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ABSTRACT

This paper proposes using only the streaming accelerometer data from a commodity-based smartwatch (IoT) device
to detect falls. The smartwatch is paired with a smartphone as a means for performing the computation necessary
for the prediction of falls in realtime without incurring latency in communicating with a cloud server while also
preserving data privacy. The majority of current fall detection applications require specially designed hardware and
software which make them expensive and inaccessible to the general public. Moreover, a fall detection application
that uses a wrist worn smartwatch for data collection has the added benefit that it can be perceived as a piece
of jewelry and thus non-intrusive. We experimented with both Support Vector Machine and Naive Bayes machine
learning algorithms for the creation of the fall model. We demonstrated that by adjusting the sampling frequency
of the streaming data, computing acceleration features over a sliding window, and using a Naive Bayes machine
learning model, we can obtain the true positive rate of fall detection in real-world setting with 93.33% accuracy.
Our result demonstrated that using a commodity-based smartwatch sensor can yield fall detection results that are
competitive with those of custom made expensive sensors.
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1 INTRODUCTION

Internet of Things (IoT) is a domain that represents the
next most exciting technological revolution since the
Internet. IoT will bring endless opportunities and impact
every corner of our planet. In the healthcare domain,
IoT promises to bring personalized health tracking

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2018) in conjunction with the
VLDB 2018 Conference in Rio de Janeiro, Brazil. The proceedings
of VLIoT@VLDB 2018 are published in the Open Journal of
Internet of Things (OJIOT) as special issue.

and monitoring ever closer to the consumers. This
phenomena is evidenced in a recent Wall Street Journal
(June, 29, 2015) article entitled ”Staying Connected
is Crucial to Staying Healthy”. Modern smartphones
and related devices now contain more sensors than ever
before. Data from sensors can be collected more easily
and more accurately. In 2014, it is estimated that 46
million people are using IoT-based health and fitness
applications.

Currently, the predominant IoT-based health
applications are in sports and fitness. However, disease
management or preventive care health applications are
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becoming more prevalent. For example, the real-time
preventive care applications such as those for detecting
falls in elderly patients is one of the active research
areas due to the aging population [14]. Previous work
in fall detection required specialized hardware and
software which is expensive to maintain. In [2], the
authors reviewed 57 projects that used wearable devices
to detect falls in elderly. However, only 7.1 % of the
projects reported testing their models in real-world
setting. The same paper also pointed out that a wearable
wrist watch for fall detection has the added benefit of
being non-intrusive and not incurring any additional
injuries during a fall. Indeed, the main challenge for
fall detection is the ability to create a highly accurate
detection model that can run on unobtrusive and
inexpensive devices.

We designed a set of robust experiments to collect fall
data, mainly acceleration, from volunteers and created a
fall detection model using the Support Vector Machine
(SVM) and Naive Bayes machine learning algorithms.
Among them, Naives Bayes achieved the accuracy of
93.3% which beats the best accuracy reported in the
literature [2] of 81% for wrist worn devices based on
real-world falls testing. By wearing a smartwatch, the
well being of an elderly person living alone can be
monitored remotely and responded to in real-time. As
noted in the literature, a significant danger with falling
in elderly adults is the inability to get up after the fall,
which is reported to occur in 30% of the time. The
detection of the fall and the ability of sending a text
message and a GPS location to a trusted family member,
friend, or call 911 in real-time ensure a better survival or
improved care of the subject after a fall.

The main contributions of the paper are:

• A demonstration that the fall detection model
trained using Naive Bayes machine learning
algorithm has better sensitivity than the model
trained using Support Vector Machine in predicting
falls based on live wrist worn acceleration data.

• A streamlined methodology for collecting
simulated fall data from volunteers and an
application for labeling the collected streaming
data automatically and in real-time.

• A two steps approach for classifying fall data
on a sequence basis. Step one consists of
applying a trained fall model in a computationally
efficient manner over streaming accelerometer data
within a preset sliding window size to predict
each instance of fall data. Step two counts the
number of consecutive predicted fall instances
within an interval. A fall is predicted if the
consecutive number of positively predicted fall

instances lie within a pre-determined range which
can be calibrated on an individual basis.

• A three layers IoT system architecture that is
privacy preserving and computational efficient for
edge computing.

The remainder of this paper is organized as follows. In
section 2, we present the current work on fall detection
and emphasize on research works that specifically
address fall detection using wearable devices. In
section 3, we provide a detailed description of the system
architecture of our fall detection framework. In section 4,
we outline the methodology we used to collect training
data for fall detection and present the two steps approach
for the fall prediction algorithm. In section 5, we discuss
the evaluation of both SVM and the Naive Bayes models
and finally in section 6, we present our conclusion and
future work.

2 RELATED WORK AND BACKGROUND

The World Health Organization (WHO) reported that
28%-35% of people aged 65 and above fall each year.
This rate increases to 32%-42% for those over 70 years
of age. Thus, a great deal of research has been conducted
on fall detection and prevention. The early works in this
area were concentrated on specially built hardware that
a person could wear or installed in a specific facility.
The fall detection devices in general try to detect a
change in body orientation from upright to lying that
occurs immediately after a large negative acceleration to
signal a fall. Those early wearable devices are not well
accepted by elderly people because of its intrusiveness
and limited mobility.

However, modern smartphones and related devices
now contain more sensors than ever before. Data from
those devices can be collected more easily and more
accurately with the increase in the computing power
of those devices. Smartphones are also widespread
and widely used daily by people of all ages. There is
thus a dramatic increase in the research on smartphone-
based fall detection and prevention in the last few
years. This is highlighted in the survey paper [7].
The smartphone-based fall detection solutions in general
collect accelerometer, gyroscope and magnetometer data
for fall detection. Among the collected sensor data, the
accelerometer is the most widely used. The collected
sensor data were analyzed using two broad type of
algorithms. The first is the threshold-based algorithm
which is less complex and requires less computation
power. The second is the machine learning based fall
detection solutions. We will review both type of works
below.
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A threshold-based algorithm using a trunk mounted
bi-axial gyroscope sensor is described in [1]. Ten young
healthy male subjects performed simulated falls and the
bi-axial gyroscope signals were recorded during each
simulated-fall. Each subject performed three identical
sets of 8 different falls. Eight elderly persons were also
recruited to perform Activity of Daily Life (ADL) that
could be mistaken for falls such as sitting down, standing
up, walking, getting in and out of the car, lying down
and standing up from bed. The paper showed that by
setting three thresholds that relate to the resultant angular
velocity, angular acceleration, and change in trunk angle
signals, a 100% specificity was obtained. However, there
was no discussion on the practicality of attaching a trunk
mounted sensor on a person for a prolonged period of
time. The restriction on the mobility of people and the
privacy issue of data storage were not discussed as well.

There are also research work utilizing a thresholding
technique set to only detect falls greater than 6G
(Gravity). While this will work extremely well for
“hard” falls, we find that many of our falls were far
below 6G and is more around 3.5G. A wrist mounted
device may encounter even smaller force than 3.5G if
the subject does not always use hands to stop his/her
fall. This type of fall is of special note because an
injury is more likely as the fall was not “caught” by
the faller’s hands. This is one of the reasons machine
learning approaches are considered more robust than
thresholding techniques. Even though in controlled
conditions thresholding techniques may appear to be
superior, they often do not perform well on anomalous
data, such as falls that only reach a maximum force of
3.5G.

A promising use of machine learning algorithms is
recently presented by John Guirry in [5] for classifying
ADLs with 93.45% accuracy using SVM and 94.6%
accuracy using C4.5 decision trees. These ADLs
include: running, walking, going up and down stairs,
sitting and standing up. Their setup include a Samsung
Nexus Galaxy smartphone and the Motorola Moto Actv
smartwatch. Data was collected from the accelerometer,
magnetometer, gyroscope, barometer, GPS, and light
sensors. They synthesized a total of 21 features from
all the sensors. They did not specifically address the fall
detection.

Support Vector Machine (SVM) learning algorithm
has also been used for fall detection by other scholars
in [12]. These scholars used a trunk-mounted tri-axial
sensor (a specialized hardware) to collect data. They
were able to achieve 99.14% accuracy with four features
using only high-pass and low-pass accelerometer data.
They used a 0.1 second sliding window to record
minimum and maximum directional acceleration in that
time period for a feature. We drew inspiration from

this approach as it allowed us to access temporal
data within each sampling point rather than having to
choose a generalized feature for the whole duration
which might not reflect a true fall. Other work in
fall detection has focused on using multiple sensors
attached to the subject. For instance sensors can be
placed on the lapel, trunk, ankle, pocket, and wrist.
These systems typically show marvelous results of 100%
accuracy but lack convenience, portability, and are more
computationally intense for a smartphone due to more
data being collected and processed.

In summary, many different machine learning
algorithms such as the SVM, Naive Bayes, KNN,
Decision trees, and Neural networks have been applied
to fall detection with some success. However, very few
of those models have been tested in the real world setting
and on a wrist watch. Recently, an Android Wear-based
fall detection application called RightMiinder (http:
//www.rightminder.com) is released on Google
Play. While the goal of RightMinder is very similar to
ours, no technical details are available on the accuracy
of the fall detection model and the management of the
collected sensor data.

3 SYSTEM ARCHITECTURE

The Microsoft Band 2 was chosen as the wrist worn
device over other options due to its superior list of
sensors. While most wrist worn health devices today
have accelerometers, such as the Apple and Pebble
smartwatches, the Microsoft Band 2 has the capability to
also track heart rate, galvanic skin response, barometric
pressure, skin temperature, UV ray intensity, GPS
location, skin capacitance, ambient light, sound, and,
of course, it has an accelerometer and gyroscope.
The Microsoft Band 2 also has multiple sampling rate
options.

The Nexus 5X smartphone is chosen to run our
fall detection IoT application and received sensor
data from the smartwatch via a low-power bluetooth
communication protocol. This Nexus smartphone has a
1.8GHz hexa-core processor and 2 gigabytes of RAM.
This proved sufficient for real time computation of the
features, and for making the predictions. Figure 1 shows
an overview of the IoT system architecture. It is a
three layered architecture with the smartwatch on the
edge and the smartphone in the middle layer which runs
the various IoT services. In our application, those IoT
services are the data collection, the fall detection, data
archiving, and the alert services.

In many IoT applications, it is critical that data can
be stored locally to preserve privacy and is in close
proximity to the program that processes and analyzes
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Figure 1: Architecture of our fall detection IoT system

the data in real-time. However, the smartphone has
a limited storage capacity and there is thus a need to
periodically remove the sensed data or transfer the sensor
data (with consent from user) to a cloud server securely
for continuous refinement of the fall detection model
and for the long term archival. The inner most layer
serves as the cloud platform which consists of multiple
services including a web server to host applications that
can visualize aggregated sensor data for public health
education, a sensor database for archiving sensed data
from the smartwatch of the user who has given the
consent, and machine learning services for analysis of
the archived data for continuous refinement of the fall
detection model.

We have implemented an archiving service which
can be configured with a protocol where a participating
user’s smartphone (with consent) will transmit both
false positive and true positive fall predication data
via a REST-based web service periodically to a cloud
platform. These data samples can be used for re-
training of the fall model and adapt the fall detection
dynamically for a particular user. This three layer IoT
system architecture is not specific for developing the fall
detection IoT application. We have successfully used
the same architecture for developing an IoT application
for the prediction of blood alcohol content using the
skin temperature and heart rate sensor data in [6].
In summary, this architecture has the potential to be

developed into a scalable service platform for IoT data
for all kinds of devices and the associated applications.

When a fall has been detected by the application on
the smartphone, an alert text message can be sent to the
caretaker upon confirmation by the user (via voice on
Google Home or Amazon Alexa or pressing a button
on the app on the smartphone if the user is not nearby
a voice device) or the message can be configured to
be sent automatically after a specified duration if no
confirmation is received. The alert service could include
the user’s GPS location and other health metrics, such as
the heart rate and body temperature at the time of the fall.

4 METHODOLOGY

Our initial method of collecting simulated fall data was
labour intensive and had the danger of missing some
critical fall signals. In that approach, the accelerometer
data was collected via a smartwatch through the data
collection service we developed that runs on an Android
phone. The data was collected at the sampling frequency
of 250 ms. A stopwatch was used to record the time
stamp of each fall activity from the recruited volunteer as
it occurred so that the fall data can be manually labelled
afterwards by synchronizing stopwatch’s time with the
recorded timestamp on the data point. This labelling was
obviously very time consuming.

Furthermore, we found that the data sampling
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Figure 2: Fall patterns with 250 ms and 32 ms sampling frequency

frequency of 250 ms missed too many critical fall signals
within the critical phase of a fall, which explains partly
the low accuracy rate of 44.7% we obtained with real-
world simulated falls using the SVM model trained with
this dataset. On the other hand, the use of the lowest
sampling frequency of 16 ms provided by the watch
was flooding the application with too much data and
incurred a high computation cost which is impractical
for real-time prediction of falls. Figure 2 depicts fall
data collected using sampling frequency of 250 ms
verses 32 ms. It is clear from this visualization of
the accelerometer data that fall data collected at 32ms
sampling rate has clearly separated fall signals with the
spikes. We thus revised the sampling frequency to 32
ms.

Beside making changes to the sampling frequency,
we also modified the data collection service to have
a button that, when pressed, labels data as ”Fall” and
otherwise ”NotFall”. This eliminated the laborious
manual labelling of the data. Data was labelled in real-
time as it was collected. Seven subjects of good health
with different heights and weights were recruited and

performed the falls and Activity of Daily Life (ADLs).
Their ages ranged from 21-55, height ranged from 5
ft to 6.5 ft. and the weight from 100 lbs to 230 lbs.
Each subject was told to wear the smartwatch on his/her
left hand and performed a pre-determined set of ADLs
consisting of: jogging, sitting down, throwing an object,
and waving their hands.

This initial set of ADLs was chosen based on the fact
there are common activities that involved movement of
the arms. These datasets were automatically labelled as
”NotFall”. We then asked the same subject to perform
four types of falls onto a 12 inch high mattress on the
floor; front, back, left, and right falls. Each subject
repeated each type of fall 10 times. A second person
was responsible for pressing the button on the data
collection service when the subject performed one of
the falls. Figure 3 shows the scene of a fall data
collection experiment. Since the pressing of the button
can introduce errors such as the button is being pressed
too late or too long for a fall activity, the first few
falls of each type performed by each subject is used as
trials. These falls were visualized and the timing of when
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Figure 3: Simulated fall data collection experiment

to press the button and when to release it, is adjusted
accordingly to only capture the critical phase of a fall.

We also implemented an R script that can streamline
the processing of the raw data collected from the
smartwatch into a format that can be used as the input
to various machine learning algorithms. The output
of this processing is a file where each record/instance
in the file has four features and a label of “Fall” or
“NOT Fall”. The four features are: 1) length of
the acceleration vector at the time of sampling (Ares),
2) minimum resultant acceleration in a 750ms sliding
window (Smin), 3) maximum resultant acceleration in
the same 750 ms sliding window (Smax), and 4) the
euclidean norm of the difference between maximum and
minimum acceleration in the same sliding window (∆S).
More detailed descriptions for the features along with
our methods for selecting them are further explained in
the next section.

4.1 Feature Selection

The determination of the four features mentioned in the
previous section that can be used for training a model
to recognize a fall was influenced by the concept of a
critical phase of a fall in [10] as well as by the Principle
Component Analysis (PCA) performed on raw fall data
we collected. The critical phase of a fall which, in
essence, encompasses the free-fall stage, the impact, and
the dampening oscillations to rest. Figure 4 shows what
we would expect to see from the definition of a normal
fall which is defined by the critical phase. Note the
height of the graph; the highest acceleration recorded for
this fall was a fairly reasonable 5.5G.

We can also see the dampening oscillations in
the latter half of the fall. However, because our
accelerometer is wrist mounted, not all falls follow this
pattern. Figure 5 shows a fall that has a reasonable
maximum acceleration (the peak), but almost completely

lacks the weightlessness portion we would expect. In
addition, the total time of this fall is roughly half of
that of the “normal” fall as shown in Figure 4. In
Figure 6, the overall fall pattern is similar but the scale is
completely different. The maximum acceleration never
exceeded 3G. These latter two examples may appear
to be anomalies but are actually extremely prevalent
especially for the left and right fall data we collected.

The variance in fall patterns is due to the
accelerometer’s varying orientation depending on
the specific fall (front, back, left, and right), as well as
the varying methods in which the arms are used, or are
not used, to catch a fall. This is another reason why we
believe the machine learning is superior to thresholding
technique when it comes to using a smartwatch for fall
detection. Since there could be many more patterns of
falls we have yet to encounter, the thresholding method
must be manually re-adjusted for each of these whereas
the machine learning method merely needs to train on
the new pattern of fall.

We used the Euclidean norm to measure the length
(magnitude) of acceleration and velocity vectors. That
is, for any vector ~r in R3, we used:

‖~r‖2 =
√
r2x + r2y + r2z (1)

The four features that we selected for fall detection
are Ares, ∆S, Smin, Smax, which are defined in the
following. Ares, resultant acceleration, is defined as the
magnitude of the acceleration vector at the start of a fall.
Using Equation 1, we defined:

Ares = ‖A‖2. (2)

∆S, adapted from Liu and Cheng’s paper in [12], is
the magnitude of the difference between minimum and
maximum acceleration in a 750 ms sliding window. That
is, using Equation 1, we defined:

∆S = ‖Smax − Smin‖2. (3)

where Smin and Smax adapted from Jantaraprim et. al’s
paper [10] are defined as the minimum and maximum
resultant acceleration in a sliding window of 750 ms. In
the original implementation by Jantaraprim et. al and Liu
and Cheng’s, the sliding window was designated to be
0.1 seconds. In the literature there is little consensus on
what sliding window size is optimal for the calculation
of Smin and Smax. 0.2 to 2 second windows have been
used but windows between about 0.5 and 1 second were
more common. When computing over streaming data,
the computation must accommodate data at the boundary
of a sliding window and thus it is important to set an
overlapping threshold. We chose a 750 ms window with
50% overlap because it encompasses longer than average
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Figure 4: Normal pattern of a fall
Figure 5: Fall without free fall
phase Figure 6: Shorter duration fall

falls and it covers the three common phases of a critical
fall which are pre-fall, falling, and post fall.

Our model is trained to predict fall on a sample by
sample basis, categorizing each sample as a fall or not a
fall. This method does not necessarily suit the nature
of the activities we are trying to detect as detecting a
fall constitutes finding a pattern from a succession of
sample points as shown in Figure 4. This means the
final prediction of whether a movement of the wrist is a
fall or not a fall must be derived by a second step which
counts a range of consecutive positive fall labels within
a prediction interval.

To determine this range, we experimented with the
model in real life using activities that could be defined
in two categories: (1) short term spikes in acceleration
and (2) long term increases in acceleration. Activities
that could be categorized as (1) are various hand and
arm gestures such as waving, throwing an object, and
punching. An activity that would belong in category
(2) would be running or exercising involving arm
movements which is demarcated by a sudden increase
in acceleration that is maintained over a duration of at
least three seconds (i.e longer than a typical fall).

We run classification experiments with these two
categories of activity data from the seven subjects and
determine the initial range/threshold to use based on the
best predicted result. The low range of the threshold
is used to filter out arm gestures that are not fall, but
incurs short term spikes in acceleration. The high
range/threshold is for filtering out the arm gestures that
maintained spikes in acceleration over a longer duration
than a typical fall. Our experimental result which is
discussed in section 5 shows a threshold between 3 and

50 with the sampling frequency set to 32 ms as the ideal
in the sense that it gives the highest recall and accuracy
in fall prediction when tested.

To our knowledge, no other paper on fall detection
application has used a combination of a machine learning
model coupled with this second step of heuristics based
on a consecutive positive labelled samples within the
prediction interval/sliding window.

4.2 Prediction Algorithm

The predication algorithm is given in Algorithm 1.
Our previous work utilized the Support Vector Machine
(SVM) as the classifier of choice. This model achieved
good theoretical result of 93.8% accuracy, but performed
poorly in real world test of 40 falls with only 44.7%
accuracy. We choose the Naive Bayes machine learning
algorithm this time because it is computationally more
efficient from our initial investigation (the model
creation time for Naive Bayes used only 1.37 seconds
verses 434 seconds with SVM using a dataset of 32092
sample points). This efficiency in computation has
also been observed by other authors in [8]. They
demonstrated that Naive Bayes could classify fall in less
than 0.3 seconds as compared to Decision Tree which
took more than 6 seconds.

Naive Bayes also provides better accuracy as opposed
to other algorithms (Decision tree, SVM, KNN) that
we attempted initially in the theoretical realm using
the RapidMiner tool (https://rapidminer.com).
Naive Bayes is a probabilistic model which only requires
a small training data. This overcomes one of our main
challenges of having to collect a large set of labelled fall

93

https://rapidminer.com


Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Algorithm 1 Prediction algorithm
Input: AccelerometerData (Ax, Ay, Az) in CSV file
Output: prediction of true or false of a fall
slidingWindow = 750ms
consecutiveCount = 0
prediction = false
for all AccelerometerData in slidingWindow do

Compute Ares, ∆S, Smin, Smax

Write to CSV file
end for
Initialize the prediction interval (i.e which data sample
in the CVS file to start the prediction)
naiveBayes = the trained Naive Bayes fall detection
model
for all instance in predictionInteval do
label = naiveBayes.classifyInstance(instance)
if (label == ”Fall”) then

++consecutiveCount
else if (3 <= consecutiveCount <= 50) then

prediction = true
consecutiveCount = 0

else
consecutiveCount = 0

end if
end for
return prediction

data. Naive Bayes model also does not assume relations
between data but only the probability of the current
input as being a fall. This fits well with the two steps
approach we proposed where the second step is used
for the final prediction which is guided by the threshold
we set for consecutive number of labelled falls. This
second step implicitly captures relationships among sets
of consecutive data points. Below is the pseudo codes of
our prediction algorithm which consists of fall features
computation, classification of each fall instance, and the
final prediction of fall or not fall using a threshold.

5 EVALUATION

Our goal is to be able to detect accurately whether
someone has fallen in real time based on the motion
sensed by the smartwatch that a person is wearing on
his/her wrist. We do not want to mis-classify a real fall
which implies a fall detection model with a high recall
or sensitivity.

In this section, we first compare the two fall models
trained using SVM and Naive Bayes respectively. We
then examine the impact on the accuracy of both models
by incorporating a second step to count the number of
consecutive positive fall labels in the final prediction of a
fall within a particular window. We also examine varying
the threshold for the consecutive number of positive fall

labels on the accuracy of the fall prediction. Finally, we
investigate the effect on the accuracy of the model by
adding the false positive (ADL data) samples back to the
original labelled data set.

All our experiments use the same dataset of 32094
sample points. Among them, 2324 are labelled as fall.
The 32094 sample points represent 270 simulated fall
events and ADL data from seven volunteers. We used
two third of these data to train both SVM and Naive
Bayes models and reserved a third for testing. Table 1
shows the performance of fall detection models trained
using SVM and Naive Bayes after the 10-fold cross
validation without incorporating the consecutive falls
threshold.

It is important to have a fall model that won’t mis-
classify a true fall and this implies having a high recall
or sensitivity. Naive Bayes has a much better recall as
compared with the SVM model. However, the precision
for this theoretical Naive Bayes model is low which
implies that this model will have high false positive
predictions and thus many non fall sample points will
be classified as falls. This will render the application
impractical for daily use.

However, as explained in Section 4, the low precision
or recall seen in these two initial models is the result of
the sample by sample prediction which does not account
for the fact that a fall event constitutes a consecutive
number of positive fall sample points. To confirm our
hypothesis, we tested both models with the 90 falls (test
set) using various consecutive fall thresholds. The result
is shown in Table 2 for the Naive Bayes model and in
Table 3 for the SVM model. The recall of the Naive
Bayes model has increased from 55% to 94.44% using
the 3-50 threshold. However the maximum recall for the
SVM model with 3-50 threshold is only 71.11%. We
also tested both models with 90 ADL test data set that
accounts for sitting, hand waving, jogging and throwing
an object.

From Table 4, we can infer that the Naive Bayes
model has no problem in detecting sitting down and
throwing an object, but has difficulties in differentiating
jogging and hand waving activities from the actual fall
activity. This problem becomes more pronounced as
we gradually decreased the lower end of the threshold
from 6 to 3. However, while a higher number for the
lower end threshold will detect ADL more accurately, the
accuracy of positive fall detection decreased as shown
in Table 2. For example, the threshold of 6-50 has an
accuracy rate of positive fall detection of 83.33% versus
the 94.4% with 3-50. Table 5 shows the results of using
the trained SVM model in predicting ADL. SVM gives
almost 100% accuracy for ADL prediction, but has very
low recall for predicting actual falls as shown in Table 3.

Since our objective is to detect falls as accurately as
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Table 1: Results by algorithm without consecutive fall heuristics

Algorithm Accuracy Recall Precision Model creation time
SVM 93.8% 16% 80% 443 s

Naive Bayes 90.5% 55% 38% 1.37 s

Table 2: Performance of Naive Bayes Model

Threshold Detected Fall Accuracy
6-50 75/90 83.33%
5-50 77/90 85.56%
4-50 82/90 91.11%
3-50 85/90 94.44%

Table 3: Performance of SVM Model

Threshold Detected Fall Accuracy
6-50 31/90 34.44%
5-50 37/90 41.11%
4-50 50/90 55.56%
3-50 64/90 71.11%

Table 4: Performance of Naive Bayes with ADL data

Threshold Detected ADL Type of ADL Accuracy missed
6-50 89/90 1 jogging 98.89%
5-50 86/90 4 joggings 95.56%
4-50 76/90 12 joggings and 2 hand waving 84.44%
3-50 67/90 16 joggings and 7 hand waving 74.44%

possible, we choose Naive Bayes over SVM model. The
preferred threshold is 3-50 which gives an accuracy of
94.4% in detecting falls, and 74.44% of accuracy in
detecting ADL. This is a huge increase from the accuracy
of 44.7% for fall detection as reported in our earlier
work [9] using a SVM model.

Next, we want to check whether we can reduce
the false positive rate of the trained Naive Bayes fall
detection model, that is not mis-classifying some of the
ADLs such as jogging and hand waving as falls. To
do that, we trained a new Naive Bayes fall detection
model with additional false positive samples (i.e. non
fall actions that were classified as falls). Table 6 shows
the performance of this model when tested with the 90
fall test data set.

This result demonstrated that the addition of false
positive samples has improved the detection of ADL
(from 74.44% to 80%). The accuracy of detection of
actual falls has decreased from 94.44% to 93.3% with
3-50 threshold.

In summary, using a traditional Naive Bayes machine
learning algorithm that is widely available and with a
modest amount of labelled wrist mounted accelerometer
data, we can achieve a fall detection model with a
recall of 93.33% and a precision of 80% using a
sampling rate of 32 ms and a threshold of 3-50. Our
experiments also demonstrated that there is a tradeoff
between achieving high fall detection accuracy (high
sensitivity) and low false positive rate (high specificity)
using only accelerometer data from a smartwatch.

In addition, our current Naive Bayes fall detection
model has the problem in differentiating arm movement

caused by joggings from falls. However, considering
older people are unlikely to perform jogging activities,
our application is still practical for use in monitoring
of falls for elderly people. We have shown that the
detection of ADLs can be improved by adding labelled
false positive data for re-training. For the current
implementation of this Fall Detection application, false
positive data can be archived via the archiving service
via direct feedback from users. We are in the process
of implementing also the archiving of true positive data.
This enables the opportunity of providing a personalized
fall detection model tailored to each user.

The accuracy for detecting fall has decreased by one
percent in all experimented thresholds with the addition
of false positive (i.e. ADL) data as shown in Table 6.
Table 7 shows the accuracy of the model when tested
with the 90 ADL test data set.

6 CONCLUSIONS

Using only a wrist mounted smartwatch’s accelerometer
data for fall detection, a true positive rate of 93.33%
was achieved using a model trained with Naive Bayes
machine learning algorithm on our chosen four features
(Ares, ∆S, Smaxand Smin) sampled at 32 ms frequency.
We have developed a two step procedure of classifying
fall data on a sequence basis rather than just a point
by point basis. This two step procedure allowed us to
extend the results of our predecessors [10, 5], which
used specialized sensors for activity recognition, into
the realm of commercially available smartwatch sensors
with comparable results.
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Table 5: Performance of SVM with ADL data

Threshold Detected ADL Type of ADL missed Accuracy
6-50 90/90 none 100%
5-50 90/90 none 100%
4-50 90/90 none 100%
3-50 89/90 1 jogging 98.89%

Table 6: Fall detection with false positive samples using fall data set

Threshold Detected Fall Accuracy
6-50 74/90 82.22%
5-50 76/90 84.44%
4-50 80/90 88.89%
3-50 84/90 93.33%

Table 7: Fall detection with false positive samples using ADL data

Threshold Detected ADL Type of ADL Accuracy missed
6-50 89/90 1 jogging 98.89%
5-50 87/90 3 joggings 96.69%
4-50 81/90 9 joggings 90.00%
3-50 72/90 16 joggings and 2 hand waving 80.00%

There were many IoT devices that already existed
for fall detection, but they relied on special hardware
with multiple inconveniently placed sensors that added
to the computational complexity beyond that which a
standard smartphone device could comfortably manage.
We believe the simplicity of only having to wear a
smartwatch would not only reduce costs, but would also
be very convenient and non-intrusive for the users.

The three layers IoT system architecture is not specific
to fall detection application. It is an open architecture
that can be used for many IoT devices. Our long term
goal is to generalize this architecture to a light-weight
IoT service platform using the accessor design pattern
in [11].

We had developed a real-time IoT data collection
and labelling process. This data collection service
and labelling process can be generalized and used for
the development of many other IoT applications. For
example, an IoT application that needs to track arm
movement of ADHD children can use the same data
collection service and labelling process.

Our current fall detection model is promising in its
efficiency as well as the predictive power, however,
our model has some trouble distinguishing between
arm gestures from jogging and actual falls. We have
experimented with leveraging the accelerometer data
on the smartphone to further improve the accuracy.
However, this assumes that the user will carry the
smartphone close to the body at all the time which
might not be practical when the user is at home. Our

immediate future work in improving the accuracy of
our fall detection model is to apply deep learning, in
particular, the recurrent neural network [3] which works
well on time-series data by considering past data points
when making a single prediction. This will eliminate the
necessity for estimating the best threshold to use which
has to be fine-tuned with experiments. Moreover, the
recurrent neural network model has the advantage that it
can be trained using the raw accelerometer data rather
than the preprocessed features. Some useful signals
might get lost in the process of pre-processing of data.

We acknowledge that our fall detection model is
trained using data from healthy volunteers, which might
not reflect the actual fall data from elderly people. It
is impossible to collect simulated fall data from the
elderly group of people because of higher likelihood
of injuries. Currently, the only real world fall data
for elderly people available for our use is from the
FARSEEING consortium [4]. However, none of their
dataset is collected from smartwatches which made
them not suitable for our research. There is another
dataset from UniMiB SHAR [13], however, again all
accelerometer data from this dataset are solely collected
using a smartphone rather than a smartwatch. We
plan to conduct a case study using our fall detection
application in a nursing home in the near future. We
aim to use the application to collect ADL data from
elderly and verify how many of those ADL activities are
falsely classified as falls to judge the practically of our
application. Currently, we have obtained permission to
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do a trial on senior citizens in a nursing home at San
Marcos regarding wearing smartwatches and carrying
smartphones to detect falls. We will recruit eight seniors
for the case study. In particular, we want to know 1)
How long seniors will wear smartwatches in a day?
2) How practical it is for seniors to carry smartphones
in proximity to the smartwatches during the day? 3)
How much ADL data we can collect in a week from
one senior? 4) Which ADL activities our fall detection
model has the most trouble in differentiating from falls?
5) What are seniors’ main concerns regarding wearing
smartwatches and carrying smartphones ?
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