our

prior work focused on energy savings in the beneath

layer and the cloud economical scalability in the cloud

layer, it left latency and real-timeliness unaddressed.

In this paper, we extend our CEB optimization

approach to address latency, and to continue to

optimize cloud scalability and sensor energy use under

deadline constraints. We formally capture time and

deadlines into the architecture and introduce a new,

fifth algorithm that aims to bridge the gap between our

prior optimization goals and its potential latency side

effect.

2 STRUCTURE OF ARTICLE

This paper is organized as follows. Section 3 gives an

overview of the CEB architecture, states the challenges

that are addressed, and briefly discusses the distributed

optimization framework of CEB. Section 4 presents the

important related works. Section 5 formally defines and

formalizes latency in CEB and analyzes the potential

causes for high latency inherent in the architecture. It

also discusses the different possible latency

optimization problems and states the ones addressed in

this paper. Section 6 proposes a solution to the chosen

latency optimization problem, discusses the trade-off

between latency and sensor energy and presents the

proposed algorithm. Section 7 evaluates the

effectiveness of the proposed algorithm and shows the

trade-off between cloud scalability and latency through

simulation experiments. Conclusion and future work

are presented in section 8.

3 BACKGROUND

In this section, we briefly describe our prior work on

Cloud-Edge-Beneath (CEB) architecture whose

understanding is required for our proposed work in this

article to be clearly explained. CEB is a three-tier

architecture and a framework for deploying and

managing cloud-sensor systems whose applications are

programmed, hosted and run on the cloud [22]. The

architecture is intended to enable an ecosystem for

developing and deploying smart city applications in the

cloud. Figure 1 shows an abstracted high level view of

the architecture. The beneath layer refers to the

sensors/devices and their sensor platforms which are

low power computing and communication platforms,

connecting related sensors (e.g., belonging to same

geographical area, organization or an authority) to a

corresponding edge. Edge layer groups related sensors

and connects them to the cloud. Deploying and

powering up devices under CEB makes the devices

automatically externalized and represented in the cloud

as software services. This “externalization” concept

introduced by CEB has panned out to other emerging

architectures such as the ARM mbed [1] in which

device cloud services can be generated as RESTful

services.

Automatic externalization immediately enables

developers to program and deploy smart city

applications in a practical fashion that decouples

physical device deployment from application

development. CEB is built on top of Atlas [7], which is

an implementation of the Service Oriented Device

Architecture (SODA) model [5]. For every beneath

device connected to an Atlas node, a corresponding

basic service is automatically created on the edge. And

for every basic edge service, there exists a

corresponding replica basic service created also

automatically on the cloud, and managed by an

instance of the Atlas Cloud Middleware (ACM) at the

cloud layer. ACM acts as a cloud gateway to the edge.

It hosts all cloud sensor service bundles passed from

the edge and provisions them (and makes them

accessible) to developers with permissions as services

ready to be subscribed to, by other cloud services and

applications.

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

20

Figure 1: Overview of CEB Architecture

Sensor based services and applications are

developed, deployed and run in a container called

Cloud Application Runtime (CAR) at the cloud layer.

Both the edge and the cloud layers use the Open

Services Gateway Initiative - OSGi [13] as their basis

to provide service registration, discovery, activation

and configuration. The current implementation of CEB

is based on an event driven application model called E-

SODA [22], where the applications do not only utilize

raw sensor data, but are also able to tune to specific

events ranging from simple to complex events. We

describe E-SODA briefly in section 3.2.

3.1 Challenges Addressed

The two key challenges that have been addressed by

CEB are the cloud scalability challenge and the sensor

energy challenge. We first discuss cloud scalability.

Extensive interactions between sensors and cloud

services could pose a challenge on the scalability of the

cloud. In a smart city scenario, with millions of sensors

requiring ‘cloud attention’ for every duty cycle, there

would be billions of interactions every day which

requires tremendous processing power, memory and

huge incoming/outgoing cloud traffic, leading to a

heavy draw on the costly cloud elasticity. Given the

existing use based price models, the cloud would

become too expensive as the economies of scale per

sensor will not stand. This will be a major show

stopper given that smart cities’ main motivation is

bridging supply and demand in face of increased

urbanization and decline of resources and budget to

spend per capita. So it would not make any sense to

spend unbounded amount of money on cloud services

monthly while trying to meet ends and bridge gaps!

CEB has been architected to slow down cloud elasticity

in face of growing demands of applications or

expanding instrumentation of the smart city. CEB

utilize optimizing algorithms to lean back on and

exploit power-unconstrained edge servers and even

beneath nodes to tackle some of the work, which

effectively contains elasticity and enhances cloud

economic scalability.

The second key challenge is maintaining the energy

constraints of the sensor devices. Most of the sensors

are generally battery powered, and this makes them

vulnerable to power drainage. In a smart city scenario,

a sensor may be queried by hundreds of applications,

each requiring continuous evaluation of events based

on sensor readings. This could lead to continuous

sampling of the sensors. Without optimizations, the

energy of the sensors might deplete rapidly, rendering

them unreliable and unavailable. We have addressed

this challenge by several optimization algorithms

coordinated via a bi-directional waterfall optimization

framework [20], which essentially renders a distributed

optimization occurring at each layer of CEB. The same

framework is used as the context in which our

proposed latency optimization algorithm is

coordinated, and hence, we briefly explain this

framework first in the next section.

3.2 Bi-Directional Waterfall Optimization

In CEB, cloud applications request data from the

physical layer which reaches the cloud through the

edge layer. In our Bi-directional waterfall optimization

framework [20], in addition to data being cached up

from beneath to the edge and ultimately to the cloud,

“application fragments” are also cached down from the

cloud to the edge and even beneath, opening up a

number of optimization opportunities. Application

caching requires that the application model is

inherently divisible (that is, an app can be divided into

communicating parts easily). Pub/Sub, Event-driven

and functional programming based application models

are inherently divisible. CEB utilizes an event-driven

model known as E-SODA which enables the concept of

application fragment caching.

Under E-SODA, a complex event (cloud

application) could be diced into a number of smaller

complex events each represented by an Event

Representation Tree (ERT), which can be cached at the

lower layers. Caching an application fragment means

caching a subtree of events from an ERT. A cached

event is evaluated at the layer it is cached to and its

event value is pushed back to its upper layers only

when the value changes from its previous state. This is

called ‘selective push’. For any event cached to a lower

layer, a ‘shadow event’ is created to act as a proxy of

the cached event at the upper layers. This shadow event

receives the selective push messages from the layer

A. Balasubramanian, S. Helal, Y. Xu: Latency Optimization in Large-Scale Cloud-Sensor Systems

21

below it. The edge is of strategic importance here,

because it has a view of both the data and the

application domains and could potentially analyze how

the data and applications interplay. This enables

powerful optimizations which take the sensor data and

the cloud applications as inputs to the optimization

equation, thereby addressing the two key challenges

mentioned above. The four optimization algorithms

implemented at the three layers of CEB are briefly

described below and their interplay explained.

Cloud-to-Edge Application Fragment Caching

Algorithm (AFCA-1) [21] – cloud scalability: AFCA-1

selects application fragments (ERTs) from the cloud to

cache at the edge layer to address the cloud scalability

challenge and at the same time, staying within the

limitations of the resources in edge servers (memory

and processing power). Edge servers are not elastic as

cloud.

Shortcut Evaluation and Branch Permutation

Algorithm (BPA) [19] – saving sensor energy: In

processing the application fragments cached at the edge

layer, shortcut evaluation can be utilized when a subset

of sensor data is sufficient to derive the occurrence of

an event, saving the sensor power due to the skipped

sensor samplings. For example, consider an event A,

represented as an ERT, which is evaluated as A = B

AND C, where B and C are two other ERTs (children

or subtrees of A) and the value of A is calculated by

performing a Boolean AND operation on its children B

and C. If the value of B is known to be 0, then there is

no necessity to evaluate and calculate C’s value to

determine the value of A. Branch permutation

algorithm does exactly this and prunes ERTs if the

occurrence of those events could be figured out without

looking at the events that are not yet explored. Had the

same equation been A = C AND B, and B is more likely

to be 0, it would be better if we evaluated B first which

might shortcut C’s evaluation. Thus, the order in which

children are evaluated is the key to enable more

shortcuts and hence improve sensor energy savings.

BPA permutes the branches of the ERT affecting the

order of sensor sampling and sub-event evaluation to

enhance the chances of shortcuts happening.

Application-Aware Adaptive Sampling Algorithm

(AAAS) [19] – saving sensor energy: Atomic events

are the events which are directly associated with the

sensors and immediately evaluated from the sensor

readings (the most primitive application fragment).

These events are at the leaves of any ERT. Atomic

events could be cached at the beneath layer to save

more sensor energy. For every atomic event cached at

the beneath, AAAS algorithm uses ARMA (Auto-

Regressive Moving Average) model [18] to predict

sensor data and skip subsequent samplings, if the

predicted value is close to the sampled value. However,

there should be a limit on the number of samplings

skipped and AAAS uses a modified version of the

algorithm proposed in [4], bringing in some

characteristics from the cloud applications to fix the

maximum skip limit and better optimize sensor energy.

Edge-to-Beneath Application Fragment Caching

Algorithm (AFCA-2) [19] – saving sensor energy:

AFCA-2 selects the atomic events to cache at the

beneath layer to achieve more optimized energy

efficiency of the sensor nodes. Atomic events when

cached at the beneath layer, would miss out on the

energy savings happening because of shortcuts during

the evaluation of ERTs at the edge. AFCA-2 calculates

the overall benefit that could be obtained by caching an

atomic event to the beneath but potentially missing out

on savings because of shortcuts. If the calculated

benefit is greater than a certain threshold, AFCA-2

caches the atomic event at the beneath and does not

cache it otherwise.

4 RELATED WORKS

Several research projects focused on minimizing

network latency in cloud based systems. One of the

most significant work is the cloudlet approach by

Satyanarayanan et al [16], in which the cloud is

brought closer to the applications/mobile devices (one

hop away) by introducing a new architectural element

called cloudlet in the three-tier hierarchy: mobile

device – cloudlet – cloud. In contrast to the cloudlet

approach, in our cloud-sensor systems approach, the

applications are on the cloud and the edge is used to

bring the physical world (sensors and devices) closer to

the cloud. In CEB, edge is used to either bring the

physical world closer to the cloud or cache application

fragments down closer to the physical world.

A power and latency aware optimum cloudlet

selection strategy was proposed by Mukherjee et al

[12] for multi-cloudlet environment. A computation

model combining the characteristics of fog computing

[3] [17] and in-cooperating Complex Event Processing

(CEP) [14] at the edge of the network, to achieve low

latency and real-time responses that cloud applications

demand, was proposed by Madumal et al [9]. A

mathematical model of fog computing which assesses

the applicability of fog computing in Internet of Things

to meet the demands of latency-sensitive applications

running at network-edge, was proposed by Sarkar et al

[15]. It also showed that as the number of latency

sensitive applications increase, fog computing

outperforms cloud computing. A service oriented

network architecture named Application Assist

Network (AAN), with an adaptive network cache

algorithm achieving lower response times than the

traditional caching algorithms was proposed by Matoba

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

22

et al [10]. To effectively manage data latency, [8]

provided a framework for a responsive data

architecture (RDA), based on patterns seen in real IoT

projects that leverage the public cloud.

AirBox – a performant and scalable edge service

platform that can execute functionality onloaded on

behalf of remote, cloud-based services, in order to

address the bandwidth use and latency requirements of

device-cloud interactions was proposed by Bhardwaj et

al [2]. Unlike AirBox, where edge can directly handle

application requests, in CEB all the application

requests are addressed by the cloud. Zhang et al [23]

introduced Mobile Edge Computing (MEC) into 5G

architecture and evaluated the network end-to-end

latency. Low-latency services with a requirement not

smaller than 17ms are supported by MEC. Drolia et al

[6] discussed about leveraging spatio-temporal context

at the edge to dynamically create caches in edge

servers and across mobile devices to decrease latency

for vision-based applications. In this article, we model

latency inherent in evaluating events in an event-driven

application model and propose a greedy optimization

algorithm within CEB to minimize latency.

5 LATENCY FORMULATION AND

OPTIMIZATION

The time elapsed from the moment an application

places an event evaluation request to the cloud

application runtime (CAR) until the moment it gets

back a response from the CAR, is defined as the

latency involved with the request. As we mentioned

before, the current implementation of CEB with bi-

directional waterfall optimization framework has not

considered latency optimization (minimization) as one

of its key challenges. This section formulates and

analyzes the latency under CEB as defined above and

explains the potential reasons for high latency in the

existing implementation of CEB. The section also

introduces the two ways to think about latency

optimization, and the type of latency optimization

problem that this work aims to address.

Since selective push is employed when an event is

cached at the edge, the event’s value is pushed into the

cloud from edge, only when it changes from its

previous value. This means that any point in time, the

cloud layer has the most updated value of the cached

event. Thus, when an application requests the value of

a cached event, it can directly be given the value from

the shadow event service in the ACM. No request

needs to be passed to the edge layer or the beneath and

no sampling needs to be done to service the request.

When an atomic event is not cached by AFCA-1 at

the edge, it is not cached at the beneath as well. This is

because, AFCA-2 chooses atomic events to cache at

the beneath, only from the set of events that are already

present in the edge. Every event evaluation request of a

non-cached atomic event at the cloud layer, results in a

sampling of the sensor corresponding to that atomic

event.

5.1 Formulation

Let 𝑇𝑒𝑐(𝐸) denote the time taken to evaluate an event 𝐸

already cached in the edge, whose cloud event service

is denoted as 𝐸𝑆(𝐸).

𝑇𝑒𝑐(𝐸) = 𝑇𝐶𝐴𝑅
𝐴𝐶𝑀 + 𝑐𝑝𝑢_𝑡(𝐸𝑆(𝐸)𝑠ℎ𝑎𝑑𝑜𝑤) + 𝑇𝐴𝐶𝑀

𝐶𝐴𝑅 (1)

Here, 𝑐𝑝𝑢_𝑡(𝐸𝑆(𝐸)𝑠ℎ𝑎𝑑𝑜𝑤) represents the time taken
to fetch the event’s value from the shadow event
service corresponding to the cloud event service
𝐸𝑆(𝐸). 𝑇𝑥

𝑦
 denotes the time taken to send a request or

response from ′𝑥′ to ‘𝑦′ (communication time).

 The time taken to evaluate an atomic event not

cached at the edge, denoted by 𝑇𝑒𝑎(𝐸), is given by the

following equation:

𝑇𝑒𝑎(𝐸) = (𝑇𝐶𝐴𝑅

𝐴𝐶𝑀 + 𝑇𝐴𝐶𝑀
𝐸𝑑𝑔𝑒

+ 𝑇𝐸𝑑𝑔𝑒
𝐵𝑒𝑛𝑒𝑎𝑡ℎ) × 2

+ 𝑇𝑠𝑎𝑚𝑝𝑙𝑒(𝐸)
(2)

Here, 𝑇𝑠𝑎𝑚𝑝𝑙𝑒(𝐸) denotes the time taken to sample the

sensor corresponding to the atomic event 𝐸. The time

taken to evaluate any non-atomic event is given by the

maximum time taken to evaluate each of the children

of that event, assuming parallel evaluations of child

events. Let 𝑆𝐶(𝐸) denote the set of all child events of

event 𝐸. The time taken to evaluate an event 𝐸 in

general, denoted by 𝑇𝑒(𝐸), is given by the following

recurrence:

𝑇𝑒(𝐸)

= {

𝑇𝑒𝑐(𝐸), 𝑖𝑓 𝐸 𝑖𝑠 𝑐𝑎𝑐ℎ𝑒𝑑

𝑇𝑒𝑎(𝐸), 𝑖𝑓 𝐸 𝑖𝑠 𝑎𝑡𝑜𝑚𝑖𝑐, 𝑛𝑜𝑡 𝑐𝑎𝑐ℎ𝑒𝑑

𝑐𝑝𝑢_𝑡(𝐸𝑆(𝐸)) + max(𝑇𝑒(𝐸𝑖 ∈ 𝑆𝐶(𝐸))), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

The overall latency for any event evaluation request

is formulated as follows:

𝑇(𝐸) = 𝑇𝐴𝑝𝑝

𝐶𝐴𝑅 + 𝑇𝑒(𝐸) + 𝑇𝐶𝐴𝑅
𝐴𝑝𝑝

 (4)

Here, 𝑇𝐴𝑝𝑝
𝐶𝐴𝑅 is the time taken for the evaluation request

to reach CAR from a cloud application and 𝑇𝐶𝐴𝑅
𝐴𝑝𝑝

 is the

time taken to send back the response from CAR to the

cloud application after event evaluation which takes

𝑇𝑒(𝐸) time.

A. Balasubramanian, S. Helal, Y. Xu: Latency Optimization in Large-Scale Cloud-Sensor Systems

23

5.2 Analysis of Latency

In order to minimize latency, 𝑇𝑒(𝐸) has to be

minimized. Observed latency is least when 𝐸 is cached

at the edge. In this case, the most recently updated

value of the event from the cloud shadow event service

is directly given to the application. Also, it is the

maximum when no atomic event in the ERT of 𝐸 is

cached at the edge by AFCA-1, and the evaluation of

each of them results in a sampling of the corresponding

sensors. It could be seen that the latency directly

depends on whether AFCA-1 caches an event in the

edge or not. Hence, it must be made sure that AFCA-1

caches events that are of great interest to the

application at the moment. Caching an event in the

edge also gives the event a chance to be a part of all the

optimizations at the edge and the beneath, which might

also improve the energy savings of the sensors

corresponding to the cached event.

5.2.1 Potential Reason for High Latency

AFCA-1 right now cares only about the cloud

dimension with a constraint on the edge resources and

does not take into account the interest of cloud

applications on a particular event and the expectations

of the applications on how fast event evaluations need

to be done. When events are considered for caching at

the edge by AFCA-1 without any prioritization (based

on applications’ interests and expectations) among

them, there’s a possibility that an event which is of

more interest to the application or whose evaluation

should not take more time, not getting cached at the

edge, as the edge resources might already be exhausted

with other cached application fragments, each of which

might not be of use to any application at that moment.

Similar to how the order in which the branches are

evaluated in an ERT is important in shortcut

evaluation, the order in which events are considered by

AFCA-1 for caching at the edge is important, so that

the lower layers are totally application aware. Also,

without prioritization among events in AFCA-1, AAAS

is only partially application aware because it is based

on the range of values of a particular sensor on which

cloud applications work. However, AAAS is not aware

if some application is actually interested in that

particular sensor’s value in the first place, at that point

in time. Hence, AFCA-1 needs to include a

prioritization model for events, and try to cache events

to the edge in the order given by the model.

5.3 Optimization Problems

Latency optimization can be looked in two ways. First,

there could be a single constraint on the system saying

any event evaluation request made by any cloud

application should not suffer a latency more than a

certain threshold, say 𝐾 time units. The optimization

problem would be to minimize the threshold 𝐾.

Second, every event could be associated with a real-

time constraint on the latency, which implies the

expectation of applications on how fast the event’s

evaluation is to be done and the optimization problem

would be to satisfy the maximum possible number of

such constraints. This work aims to address the second

type of latency optimization problem.

6 EVENT PRIORITIZATION MODEL

As suggested in the previous section, an event

prioritization model needs to be included in AFCA-1 to

optimize latency in the system. This section discusses

in detail one such model we propose. The three key

parameters involved in the model are (see Listing 1):

Listing 1: Three key parameters of event

prioritization model

(1) Event Evaluation Rate, 𝑅𝑒𝑟(𝐸)

(2) Latency Threshold, 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸)

(3) Event Value Change Rate, 𝑅𝑣𝑐(𝐸)

𝑅𝑒𝑟(𝐸) implies how fast evaluation requests for an

event 𝐸 comes from the cloud applications. This is a

direct measure of how excited the applications are

about 𝐸. 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) is assigned by the applications to

each event. This parameter is a measure of the

expectation of applications on how fast the evaluation

of 𝐸 needs to be completed. 𝑅𝑣𝑐(𝐸) measures how fast

the value of an event changes and how often selective

pushes to the cloud could happen if 𝐸 is cached at the

edge.

Based on 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸), the set of all events can be split

into two broad categories namely critical and non-

critical events. If 𝑇(𝐸), as defined by equation (4), of

an event 𝐸 is greater than 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) at any point in

time, the latency constraint on the event can be

satisfied only by caching 𝐸, or some or all of the sub-

events of 𝐸 to the edge, thereby reducing the latency.

Such events are called critical events. Events for which

𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) is greater than 𝑇(𝐸) already satisfy the

latency constraint. Such events are called non-critical

events. Also, based on 𝑅𝑒𝑟(𝐸), events could be broadly

categorized into “Hot events” and “Cold events”

depending on if 𝑅𝑒𝑟(𝐸) is greater or lesser than a

constant 𝑅𝑒𝑟
𝑡ℎ𝑟𝑒𝑠, respectively. 𝑅𝑒𝑟

𝑡ℎ𝑟𝑒𝑠 is a common

constant across any event belonging to any cloud

application. Based on the combination of both these

factors, events are classified into the following four

categories (see Listing 2).

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

24

Listing 2: Four event categories

(1) Critical and Hot

(2) Critical and Cold

(3) Hot and Non-critical

(4) Cold and Non-critical

Caching category 1 and 2 events to the edge would

result in achieving the latency optimization goal and

caching category 3 events would result in a better user

experience.

6.1 Application Fragments Redundancy

Problem

Every cloud application is a combination of events.

There is a possibility that multiple applications work on

some common subset of events. However, each

application has its own copy of every event it works on

and this leads to redundant events in the CAR. This can

be visualized as two ERTs from two different cloud

applications, each having its own copy of a common

subtree. In the current CEB implementation, this

problem is not addressed and there is a possibility that

two exactly same events from different ERTs of

different applications redundantly getting cached at the

edge, which is not an efficient way of utilizing edge

resources. Hence, there needs to be a single unique

view of every event in the cloud which is what AFCA-

1 should be looking at.

Redundant application fragment/event is also

problematic because the notion of criticality/latency

threshold of the same redundant event might differ for

different applications. Thus, for the same event 𝐸, one

application might assign a latency threshold of say

10ms and another application might assign a latency

threshold of 1s. Once there is a single unique view of

every event, it becomes easy to define latency

constraints on the events. For instance, the minimum of

all the latency thresholds assigned for an event by all

the cloud applications accessing it, would be the

latency threshold of that event. Similarly, the event

evaluation request rate of any event would be the sum

of all the event evaluation request rates on that event by

all the applications accessing it.

6.2 Energy Latency Trade-off

Caching an event to the edge reduces the latency

involved in its evaluation. This could also potentially

save sensor energy because of the lower layer

optimizations acting on the cached event. However,

there is a scenario where caching an event to the edge

might deplete sensor energy faster than the scenario

when the event is not cached at the edge. If 𝑅𝑣𝑐(𝐸) is

much higher than 𝑅𝑒𝑟(𝐸), and if 𝐸 is cached at the

edge, the rate at which sampling of sensors associated

with 𝐸 is done and the rate at which selective pushes

happen to the cloud from the edge might be much

higher than 𝑅𝑒𝑟(𝐸). However, had 𝐸 not been cached

at the edge, the rate of sampling of sensors associated

with 𝐸 would be equal to 𝑅𝑒𝑟(𝐸), which might be

much lesser than the rate of sampling (and hence

sensor energy depletion) in the former scenario. More

formally, let 𝐶𝑒𝑔𝑦
1 (𝐸), as given by (5), denote the

overall energy spent per unit time in evaluating 𝐸,

when 𝐸 is cached at the edge by AFCA-1.

In Equation (5), 𝛼4 is the energy spent in

communication (selective push) from edge to cloud,

𝑃𝑛𝑠(𝑒𝑎) is the probability of shortcut not happening at

event 𝑒𝑎, 𝛽(𝑒𝑎) is the actual energy spent in the

sampling, done for evaluating atomic event 𝑒𝑎, and 𝛼2

is the energy spent in communication of sampled value

from beneath to the edge.

𝐶𝑒𝑔𝑦
1 (𝐸) = (𝑅𝑣𝑐(𝐸) × 𝛼4

+ ∑ 𝑃𝑛𝑠(𝑒𝑎) × 𝑅𝑣𝑐(𝑒𝑎)

∀ 𝑎𝑡𝑜𝑚𝑖𝑐 𝑒𝑣𝑒𝑛𝑡
𝑒𝑎∈𝐸

× (𝛽(𝑒𝑎) + 𝛼2)

(5)

If 𝐸 is not cached at the edge by AFCA-1, the cost

is given by

𝐶𝑒𝑔𝑦
2 (𝐸) = 𝑅𝑒𝑟(𝐸)

× ∑ 𝛽(𝑒𝑎)
∀ 𝑎𝑡𝑜𝑚𝑖𝑐 𝑒𝑣𝑒𝑛𝑡

𝑒𝑎∈𝐸

+ (𝛼1 + 𝛼2 + 𝛼3 + 𝛼4)

(6)

Here, 𝛼1 is the energy spent in communication from

edge to beneath and 𝛼3 is the energy spent in

communication from cloud to edge.

The benefit of caching 𝐸 to edge is given by

𝐵𝑒𝑐(𝐸) = 𝐶𝑒𝑔𝑦
2 (𝐸) − 𝐶𝑒𝑔𝑦

1 (𝐸) (7)

If 𝐵𝑒𝑐(𝐸) is greater than 0, then caching 𝐸 to the edge

saves sensor energy and if 𝐵𝑒𝑐(𝐸) is less than 0, not

caching 𝐸 to the edge would result in better sensor

energy saving. Thus, we could see that sensor energy

could be saved by not caching certain events to the

edge. However, not caching 𝐸 to edge increases the

latency involved in the evaluation of 𝐸. Thus, there

exists a clear trade-off between energy savings and

latency. This trade-off should also be taken into

account when caching events from the cloud to edge.

A. Balasubramanian, S. Helal, Y. Xu: Latency Optimization in Large-Scale Cloud-Sensor Systems

25

6.3 Model

The key factors to consider while prioritizing events

are their criticality (critical or non-critical),

applications’ interest (Hot or Cold), the scalability

benefit obtained on caching them to the edge, given by

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) [21], and the energy benefit obtained by

caching them to the edge, given by 𝐵𝑒𝑐(𝐸). The steps

involved in the prioritization are as follows.

1. Start with an empty event list 𝐸𝐿.

2. Add all the critical events (category 1 and 2) sorted

in decreasing order of 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) to 𝐸𝐿.

3. Add all the Hot and Non-critical events (category 3)

with 𝐵𝑒𝑐(𝐸) > 0, sorted in decreasing order of

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) to 𝐸𝐿.

4. Add all the remaining events (category 4) with

𝐵𝑒𝑐(𝐸) > 0, sorted in decreasing order of

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) to 𝐸𝐿.

5. Consider events for caching to the edge in the order

given by 𝐸𝐿.

Category 2 events are given more priority than

category 3 events by this model to maximize the

number of events whose latency constraints are

satisfied, which is the goal of our optimization. The

improved AFCA-1, which is called PAFCA to better

optimize latency, is given below.

Prioritized Application Fragment Caching Algorithm

1. Initialize 𝐸𝐿, 𝐶𝐿, 𝑅𝐿, 𝑇𝐿 to ɸ

2. for every event 𝐸 in CAR

3. if 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) − 𝑇(𝐸) ≥ 0

4. add 𝐸 to 𝐶𝐿

5. end for

6. sort events of 𝐶𝐿 in decreasing order of 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸)

7. add events of 𝐶𝐿 to 𝐸𝐿 in the sorted order

8. for every event 𝐸 not in 𝐸𝐿

9. if 𝑅𝑒𝑟(𝐸) > 𝑅𝑒𝑟
𝑡ℎ𝑟𝑒𝑠 and 𝐵𝑒𝑐(𝐸) > 0

10. add 𝐸 to 𝑅𝐿

11. end for

12. sort events of 𝑅𝐿 in decreasing order of 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸)

13. add events of 𝑅𝐿 to 𝐸𝐿 in the sorted order

14. for every event 𝐸 not in 𝐸𝐿

15. if 𝐵𝑒𝑐(𝐸) > 0

16. add 𝐸 to 𝑇𝐿

17. end for

18. sort events of 𝑇𝐿 in decreasing order of 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸)

19. add events of 𝑇𝐿 to 𝐸𝐿 in the sorted order

20. for every event 𝐸 in 𝐸𝐿, construct its ERT 𝑇

21. Partition 𝑇 into areas (based on edges)

22. for each area 𝐴 in 𝑇

23. 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 = 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑉2(𝐴, 𝐸)

24. send 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 to edge, wait for the response;

25. receive the events approved to cache from edge;

26. end for

27. end for

The 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑉2() method at line 23 of the

algorithm is an extension of 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡() [21]

method of AFCA-1. 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡() selects events to

obtain maximal total scalability 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 [21] of

selected events and also makes sure that at most one

event from each branch of the ERT is chosen.

𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑉2() filters out some of the events from

those selected by 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡(). For a critical event

𝐸𝑐, only those events in 𝐸𝑐’s subtree that have an

evaluation time greater than 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸𝑐) need to be

cached in order to satisfy the latency constraint of 𝐸𝑐.

On the other hand, for a non-critical event 𝐸𝑛𝑐, any

event in 𝐸𝑛𝑐’s subtree with 𝐵𝑒𝑐 < 0 should not be

cached as that would result in greater sensor energy

loss. The algorithm implementing the above-mentioned

steps is given below.

EventSelectV2(Area 𝑨, Event 𝑬) Algorithm

1. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡 = 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡(𝐴)

2. if 𝐸 is critical

3. for every event 𝐸𝑖 in 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡

4. if 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) − 𝑇(𝐸𝑖) ≤ 0

5. add 𝐸𝑖 to 𝑓𝑖𝑛𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡

6. end for

7. else

8. for every event 𝐸𝑖 in 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡

9. if 𝐵𝑒𝑐(𝐸𝑖) > 0

10. add 𝐸𝑖 to 𝑓𝑖𝑛𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡

11. end for

12. return 𝑓𝑖𝑛𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡

7 EXPERIMENTAL EVALUATION

The goals of our experiments were to validate how

PAFCA proves to be an efficient solution to the stated

latency optimization problem, and to show how

reactive and dynamic the algorithm is, when events are

accessed at varying rates by the cloud applications.

Real-timeliness of responses is very important for

critical and real-time tasks, and the responsiveness of

any IoT application is the key for improving user

experience and possibly user satisfaction. Extending

the algorithm to optimize latency, we also made sure

that we did not lose much on the scalability benefit

obtained with AFCA-1 on place, at least for a practical

proportion of critical events in the event set. The trade-

off between improving cloud scalability (major goal of

AFCA-1) and latency optimization (major goal of

PAFCA) is also presented in this section.

 Our experiments were based on a simulated set of

about 99,400 events and 100 edges, with their

properties set to match the real-world events and edge

computers well, respectively. AFCA-1 and PAFCA

were simultaneously executed on the simulated event

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

26

set and several metrics like the number of critical

events cached, latency in evaluating “Hot Events”, the

overall scalability benefit obtained by both algorithms

were extracted and compared, after every execution

cycle of both algorithms, to validate the effectiveness

of PAFCA.

 The simulated event set consisted of atomic events

(no child) and events with 1 to 4 children, with their

ERTs having up to 15 levels. Experiments were done

on multiple such sets, each having a different number

of atomic events, and different number of composite

events at multiple levels. For any event 𝐸 cached at the

edge, the time taken to retrieve its value from its

corresponding shadow service at ACM was modeled

with a discrete probability function. The probability of

the memory region being unavailable during retrieval

of a cached event’s value was set to be 0.05. The other

case was the memory region being available during

retrieval and the probability of that was set as 0.95. The

evaluation time for atomic events, 𝑇𝑒𝑎(𝐸), as given by

Equation (2) was modeled as a normal distribution

around a mean (300ms) with a standard deviation of

20ms.

The time taken to evaluate composite events was

calculated using the recursive formulation given by

Equation (3). The expected evaluation times of events

𝐿𝑡ℎ𝑟𝑒𝑠(𝐸), that are fixed by the cloud applications were

modeled as a uniform distribution within a fixed range

of time values. The number of CPU cycles required to

evaluate an atomic event 𝐸 was also modeled using a

normal distribution. Also, the number of CPU cycles

required to evaluate a composite event 𝐸 was

calculated as the sum of the number of CPU cycles

required to evaluate all of 𝐸’s children recursively

because of our assumption that evaluation of child

events happen in parallel. In order to model the event

value change rate 𝑅𝑣𝑐(𝐸), we used the PLCouple1

dataset collected from PlaceLab [11] to learn how

frequently the sensor values change and used that

information to model 𝑅𝑣𝑐(𝐸) for all the atomic events.

For every composite event 𝐸, 𝑅𝑣𝑐(𝐸) was calculated as

the maximum event value change rate of all the

children of 𝐸.

 With the events simulated and their properties

modeled as mentioned above, we ran an instance of

AFCA-1, an instance of PAFCA and an instance of an

event evaluation request simulator on three different

threads. The request simulator was designed to pick

events at random and simulate event evaluation

requests from cloud applications, thereby changing

𝑅𝑒𝑟(𝐸), for every picked event. As 𝑅𝑒𝑟(𝐸) becomes

 high for certain events, we could see that PAFCA

detects this and tries caching those events to the edge to

improve the responsiveness of the application.

7.1 Experiment 1

The goal of this experiment was to compare the amount

of critical events whose latency constraints as set by

the cloud applications, were satisfied. 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) for

every event 𝐸, was modeled as a uniform distribution

with a lower limit close to the minimum evaluation

time of all atomic events. The upper limit of the

distribution was assigned a much higher value than the

maximum evaluation time of all events, and was

decreased at regular intervals, until it became equal to

the lower limit. For each {lower limit, upper limit} pair,

𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) was generated for all the events and AFCA-1

and PAFCA were simultaneously executed. As the

upper limit of the distribution decreased, the number of

critical events increased and PAFCA prioritized the

critical events while caching events to edge. This

resulted in a decrease in the evaluation times of the

edge cached events such that their latency constraints

were satisfied.

The result of performing this experiment with edge

computers being Dell Latitude E6520 is shown in

Figure 2. We could see that the amount of satisfied

critical events with PAFCA is always greater than that

with AFCA-1. When the number of critical events was

10% of the total events, PAFCA satisfied about 4.5%

more critical events than AFCA-1, and when the

amount was 20% PAFCA satisfied about 9% more

critical events than AFCA-1. Figure 3 shows the results

of the same experiment but done with a different edge

computer (Raspberry Pi). The memory capacity of the

edge was set to be 256MB and the processor speed was

700MHz. As the edge resources are very limited, the

number of satisfied critical events is significantly

lower.

Figure 4 shows the results of the experiment done

with the upper limit of the distribution mentioned

above, set to a value lower than the minimum of

𝑇𝑒𝑎(𝐸) of all the atomic events. The lower limit was set

to 0. All the events in the event set were critical with

this setting. As we could see, when all the events were

set with 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) = 0, no latency constraint could be

satisfied by both AFCA-1 and PAFCA as it is

impossible to achieve a response time of 0ms even with

caching. As the upper limit on 𝐿𝑡ℎ𝑟𝑒𝑠(𝐸) increases,

PAFCA could satisfy up to 97.37% of critical events

while AFCA-1 satisfied up to 52.03% of critical events.

A. Balasubramanian, S. Helal, Y. Xu: Latency Optimization in Large-Scale Cloud-Sensor Systems

27

Figure 2: Comparison of number of critical events

satisfied with Dell Latitude E6520 as Edge node

Figure 3: Comparison of amount of critical events

satisfied with Raspberry Pi as Edge node

7.2 Experiment 2

The goal of this experiment was to compare the

evaluation times of “hot events” under AFCA-1 and

PAFCA and understand how PAFCA dynamically

caches events that are of most interest to cloud

applications at the moment, in an attempt to improve

the responsiveness of the cloud applications. The event

evaluation request simulator was implemented in such

a way to figure out events that are not cached by both

AFCA-1 and PAFCA and simulate application requests

on those events, which would increase 𝑅𝑒𝑟(𝐸) of those

events. When 𝑅𝑒𝑟(𝐸) > 𝑅𝑒𝑟
𝑡ℎ𝑟𝑒𝑠, we could see that

Figure 4: Comparison of amount of critical events

satisfied with all events critical

Figure 5: Comparison of 𝑻(𝑬) of Hot Events which

is key to the responsiveness of cloud applications

PAFCA would cache it while AFCA-1 would be

unaware of that. Figure 5 shows the results of the

experiment. The lowest possible latency in our

experiment was 7ms, which is the time needed to fetch

an event’s value from its corresponding shadow service

at the cloud and give it to the cloud application.

7.3 Experiment 3

The goal of this experiment was to compare the

scalability benefit obtained by AFCA-1 and PAFCA in

caching events to edge. The setup for this experiment

was the same as the one for the Experiment 1. The

results of the experiment are shown in Figure 6.

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

28

Figure 6: Comparison of scalability benefit with

Dell Latitude E6520 as edge node

It could be seen that regardless of the number of

critical events, the sum of scalability benefit

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐸) of all events cached at edge servers is the

same for AFCA-1 and is the optimum. However,

because PAFCA follows a greedy strategy with event

prioritization, critical events that have negative

scalability benefit also gets cached at the edge

decreasing the overall sum. We could see that if the

percentage of critical events is up to 5% of the total

events (about 5000 events in our case), the scalability

benefit obtained by PAFCA is up to 3.5% less than that

obtained by AFCA-1. If the percentage of critical

events is 10%, scalability benefit given by PAFCA is

about 8% less than that obtained with AFCA-1. When

the number of critical events increases to 20%, the

scalability benefit decreases by 16%.

The reason for this drop is the greedy strategy of

PAFCA which tries to satisfy critical events first even

if that would decrease the overall scalability benefit.

However, from a practical standpoint, assuming that

the number of critical events would be less than 20% of

the total events looks fair. Figure 7 shows the results of

the same experiment with the edge computer being

Raspberry Pi with the memory capacity of 256MB and

processing speed of 700MHz. It could be seen that as

the edge computers become saturated and has no more

space or processing power to allow further caching,

critical events with negative scalability benefit do not

get cached at the edge and the sum of scalability

benefit given by PAFCA becomes as good as AFCA-1

when the number of critical events is more than 50% of

the total number of events.

Figure 7: Comparison of scalability benefit with

Raspberry Pi as edge node

8 CONCLUSION AND FUTURE WORK

Latency is a major challenge for any cloud-sensor

system or Internet of Things application. Our work

gave a formal definition and formulation of latency

inherent in event evaluation for any event-driven

application model, and proposed an extension of the

AFCA-1 optimization algorithm of our CEB

architecture to include latency in its optimization goals

and equations. The results of our simulation

experiments prove the effectiveness of PAFCA in

handling Critical and Hot events (as defined in this

paper). Our ongoing and future work is focused on

improving the scalability benefit obtained with

PAFCA, even with a high number of critical events.

We are also designing mobile sensor and device

support and optimization in CEB, in which a device

may change the edge it belongs to dynamically.

REFERENCES

[1] ARM mbed, “Stack Architecture,”

https://docs.mbed.com/docs/arm-ipv66lowpan-

stack/en/latest/02_N_arch/, accessed: 16th

November 2016.

[2] K. Bhardwaj, M. W. Shih, P. Agarwal, A.

Gavrilovska, T. Kim and K. Schwan, "Fast,

Scalable and Secure Onloading of Edge Functions

Using AirBox", in Proceedings of IEEE/ACM

Symposium on Edge Computing (SEC),

Washington, DC, pp. 14-27, 2016.

A. Balasubramanian, S. Helal, Y. Xu: Latency Optimization in Large-Scale Cloud-Sensor Systems

29

[3] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, "Fog

Computing and Its Role in the Internet of

Things", in Proceedings of first Ed. MCC Work.

Mob. cloud Comput., pp. 13-16, 2012.

[4] S. Chatterjea and P. Havinga, “An Adaptive and

Autonomous Sensor Sampling Frequency Control

Scheme for Energy-Efficient Data Acquisition in

Wireless Sensor Networks,” in Proceedings of

DCOSS’08, Santorini, Greece, pp. 60-78, Jun.

2008.

[5] S. de Deugd, R. Carroll, K. Kelly, B. Millett and

J. Ricker, "SODA: Service Oriented Device

Architecture," IEEE Pervasive Computing, vol. 5,

no. 3, pp. 94-96, 2006.

[6] U. Drolia, K. Guo, R. Gandhi and P. Narasimhan,

"Poster Abstract: Edge-Caches for Vision

Applications," in Proceedings of IEEE/ACM

Symposium on Edge Computing (SEC),

Washington, DC, pp. 91-92, 2016.

[7] J. King, R. Bose, H. i. Yang, S. Pickles and A.

Helal, "Atlas: A Service-Oriented Sensor

Platform: Hardware and Middleware to Enable

Programmable Pervasive Spaces," in Proceedings

of 31st IEEE Conference on Local Computer

Networks, Tampa, FL, pp. 630-638, 2006.

[8] D. Linthicum, "Responsive Data Architecture for

the Internet of Things," Computer, vol. 49, no. 10,

pp. 72-75, Oct. 2016.

[9] M. B. A. P. Madumal, D. A. S. Atukorale and T.

M. H. A. Usoof, "Adaptive Event Tree-Based

Hybrid CEP Computational Model for Fog

computing Architecture," in Proceedings of

Sixteenth International Conference on Advances

in ICT for Emerging Regions (ICTer), Negombo,

pp. 5-12, 2016.

[10] K. Matoba, K. i. Abiru and T. Ishihara, "Service

Oriented Network Architecture for Scalable M2M

and Sensor Network Services," in Proceedings of

15th International Conference on Intelligence in

Next Generation Networks, Berlin, pp. 35-40,

2011.

[11] MIT, “PlaceLab Datasets,” http://web.mit.edu/

cron/group/house_n/data/PlaceLab/PlaceLab.htm,

accessed: 23 December 2016.

[12] A. Mukherjee, D. De and D. Guha Roy, "A Power

and Latency Aware Cloudlet Selection Strategy

for Multi-Cloudlet Environment," IEEE

Transactions on Cloud Computing, vol. PP, no.

99, pp.1-1, July. 2016.

[13] OSGi Alliance, “Open Services Gateway

Initiative (OSGi) 4.2 Specification,”

http://www.osgi.org/Download/Release4V42,

accessed: 15 September 2016.

[14] D. Robins, "Complex Event Processing", in

Proceedings of Second International Workshop

on Education Technology and Computer Science,

pp. 10, 2010.

[15] S. Sarkar, S. Chatterjee and S. Misra,

"Assessment of the Suitability of Fog Computing

in the Context of Internet of Things," IEEE

Transactions on Cloud Computing, vol. PP, no.

99, pp. 1-1, October 2015.

[16] M. Satyanarayanan, P. Bahl, R. Caceres and N.

Davies, "The Case for VM-Based Cloudlets in

Mobile Computing," IEEE Pervasive Computing,

vol. 8, no. 4, pp. 14-23, 2009.

[17] I. Stojmenovic, "Fog computing: A cloud to the

Ground Support for Smart Things and Machine-

to-Machine Networks," in Proceedings of

Australasian Telecommunication Networks and

Applications Conference (ATNAC), Southbank,

VIC, pp. 117-122, 2014.

[18] Wikipedia, “ARIMA,” http://en.wikipedia.org/

wiki/Arima, accessed: 12th October 2016.

[19] Y. Xu “Architecture and Optimization for Cloud-

Sensor Systems,” Ph.D. Dissertation, University

of Florida, 2014.

[20] Y. Xu and S. Helal, "An Optimization Framework

for Cloud-Sensor Systems," in Proceedings of

IEEE 6th International Conference on Cloud

Computing Technology and Science, Singapore,

pp. 38-45, 2014.

[21] Y. Xu and A. Helal, “Application Caching for

Cloud-Sensor Systems,” in Proceedings of ACM

MSWIM’14, Montreal, Canada, pp. 303-306,

2014.

[22] Y. Xu and A. Helal, "Scalable Cloud–Sensor

Architecture for the Internet of Things," IEEE

Internet of Things Journal, vol. 3, no. 3, pp. 285-

298, June 2016.

[23] J. Zhang, W. Xie, F. Yang and Q. Bi, "Mobile

Edge Computing and Field Trial Results for 5G

Low Latency Scenario," China Communications,

vol. 13, no. Supplement 2, pp. 174-182, 2016.

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

30

AUTHOR BIOGRAPHIES

Adhithya Balasubramanian
is a Masters Student in the

department of Computer

Science at University of

Florida, Gainesville, FL, USA,

where he works as a Research

Assistant at the Mobile and

Pervasive Computing Lab. His

research interests span cloud-

sensor systems, internet of

things, mobile computing, distributed systems and

energy-aware computing.

Sumi Helal (Fellow 15)

received the Ph.D. degree in

computer sciences from Purdue

University, West Lafayette, IN,

USA. He is currently the chair

professor in digital health at

Lancaster University, UK.

Before joining LU, he was a

Professor of Computer Science

and Engineering at University of Florida, USA, and the

Director of its Mobile and Pervasive Computing

Laboratory. His research interests span pervasive and

mobile computing, internet of things, smart spaces, and

smart health and well-being.

Yi Xu received the Ph.D.

degree in computer science

from University of Florida,

Gainesville, FL, USA, where

he worked at Mobile and

Pervasive Computing

Laboratory. He is currently

working for Google, Mountain

View. His research interests

span pervasive & mobile

computing, programming

models and middleware for cloud-sensor systems and

the internet of things.

