

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

6

Energy Savings in

Very Large Cloud-IoT Systems

Yi Xu A, Sumi Helal B, Choonhwa Lee C, Ahmed Khaled D

A Google, 1600 Amphitheater Parkway, Mountain View, CA 94043 yix@google.com

B School of Computing and Comm., Lancaster University, Lancaster LA1 4WA, U.K., s.helal@lancaster.ac.uk
 C Dept. of Computer Science and Engineering, Hanyang University, Seoul 04763, Korea, lee@hanyang.ac.kr

D Computer Science Dept., Northeastern Illinois University, Chicago, IL 60625, USA, aekhaled@neiu.edu

ABSTRACT

Opposite to the original cloudlet approach in which an edge is utilized to bring the cloud and its benefits closer

to the applications, in cloud- and edge-connected IoT systems where the applications are deployed and run in the

cloud, we exploit the edge somewhat differently, either by bringing the physical world and its data up closer to the

cloud or by caching parts of the applications down closer to the physical world. Aggressive optimizations seeking

substantial IoT energy savings are needed to maintain the scalability of large-scale IoT deployments and to stay

within cloud cost constraints (avoiding costly elasticity when working with a budget limit). In this paper, we

present a novel optimization approach that relies on the simple principle of minimizing all movements: movements

of data from the IoT up to the Edge and Cloud, and movements of application fragments from the cloud down to

the edge and the IoT itself. Our approach is novel in that it involves and utilizes the dynamic characteristics and

variability of both the data and applications simultaneously. Another novelty of our approach is the definition

and use of “sentience-efficiency” as a precursor to “energy-efficiency” for achieving truly aggressive savings in

energy. We present our bi-directional optimization approach and its implementation in terms of algorithms within

an architecture we name the cloud-edge-beneath architecture (CEB). We present a performance evaluation study

to measure the impact of our optimization approach on energy saving.

TYPE OF PAPER AND KEYWORDS

Research Paper: Internet of Things, cloud-IoT architecture, edge architecture optimizations, pervasive computing,

cloud computing, scalability, performance.

1 INTRODUCTION

As IoT proliferates into a massive scale, data and related

services (applications) will be pressed to move to the

cloud given its economies of scale and highly

anticipated reductions in services costs. Another key

advantage of the cloud is its ability to facilitate multi-

stakeholder access to the IoT applications, especially in

smart city scenarios. The cloud central involvement in

large scale IoT deployments will therefore emerge as an

IoT architecture in which the physical sensors and

devices must remain external to the cloud and cannot be

farmed or provided dynamically as cloud resources.

Considering the anticipated growth of IoT in terms

of devices, many driven by smart city deployments

 Open Access

Open Journal of Internet Of Things (OJIOT)

Volume 5, Issue 1, 2019

www.ronpub.com/ojiot

ISSN 2364-7108

© 2019 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

This paper is accepted at the International Workshop on Very

Large Internet of Things (VLIoT 2019) in conjunction with the

VLDB 2019 conference in Los Angeles, USA. The proceedings

of VLIoT@VLDB 2019 are published in the Open Journal of

Internet of Things (OJIOT) as special issue.

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

7

including smart parking, smart meters, etc. (over 20B by

2020 according to Gartner), cloud-IoT systems must be

carefully architected to scale up to such massive scale in

devices and the applications that would utilize them. The

extensive interactions between the cloud (IoT

applications and services) and the physical sensors and

devices will pose significant challenges to the scalability

and energy demand of any cloud-IoT system.

Cloud Scalability: Extensive external interactions

between cloud services and the physical sensors could

pose significant challenges to the scalability of the

overall system. The excessive interactions could result

in expensive cloud “attention”, not only per device such

as a sensor, but per each sensor duty cycle. For instance,

if sensors push data once every minute, then millions of

sensors will produce billions of sensor-cloud

interactions, daily; and billion sensors will produce

trillion interactions. This will require tremendous

processing power, memory resources and huge

incoming/outgoing cloud traffic, leading to heavy and

constant draw on cloud elasticity. As a result, the cloud

economies of scale per sensor will not stand, rendering

the cloud too expensive to pay for, given the existing

use-based price models.

Energy Constraint of IoT Devices: Unlike elastic

cloud resources which can be provisioned on demand,

devices and sensor cannot be provided dynamically.

Many of these sensors and devices are battery-powered

which makes them vulnerable to power drainage. In

smart city scenarios, a sensor may be queried by

hundreds of applications each of which requires constant

evaluation of events based on the sensor readings. This

could lead to continuous data sampling by the sensor

nodes and transmission through the sensor network

which incurs substantial energy cost to the sensor

hardware as well as the entire sensor network. Without

optimization, sensors’ energy could be depleted rapidly,

failing services and making them unreliable and

unavailable.

Therefore, a structural basis for optimizing the

cloud’s interactions with IoT sensors and devices is

critically needed or cloud-IoT systems will not be

dependable. To achieve this goal, both the supply of data

from the IoT devices and the demand on this data from

cloud applications will need to be carefully optimized.

In [30], we proposed the cloud-edge-beneath (CEB)

architecture to enable the efficient operation of such

cloud-IoT systems. An event-driven application model

was also proposed within the same framework in [32] to

enhance the programmability of cloud-IoT system

applications. In [31], we demonstrated the optimization-

enabling aspects of CEB and introduced the bi-

directional waterfall optimization framework whose

goal is minimizing overall system dynamics to maintain

acceptable levels of scalability and minimize sensor

energy consumption.

In this paper, we build on our prior work on CEB and

its optimization framework and present an

implementation of the bi-directional waterfall model in

terms of detailed algorithms and an experimental

evaluation study. Prior work focused on details of the

CEB architecture, details of one algorithm – the

application fragment caching algorithm (AFCA-1)

summarized in this paper in section 4, and on the bi-

directional waterfall model. In this paper, we summarize

and include our prior work, in addition to presenting the

details of three other optimization algorithms in section

5, 6 and 7. The paper is organized as follows. In Section

2, we present important related work and layout the

optimization goals and guiding principles for large-scale

cloud-IoT systems. In Section 3, we provide a brief

summary of CEB and its event-driven application model

(details can be found in [30] and [32] but a summary is

provided here for readability). We also summarize the

bi-directional waterfall optimization framework which

is based on the event-driven instance of CEB. Our

optimization approach and framework are implemented

through several optimization algorithms presented in

Sections 4, 5, 6 and 7, which aim to achieve a greater

cloud scalability and energy-efficiency of sensor

devices. In Section 8, we evaluate the performance of

the proposed implementation of the optimization

framework utilizing a semi-synthesized city-scale

application/data benchmark. Conclusion and future

work are presented in Section 9.

2 RELATED WORK AND OPTIMIZATION

PRINCIPLES

2.1 Related Work

Special data acquisition techniques have been developed

for event detection supporting real-time wireless sensor

network application execution. A typical scheme is

polling [35], in which a data sink sequentially polls its

underlying sensors for new data. In contrast, a bottom-

up sensor-driven model [25] has also been proposed,

assuming that sensors are capable of pushing data to

applications when an event occurs. To improve the

efficiency of data delivery and enable data sharing,

messaging paradigms such as publish/subscribe [28] and

push-pull [17] have been widely adopted in sensor data

acquisition. Optimization techniques to balance push

and pull have been extensively discussed in [17][29][11]

which focus on network topology and routing

algorithms. Furthermore, a new model discussed in [7]

utilizes the mixed push/pull strategy and takes

advantage of the optimization opportunity provided by

the event structure and its data coherency relaxations

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

8

(e.g., time-frequency sampling relaxations). However,

none of the above approaches fit cloud-IoT systems.

This is especially true when one considers the

massiveness of sensors and applications that tend to be

invisible to each other. In order to overcome this

problem, we develop optimization strategies based on

the relative characteristics of sensor requests (demand

side from the cloud) and sensor data (supply side from

beneath). These two features can be easily captured in

our model and support our claims of effectiveness and

significance in promoting our approach’s energy

efficiency.

In addition, among the traditional efforts to achieve

sensor network efficiency (e.g., energy efficiency), a

widely-studied approach is to minimize transmit power

subject to some QoS constraints. It was pointed out that

the total energy consumption should be understood as

transmission energy consumption together with

hardware (or circuit) energy consumption [10]. A

certain transmit power level is necessary to satisfy

certain QoS requirements. For instance, if the data-rate

increases, the required transmit power level increases as

well. However, at the same time, the transmission time

decreases, so that the change in energy spent for

transmission mirrors the resulting shift in the trade-off

between transmission time and transmission power.

Consequently, several efforts have been performed to

minimize the energy consumption the optimal power-

time tradeoff subject to the given SIR requirements. On

the other hand, the use of physical layer symbol error

rate (SER) optimization was investigated to minimize

wireless sensor network (WSN) energy consumption

[12]. The study proposed a technique for SER

optimization that balances the energy saving due to

rising SER and the corresponding extra amount of

energy spent on frame retransmission. Another energy

optimization strategy was proposed for wireless sensor

networks by which each node is able to select its optimal

listening mode according to its local state, which

reduces the global network cost [13]. To reduce energy

cost in WSNs, a more comprehensive effort [3] focused

on the computation of optimal transmission power,

routing, and duty-cycle schedule that optimize the

WSNs energy-efficiency. In that effort, a feedback

algorithm computes the proper transmission power level

between nodes; then, a routing protocol can make use of

the transmission power as a metric by choosing routes

with optimal power consumption to forward packets.

Finally, the cross-layer routing information is exploited

to form a duty-cycle schedule in the MAC layer.

The optimization approaches discussed thus far

share the limitation that the inputs of the optimization

equation are solely derived from the metrics and other

characteristics of the sensor network and sensor

hardware. By bringing more influential inputs to the

optimization problem, additional powerful optimization

opportunities may be realizable; optimization

opportunities were explored by investigating the

characteristic of sensor data and by adopting a

transmission suppression scheme, both temporal and

spatial, to filter and aggregate data transmitted to the

data sink in order to reduce energy cost due to radio

transmission [27]. Also, a more sophisticated statistical

model of real-world processes that maps the raw sensor

data onto physical reality was introduced for the sensor

query process [8]. This approach presented a model of

real-world process, and claimed that sensors should be

used to acquire data, only when the statistical model is

not sufficiently rich to answer the query with acceptable

confidence. The approach enables so called declarative

query to achieve high energy efficiency for interacting

with networks of wireless sensors. Both optimization

schemes [27][8] take data and their models as additional

inputs to the optimization equation and do achieve

further energy efficiency.

In this paper, we also utilize data models as a crucial

additional input for optimization. Furthermore, we

exploit an additional opportunity for optimization and

improving system efficiency by taking cloud

applications as input and part of the optimization choice

variables. By simultaneously combing and learning the

relative characteristics of both demand (applications)

and supply (data), we are able to achieve powerful

optimization opportunities and aggressive levels of

scalability. To this end, we revisit and extend the

traditional caching technology, which has been widely

adopted for sensor-based computing [8][23], to improve

the energy efficiency and latency of the overall sensor

system. However, in any of these approaches, the

entities to cache are usually limited to sensor readings.

In the meantime, a novel caching scheme was proposed

in which operators in query graph that carries the

semantics from application layer can be pushed down

inside the network to perform “in-network” processing

with the intent of reducing data transmission [24]. In our

work, to further improve the system scalability and

energy efficiency, we extend the traditional caching

scheme and propose an optimization framework in

which both sensor readings and fragments of

applications can be cached at different layers of CEB in

opposite directions. Compared to query shipping widely

adopted in distributed database systems whose stored

data are relatively constant [34], data in cloud-IoT

systems are dynamic and constantly changing. Such

system dynamism poses a major challenge in deciding

the proper application fragments and sensor data to

cache in the system to achieve maximal scalability and

energy efficiency, while adapting to the dynamic

changes.

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

9

Additionally, caching application closer to the

sensor layer allows the system to learn both the

characteristics of sensor data and their consumers

(applications) at the same time, which helps optimize the

energy consumption of the sensor nodes. Data

predictions could be utilized to skip sensor samplings to

save sensor energy based on data correlation [33][15].

In this paper, we observe that with both the history of

sensor data observed from the sensor layer and the

application semantics retrieved from the application

layer, a relatively low sampling rate can be achieved and

adjusted based on a relaxed requirement of data

accuracy (i.e., QoS).

2.2 Optimization Principles and Goals

Before exploring any specific optimization opportunity,

we lay down simple principles specific to cloud-IoT

systems that will guide our own algorithm designs.

Generally speaking, capturing the dynamics of the

monitored environment and reacting to changes are the

goal of our model. In order to achieve this goal, sensor

devices are sampled periodically by the applications in

the cloud to capture the most updated environmental

conditions and trigger corresponding actions once a pre-

specified event occurs. However, relative

characteristics of the sensor data and the relevant

applications in the cloud, if learned by the system, can

suppress the dynamism of the system in a way that only

a subset of the data or data changes are required to be

supplied to the application without affecting application

behavior. This is similar to the principle of minimum

amount of work leading to minimizing total energy

consumption in the cloud-IoT systems without affecting

the semantics of the applications. More precisely, our

suppressed system dynamics approach aims at

minimizing the actions (conveyance of data request

down by the applications or movement of data up by the

sensors) that must be taken in the cloud-IoT system,

while at the same time ensuring the adequacy and

timeliness of the minimized actions.

Suppressed system dynamics promises greater and

unprecedented energy-efficiency by additionally

pursuing sentience-efficiency – a utilization of hidden

joint semantics of data and applications that offers

significant reduction in the work needed to execute IoT

applications, and hence, reduces system dynamics and

overall energy expenditure. For example, even if a

sensor datum changes or if an application explicitly asks

for certain data, nothing may need to be done in response

in certain conditions, as we will show later in our

optimization algorithms. Powering applications with the

minimum sentience required is a precursor to doing so

energy–efficiently. Hence, in our approach, we pursue

energy efficiency in a sentience-efficient system. Any

optimization solution that we pursue must follow the

suppressed system dynamics principle, and hence must

firstly be sentient-efficient, and secondly, energy-

efficient. This promises significant improvements in

cloud scalability as well as significant savings in the

total energy as will be explained later.

In a cloud-IoT system, cloud applications are

constantly requesting data, and as sensor data changes,

sensors continuously send data up to the cloud. An

efficient cloud-IoT system must utilize influential

optimization opportunities exploiting the distributed

nature of the multi-tiers across the paths of data and

application requests. For instance, the system must

adaptively match the mix of cyber data demands in the

cloud from the various independent applications. It most

certainly should exploit caching. It could optimize

further, if it better understands the application behavior

as well as the sensor data behaviors. To this end, in the

cloud-edge-beneath (CEB) architecture, the Cloud layer

senses the characteristics of the applications. The

Beneath layer senses its own sensor data characteristics.

The Edge layer is able to “solve the puzzle” and

consolidate and share hints from the Cloud and Beneath.

In the paper, we present detailed optimization ideas

and algorithms to maximize sentience and energy

efficiency within CEB. We are currently utilizing an

eventing model for programming applications in CEB.

The programming model could affect (enable or limit)

the potential optimization space. We will consider other

application models in the future, including

publish/subscribe and functional programming models.

We consider only application models that allow high

degree of freedom in fragmenting and caching app

fragments within the cloud-IoT system.

3 SUMMARY OF CEB ARCHITECTURE

AND BIDIRECTIONAL WATERFALL

OPTIMIZATION FRAMEWORK

In [30], we proposed the Cloud, Edge, and Beneath

(CEB) which is an open architecture and framework for

deploying and managing cloud-IoT systems whose

applications are programmed, hosted and run on the

cloud. The architecture organizes sensor nodes and the

cloud along with intermediate edge layer and draws on

well-established and extensible standards. Our current

implementation is based on a specific application model

that abstracts sensor data into events. Based on and

limited to this specific application model, we proposed

a bi-directional waterfall optimization framework [32].

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

10

Figure 1: Overview of the CEB architecture

3.1 CEB Architecture Overview

CEB (Fig.1) is a multi-tier architecture which we

collectively refer to as the “Cloud-Edge-Beneath” where

the beneath refers to the physical sensors and their

sensor platforms. Sensor platforms are low-power

computing and communication platforms through which

physical sensors connect to the edge. In practice, edge

as an intermediate layer (e.g., standalone server)

connects and manages a group of geo-related sensors.

Finally, the cloud is where sensor-based services and

applications are developed, deployed and run. This

three-tiered structure aims to achieve scalability, since

sensor networks operate independently, and are

connected to the cloud through a scalable number of

power-unconstrained edge servers.

CEB is built on top of Atlas [14] which is an

implementation of the service-oriented device

architecture (SODA) [9]. Atlas automates the process of

sensor integration through Atlas sensor platform and

Atlas middleware which are eventually integrated into

the cloud availed for use by cloud applications. Next, we

explain each layer of CEB concisely.

The beneath layer consists of the physical layer and

the sensor platform layer. The former refers to the

sensors and their “drivers” – documents written

according to the Device Description Language (DDL)

[6]. DDL documents contain the information required

for automatic (on power-up) device integration,

including service registration, discovery and the main

operations of the sensor hardware. The sensor platform

layer hosts one prong of the Atlas middleware which is

responsible for identifying the connected devices, using

their DDLs to generate corresponding sensor service(s)

on the edge and beyond.

The edge runs the one prong of the Atlas middleware

which uses OSGi [20] as its basis to provide service

discovery and configuration. The middleware includes a

bundle generator, which, when contacted by an

Configuration
Manager

Cloud Sensor
Service

Cloud Sensor
Service

Cloud Sensor
Service

Data/Commands

DDL
descriptor

P
hy

si
ca

l
La

ye
r

S
en

so
r

P
la

t.
La

ye
r

OSGi Framework

Atlas API

DDL
descriptor

Atlas
Sensor
Plat.
Mw.

Sensor
Devices

Device
Descriptor

(driver)

A
tl

as
 E

dg
e

M
id

dl
ew

ar
e

e Device
Service

(O
SG

i C
lo

ud
)

App Cache Data Cache
CEB
Optimizer

Service
Invocation

Service
Provision

Data/Commands

DDL
Processor

...
Service

Edge Sensor
Service

Data Cache

Network
Manager

Monitoring and
Metering

A
tl

a
s

 C
lo

u
d

M

id
d

le
w

a
re

(A

C
M

)

Cloud App Runtime (CAR)

Application

Atlas
Sensor Node

O
S

G
iF

ra
m

e
w

o
rk

s

Edge
Optimizer

Cloud Sensor
Service…

Cloud Sensor
Service

Cloud Sensor
Service

Beneath
App Cache Atlas Sensor

Node
Sensor Ref.

Sensor Plat.
Optimizer

Beneath
Data Cache

Event
Service

Data Cache

ACM
Optimizer

Ecosystem
Service Registry

Cloud Pass
Through

...

CAR
Optimizer

Provisioning
Management

App/Service

Developing Tool

Service Mgmt.
Console

Event
Service

Event
Service

Application

O
S

G
iF

ra
m

e
w

o
rk

s

Sensor Service Pass-Through

Sensor
Service

Bundle Repo
Web

InterfaceApp Cache DDL Bundle
Generator

...

Event
Service

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

11

 Equation (1):

𝐸 = 𝑠𝑒𝑠𝑜𝑟(𝑣𝑎𝑙𝑢𝑒)|𝑠𝑒𝑛𝑠𝑜𝑟[𝑎, 𝑏]
= |~𝐸
= |𝐸𝐸|𝐸𝐸
= |𝐸?𝐸: 𝐸
= |𝐸 ∗ 𝑡𝑖𝑚𝑒 ∗ 𝐸
= |{𝐸}

(atomic event)

(negation)

(or/and)

(condition operation)

(sequence)

(scope block)

(1)

Figure 2: ERT-based event evaluation

initializing Atlas sensor platform, creates a pair of

software bundles for each sensor: 1) edge sensor service

to be hosted at the Atlas edge middleware, and 2) cloud

sensor service to be passed through to the Atlas cloud

middleware in the cloud layer. The pair of sensor

services communicate with each other, enabling data

and control between the edge and cloud layer.

The Cloud layer is built on OSGi Cloud [21] in

which applications are composed by loosely-coupling

modules as OSGi services hosted at a distribution of

cloud nodes. The cloud layer provides solutions that

address the cloud-wide discovery, configuration and

'wire-up' of services across different OSGi frameworks

in the dynamic cloud environment into applications and

services. To help explain our work in this paper, we give

more details of two specific components in the cloud

layer.

Atlas Cloud Middleware (ACM): Cloud layer holds

another prong of the Atlas middleware. For every edge,

there exists a corresponding ACM at the cloud layer. It

hosts the cloud sensor service bundles passed from the

edge and, when the sensor is activated, provision them

as services ready to be subscribed to by other cloud

services or applications. ACM acts as the cloud gateway

to the lower layers, and meanwhile, it hosts the most

basic “clouding” of sensors based on which sensor-

based cloud applications can be built.

Cloud Application Runtime (CAR): It is the container

where application-specific services are deployed and

managed. An application makes an invocation to the

cloud sensor services at the Atlas cloud middleware to

acquire raw sensor readings from the physical

deployment.

Note that both ACM and CAR are composed of

OSGi frameworks which are installed and provisioned

with cloud VMs. Optimizers and caches (application

and data) are included at different layers to orchestrate

distributed optimizations throughout the CEB cloud-IoT

system.

3.2 E-SODA Application Model

CEB could support different application models to

utilize different computational abstractions (e.g., events,

activities, context, episode, and phenomena). In this

paper, we use a specific application model – E-SODA

which we first proposed in [30]. It abstracts sensor data

into service events. E-SODA follows a rule-oriented

paradigm in which an application is composed of a list

of event/condition/action rules. In implementation, an

application is a composition of interrelated services

together performing the function of rule evaluation.

Among those services, in this paper, we focus on the

Event Services which subscribe to and invoke the cloud

sensor services at the ACM to implement event-level

abstractions of sensor data. An event service listens to

the occurrence of a particular event denoted as its

AND

OR

Parking sensors (in garage A)

cloud sensor services

…

…parking spot m is
empty

find parking spot in garage A

GPS cloud sensor service

garage A
is nearby

parking found in nearby garage A

Parking spot found in
nearby garage

…

find parking
in garage B

garage B is
nearby

parking found in
nearby garage B

…

[parkingNo:m]

[car
location:x,y]

[parkingNo:m; garageLocation:xa,ya;
carLocation:x,y]

Event

Sensor
service

[…] Parameter
vectors [parkingNo:m; garageLocation:x,y]

E1

E2

E

AND

OR

OR OR

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

12

Equation (2):

𝑇𝐹𝑀 = < 𝑊, 𝐼𝑒 >
 𝑊 = nil | date/time date/time | time time

 𝐼𝑒 = Interval (# of seconds) between two successive

evaluations

date = MM/DD/YY

time = hh:mm:ss

(2)

Figure 3: TFM applied to E1 and E2 in the smart parking application

representative event which is a logical expression over

sensor values. The event is evaluated against an event

representation tree (ERT) based on real-time sensor

values. Equation (1) shows a snippet of event composite

grammars and Fig. 2 illustrates an ERT tree-based event

evaluation to be explained shortly.

In E-SODA, we introduce an application specific

relaxation operator, the time/frequency modifier (TFM),

which is intended to specify and vary the evaluation rate

of events. In itself, TFM is an application-level

optimization for what we call sentience-efficiency, and

is specified as Equation (2).

Fig. 3 illustrates an application of TFM to the car

parking application depicted in Fig. 2. Initially, an event

service S0 pulls sensor readings from parking and GPS

sensors to evaluate event E. Later, a TFM (Ie=10s) is

applied to E1 to relax the evaluation over parking

sensors and another TFM is applied to E2 to relax the

evaluation of GPS sensor to 1/20s. For all parking

sensors connected to the same edge, one query can be

issued to request data from all sensors and listens to one

response that carries all sensor data.

3.3 Bi-Directional Waterfall Optimization

Framework

Based on the CEB architecture and E-SODA application

model, we summarize our bi-directional waterfall

optimization framework [31]. In non-optimized cloud-

IoT systems, applications reside in the cloud requesting

and processing data originating from the physical layer.

To optimize cloud-IoT system operation, we propose a

bi-directional waterfall optimization framework which

allows not only data to move upward but also

applications, or more precisely application fragments, to

move downward and get cached at lower layers. Under

the E-SODA application model in which sensor data are

abstracted as events, application fragments that flow

from the cloud to the lower layers are event

representation trees (ERT). A cached event is evaluated

at the layer it is cached to and its event value is pushed

back to its upper layer only when it changes (we call

this: selective push). For any event cached to a lower

layer, a single “shadow event” is created to act as a

proxy of the cached event to its consumer, and receiver

of selective push messages.

With application caching, cloud scalability can be

addressed effectively due to the fact that the workload

on the cloud is dispersed across a group of edges or even

sensor platforms at the beneath layer. Also, optimization

opportunities for the energy consumption of the sensors

can be further provided, because a cloud-IoT system can

obtain a local view of both data and applications at any

layer, and therefore the interactions and interplays

between application and data can be monitored and

analyzed at these layers. We have investigated the

following four optimization opportunities that can be

applied at different layers of CEB (Fig. 4):

 Cloud-to-Edge Application Fragment Caching

Algorithm (AFCA-1) – cloud scalability: AFCA-1

selects application fragments from the cloud to cache

at the edge layer so as to maximize the potential

benefits of reducing the usage of cloud resources,

while staying within the limitation of the resources in

edge servers. Unlike the cloud with elastic resource

Event
Service

Sensor
Service

Event

S0

E2

E1

E

parking sensor

services

…

…

GPS sensor

service

…

S2S1

TFM:

Ie=10s
TFM:
Ie=20s

E1

parking spot sensor

services

…

…

E2

S0
E

…

GPS sensor

service

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

13

Figure 4: Interplay of optimization algorithms

supply, edge servers have limited resources. AFCA-1

is explained in details in our prior work [32].

 Shortcut Evaluation and Branch Permutation

Algorithm (BPA) – saving sensor energy: In

processing the application fragments cached at the

edge layer, shortcut evaluation can be utilized, when

a subset of sensor data suffice to derive the occurrence

of an event, saving the sensor power due to the

skipped sensor samplings. BPA permutes the

branches of the ERT affecting the order of sensor

sampling and sub-event evaluation to enhance the

chances of shortcutting.

 Application-Aware Adaptive Sampling Algorithm

(AAAS) – saving sensor energy: Atomic events

defined in (1) imply application’s interest of sensor

data. By caching atomic events (the most primitive

application fragment) to the beneath layer, the sensor

sampling rate can be minimized, while ensuring the

adequacy and timeliness of sensor samplings required

by the application semantics.

 Edge-to-Beneath Application Fragment Caching

Algorithm (AFCA-2) – saving sensor energy: AFCA-

2 selects the atomic events to cache at the beneath

layer to achieve optimized energy efficiency of the

sensor nodes. It takes into consideration both the

BPA-guided shortcut evaluation as well as AAAS.

3.4 Optimization Algorithms Interplay

AFCA-1 selects events as fragments of the cloud

applications and cache them at the edge layer. After

events are cached at the edge layer, the BPA-guided

shortcut evaluation is then activated at the edge to

process the cached application fragments in an energy-

efficient way. Specifically, BPA structures the ERT of

the cached events to permute the order of the leaf nodes

(i.e., atomic events) with the goal of maximizing the

occurrence of shortcut to achieve optimized energy

efficiency of the sensor nodes. Then, based on the

restructured ERT, AFCA-2 is performed to cache the

atomic events as more fine-grained application

fragments further down to the beneath layer. To assess

if an atomic event should be cached at the beneath layer,

AFCA-2 calculates the penalty caused by compromising

shortcut evaluation on the event (if cached) as well as

predicting the benefits to be achieved by performing

AAAS at the beneath layer. If the benefit outweighs the

penalty, atomic events is cached further down to the

beneath layer, which consequently activates the

execution of the AAAS algorithm to further reduce the

energy cost of the sensor nodes.

Due to the dynamics of the cloud applications and

sensor data in the cloud-IoT systems, re-evaluation of

the algorithms would be necessary periodically to adapt

to any dramatic changes. Change at any layer of the CEB

architecture may cause a series of executions or

revocations of application caching, which requires very

lightweight application caching schemes. In the

remaining sections, we present all our optimization

algorithms (except for AFCA-1 whose details can be

found in [32]) and present a performance evaluation

study of the proposed algorithms utilizing a smart-city

scale application/data benchmark.

4 CLOUD-AWARE, CLOUD TO EDGE

APPLICATION FRAGMENT CACHING

(AFCA-1)

As discussed earlier, caching application fragments

from the cloud layer to the edge layer reduces the

workload of processing events on the cloud servers. In

addition, with application caching, the data transmission

between the cloud and edge layer switches from “pull”

to “selective push” (edge pushes an event value to the

cloud only when that value changes). This reduces the

usage of bandwidth between the cloud and edge as well

as computing and other resources in the cloud allocated

for data transmission. Consequently, cloud scalability is

improved as fewer cloud instances can be provisioned to

handle the same amount of tasks. Meanwhile, caching

events to the edge layer consumes its resources (e.g.,

processing and memory). Unlike the cloud whose

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

14

Figure 5: Event representation tree of an event e7

resources can be provisioned on demand, edge layer

consists mostly of commodity servers that have limited

resources, and hence we cannot unlimitedly cache

applications from the cloud. Guided by this discussion

in our prior work [32], we proposed the AFCA-1

algorithm to select the application fragments (i.e.,

events) from the cloud to cache down at the edge layer

with the specific objective: to minimize the cloud

dimension (i.e., number of cloud instances), under the

constraint of staying within the resource limitations of

the edge servers.

Importantly, to understand how application caching

affects the cloud scale, we have to determine the

dominant resources that decide the dimension for all

cloud components affected by application caching and

examine how their usages are affected by application

caching. Additionally, the dominant resources of the

cloud components may change over time which makes

them variables that affect the logic of AFCA-1. Earlier,

we presented an experimental study that guides the

determination of and adaptation to such critical

variables [32].

5 POWER-AWARE PROCESSING OF

APPLICATION FRAGMENTS

AT EDGE LAYER

Under the bi-directional waterfall optimization

framework, after application fragments are cached down

to the edge layer guided by AFCA-1, the edge layer

thereafter obtains a local view of both application and

sensor data which allows the interplays between

application and data to be observed. Based on such

analysis, optimizations can be carried out to process the

cached application fragments in a power-efficient

manner. In this section, we present two specific

optimization algorithms which can be applied

collaboratively to optimize sensor energy consumption

in cloud-IoT systems.

5.1 Motivation

After an event is cached from the cloud layer to an edge

guided by AFCA-1, the edge layer takes the

responsibility of evaluating the cached event and

reporting its value to the cloud applications. In our

approach, event evaluation is performed by traversing

the event representation tree. Fig. 5 shows an example

in which the evaluation of e7 follows the path: e0-e1–e2–

e10–e9–e3-e4–e11-e8–e5–e6–e13–e14-e12–e7.

With the help of data caching at edge layer, before

sending sampling request to the beneath layer, the edge

always checks the validity of the cached value for each

sensor in an attempt to use the cache and avoid issuing

sampling requests to the beneath layer.

Consider the case where an event in the ERT has its

two children connected by ˅ (logical or) such as e12.

Obviously, e12 evaluates to true if either of its children

(e5, e13 and e14) is true. So there is no need to evaluate

the rest of the events when one has already evaluated to

true. Similarly, no need to evaluate its siblings to the

right when a child event has evaluated to false for both

˄ composite events (e.g., e8 = e9 ˄ e11) and *T*

composite events (e.g., e7 = e8 *T* e12). In addition, the

conditional operation 𝑒a? 𝑒b: can also be converted to

combination of logical OR and AND

operations(𝑒a˄𝑒b)˅(˄). This inspires what we call the

shortcut evaluation, similar to what can be found in

compiler expression optimization, applied in the event

evaluation process to reduce the number of events to be

evaluated and hence the need to sample sensors for their

data. Therefore, taking advantage of data caching and

shortcut evaluation, energy consumption of sensor

devices can be reduced without affecting the proper

behavior of applications because of the skipped data

transmissions and sensor samplings. This is an obvious

form of sentience-efficiency.

However, our optimization does not stop here. We

consider another critical factor that affects the

e9

e10

e11 e13

e8 e12

e7

e0

f0(s1,s2)

e1

f1(s3)

e2

f2(s4,s5)

e3

f3(s6)

e4

f4(s7,s8)

e5

f5(s9)

e6

f6(s10,s11,s12)

T

˄ ˅ ˅
e14

f7(s13)

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

15

performance of the event evaluation – the order in which

the events in an ERT tree are evaluated. In our

specification, the left branch always gets evaluated

before its right branches. However, according to the

shortcut evaluation strategy, there is a possibility that the

value of an event can be derived by evaluating only part

of its branches. In our event model, branches of an event

that are connected by commutative operators ˄ or ˅

(parallel operations) can be swapped without changing

the result of event evaluation. Therefore, which branch

gets evaluated first can lead to very different

performance in terms of the number of events to

evaluate and the number of sensors to sample. We

therefore propose the branch permutation algorithm that

dynamically adjusts the structure of an ERT to

manipulate the order in which the tree nodes are

evaluated with the purpose of achieving further energy

efficiency of sensor sampling. Such branch permutation

scheme is motivated by the following observations:

1. For an event whose children are connected by ˅, if its

left child has high probability of being evaluated to

true, then shortcut evaluation will be likely to take

place. Similarly, for an event whose children are

connected by ˄, if its left child has high probability of

being evaluated to false, then shortcut evaluation will

likely occur.

2. Or if the branches are not balanced, we would prefer

the shortcut evaluation to occur on the “heavier”

branch in order to sample fewer sensors.

3. The weight of branch is determined by not only the

number of sensors in that branch but also the cache

miss rate on those sensors (the lower cache miss rate,

the less branch weight). Cache miss rate of a sensor is

partially determined by its cache coherence (i.e., time-

to-live). In addition, sensors that are more frequently

accessed by cloud applications (e.g., shared by large

number of applications) tend to have lower cache miss

rate. This is because their caches are updated more

frequently so that, when their data are required, the

data in the cache are more likely to be fresh.

5.2 Branch Permutation Algorithm

Based on above discussion, we give the branch

permutation algorithm (BPA) as shown in Listing 1.

Generally, BPA starts at the atomic events of an ERT and

follows a bottom-up order to perform branch

permutation for each event whose branches are

connected by either ˄ or ˅ operator. For such an event,

the algorithm estimates the respective costs of its

evaluation under all the possible permutations of its

branches (i.e., orders of evaluating its branches).

Thereafter, the algorithm chooses the permutation with

the minimum cost and reorder the event’s branches

based on it. The minimum cost will become the cost of

evaluating the event and will be saved and later on

utilized to estimate the evaluation cost for its ancestor

events. In order to perform the algorithm, two

information have to be acquired by edge: 1) the

probability of event being evaluated to false denoted as

probFalse (event) for all leaf events of the ERT, and 2)

cache miss rate of sensor s denoted as m(s) for all

sensors whose data is required to evaluate the ERT. This

information are derived by combining the semantics of

both events and data which are obtained by edge through

recording recent sensing history.

According to our previous study [7], we consider

sensor sampling and data transmission as the two major

contributions to the overall energy cost of a sensor

device, while neglect processing cost. We use coefficient

1 and 2 to represent the energy consumption of a

sensor receiving a data request from and sending data to

edge respectively and use to represent the energy cost

for one sensor sampling (reading).

Lines 1-2 calculate the sensor energy cost of

evaluating a leaf event (atomic event) in the ERT where

sensor data are pulled from the sensors for event

evaluation. The cost of a pull operation is 1 + 2 +

(receiving query + sending data + sampling) and it

happens only when a cache miss occurs. Lines 9-23 deal

with the node (i.e., event) in the ERT of which the

operator connecting its branches are either logical OR or

AND. It first permutes all of the event’s branches and

calculates the energy cost of evaluating the event under

all possible branch permutations (lines 10-19). Then, the

permutation that leads to the lowest energy cost will be

chosen according to which the event’s branches are re-

ordered, and consequently, the lowest energy cost

becomes the energy cost of evaluating the event node

(lines 20-22).

Line 24 in the algorithm computes the cost of

evaluating an event whose children are connected by

T (sequential operation). δ represents, if event’s left-

child event event.first_child occurs, the frequency of

evaluating event’s right-child

event.left_child.next_sibling during [tcurrent, tcurrent+T].

Then the total number of times that the right child is to

be evaluated can be from 1 to δ·T and the respective

probabilities are 1-pr, pr(1-pr), pr2(1-pr),…, pr·δ·T·(1-pr)

where pr stands for the probability that event’s right

child is false. Then the expected number of times that

event’s right child will be evaluated is Equation (3).

Thus, the expected sensor energy cost of evaluating

event is calculated as shown in line 29.

In conclusion, by learning and consolidating hints

from both applications (ERT) and the sensor data (cache

coherence, probability of event), the branch permutation

algorithm is able to gain insight as to how sensor data

influence the behavior of applications (event evaluation)

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

16

Listing 1: Pseudocode of Branch Permutation Algorithm (BPA)

Equation (3):

𝐸𝑛 = (1 − 𝑝𝑟) + 2𝑝𝑟(1 − 𝑝𝑟) + 3𝑝𝑟
2(1 − 𝑝𝑟) + ⋯+ 𝛿𝑇𝑝𝑟

𝛿𝑇−1(1 − 𝑝𝑟)

=
1 − 𝑝𝑟

𝛿𝑇

1 − 𝑝𝑟
− 𝛿𝑇 (3)

BPA: double branchPermutation(event)

 Parameter: event Root of the tree

Return: minimized estimated cost of evaluating the ERT

Algorithm:

1. if event · first_child == null // event is an atomic event

2. return (𝛼1 + 𝛼2 + 𝛽) ×𝑚(𝑠)𝑠∈𝑆(𝑒𝑣𝑒𝑛𝑡)

3. else

4. for child = event · first_child ; child != null; child = child· next_sibling

5. costOfChild = branchPermutation (child);

6. eventCostMap.put(child, costOfChild); // <event, evaluation cost> map

7. endfor

8. switch (event · operator)

9. case ˅:

10. branchPermutations[n] = permute branches of event;

11. for i =1 to n // get the ith permutation

12. cost[i] = 0;

13. c = 0; probOfNotShortcut = 1;

14. for child = event · first_child ; child != null; child = child · next_sibling

15. c += eventCostTable.get(child);

16. cost[i] += probOfNotShortcut * (1 – probFalse(child)) * c;

17. probOfNotShortcut *= probFalse(child);

18. endfor

19. endfor

20. find minimum cost[k], 1 ≤ 𝑘 ≤ 𝑛 ;

21. re-order the branches of event according to branchPermutations[k];

22. return cost[k];

23. case ˄ : [similar to case ˅ …]

24. case *T * :

25. cl = eventCostMap.get(event · first_child);

26. cr = eventCostMap.get(event · first_child · next_sibling);

27. pl = probFalse (event ·first_child);

28. pr = probFalse (event · first_child· next_sibling) ;

29. return 𝑝𝑙𝑐𝑙 + (1 − 𝑝𝑙)[
1−𝑝𝑟

𝛿𝑇

1−𝑝𝑟
− 𝛿𝑇 𝑐𝑟 + 𝑐𝑙]

30. default:

31. cost = 0;

32. for i in eventCostTable.keyset(); cost += eventCostTable.get(i); endfor

33. return cost;

34. endswitch

35. endifelse

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

17

and based on which it suppresses the demands of non-

influential sensor data without affecting the semantics of

the applications. The performance of the BPA will be

evaluated in the later section.

6 POWER-AWARE PROCESSING OF

APPLICATION FRAGMENTS AT

BENEATH LAYER

6.1 Motivation

The edge can extract fine-grained application fragments

from the cached event services and cache them in the

beneath layer. Such fragments are the atomic events

defined over a single sensor and define a desired range

of data value (filters) associated with a sampling

frequency (TFM). Caching atomic event to the sensor

platform enables event processing at the beneath layer

which pushes sensor data to the edge layer, only when

the value of the cached atomic event is different from

the last reported value. Such “filtered push” can further

reduce the transmissions between the sensor platform

and edge server, leading to lower sensor-node energy

consumption.

Furthermore, the cached atomic event

metaphorically and practically implies the interest and

increased curiosity of the application toward a scope of

the sensor data domain. We observe that, since the

application only cares if the sensor data falls in or

outside of this scope, the sensor sampling rate can be

reasonably and confidently set lower, when the current

reading is far from the boundaries of the range compared

to when the reading is close to the range boundaries. As

a result, if we allow a sensor node to adapt its sampling

rate at runtime, we can potentially save further sensor

energy by reducing the sensor sampling rate, while

guaranteeing data currency.

6.2 Existing Adaptive Sampling Models

and Algorithms

Several existing algorithms were proposed to achieve

adaptive sampling rate by exploiting the temporal

correlation among sensor data, while maintaining high

data quality. In our early work [33], we proposed a lazy

sampling algorithm built on top of the CEB architecture

in which the sensor sampling rate is adapted based on

the dynamics of the sensor data. However, lazy sampling

requires relatively high computation capacity for sensor

platforms, especially when sensor data is highly

dynamic. At the same time, several models are built

based on the temporal correlation exhibited by sensor

readings to predict sensor readings, of which the Auto-

Regressive Moving Average model (ARMA) [2] is

widely adopted. When utilizing ARMA for data

prediction, the trend or seasonal components in a history

of sensor data needs to be first identified and removed

to get stationary residuals. Thereafter, ARMA model

can be applied to represent the residuals, and the

subsequent sensor data can be predicted by forecasting

the residuals and transform to the sensor reading. The

ARMA model includes two parts, the auto-regressive

part (AR) and the moving average part (MA).

Researchers adopted the ARMA as the data

prediction model to skip sensor sampling by predicting

next sensor data [5]. The number of skipped samplings

increases as long as the predictions remain to be

considered accurate based on the proposed data quality

model. Initially, the sensor platform samples the first w

consecutive readings, and based on these readings, the

reading for the epoch w+1 is not only sampled but also

predicted. The two values are compared to check the

accuracy of the current prediction. If the prediction is

considered accurate, the ARMA model can be utilized to

the next epoch. Therefore, the sampling of data at epoch

w+2 will be skipped. Here, the model defines

CurrentSkipSampleLimit (CSSL) which denotes the

number of samples that will be replaced by prediction

and is set to 1. For accurate predictions, the CSSL is

incremented. Otherwise, it is set to zero and the sensor

platform has to sample at each time stamp. However, a

long sequence of correct predictions may increase the

CSSL infinitely. To avoid this situation, the approach

introduces a constant guard margin –

MaximumSkipSamplesLimit(MSSL) to limit maximum

number of samples that can be skipped. More

specifically, MSSL is defined to be a constant

(Buffersize–2) where Buffersize is the size of the buffer that

holds the historical sensor data [5].

While ARMA model has a widespread adoption

[5][16][19], none of the sampling algorithms are

application-aware, missing out significant energy saving

clues. In the next section, we propose an adaptive

sampling approach that utilizes application semantic

cached at the beneath layer to achieve greater energy

efficiency of the cloud-IoT systems.

6.3 Application-Aware Adaptive Sampling

Algorithm (AAAS)

In CEB, atomic events that represent the most primitive

application fragment of E-SODA application model can

be further moved from the edge layer and cached

(evaluated) at the beneath layer. Atomic events

transform a sensor value provided by a sensor to a

Boolean, with lx and ux indicating the lower and upper

boundary of the sensor data range within which the

atomic event is evaluated to true. Such beneath layer

application caching gives us an opportunity to improve

the aforementioned adaptive sampling approach in two

aspects:

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

18

Figure 6: Before/after atomic event e4 flows to the Beneath Layer

First, we can improve the ARMA-based data

prediction model by giving a less stringent accuracy

validation model with lower requirement of data quality

that is based on the range [lx, ux] of the sensor data

specified by the cached atomic event. Therefore, a

sensor does not track any small change in data readings,

which results in fewer observations, and hence better

energy efficiency.

Second, instead of being a constant, MSSL can be

adjusted based on the offset of the most recent sensor

data relative to the range [lx, ux] of the sensor data

specified by the cached atomic event. If the offset is

large, the MSSL can be set larger, setting a larger

maximum skip sampling length which affords higher

energy savings at acceptable risk. On the other hand,

MSSL is set smaller when the current sensor reading is

closer to the boundary of the range [lx, ux]. The

adjustment sets a more conservative (smaller) maximum

skip sampling length, which would maintain data

accuracy and could still save some energy. In addition,

there is a chance that the duration of the cached atomic

event (i.e., event value is true) is too short to be detected

by the MSSL.

Eventually, the MSSL for the data prediction is

calculated as in (4), where d is the minimum offset of

the most recent sensor data relative to the range [lx, ux],

and m represents the MSSL value that can be calculated

from the user specified maximal probability of missing

an event together with the duration of the shortest

possible event, and (Buffersize-2) makes sure that there

are at least two non-predicted sensor reading in the

sliding window.

𝑀𝑆𝑆𝐿 = 𝑚𝑖𝑛(𝑑, 𝑚, 𝐵𝑢𝑓𝑓𝑒𝑟𝑠𝑖𝑧𝑒 − 2) (4)

As a result, when the sensor data is relatively static,

the prediction of sensor data is more accurate. In this

case, the sampling rate of a sensor node is adjusted based

on the offset of the sensor reading and the boundaries

defined by the cached atomic event.

7 EDGE TO BENEATH APPLICATION

FRAGMENT CACHING ALGORITHM

(AFCA-2)

7.1 Motivation

According to the bi-directional waterfall optimization

framework, through the caching of atomic events from

the edge layer to the beneath layer, filtered push replaces

pull to transmit sensor data from the beneath to the edge

layer. The replacement of pull (reactive) with push

(proactive) can also reduce the time latency spent to

evaluate the ERT. Moreover, with the knowledge of

application semantics at the beneath layer, application-

aware adaptive sampling can be performed to reduce the

sensor sampling rate leading to better energy efficiency

of the sensor nodes.

However, caching an atomic event to the beneath

layer may not always guarantee the best benefit that

could be had, considering the potentially competing

benefit of the shortcut evaluation that may occur only at

the edge. For example, in Fig. 6, e4 is an atomic event

defined over sensor s4 that specifies the interested range

of the readings of s4 to be [l1, l2]. Before caching e4 at

beneath, due to shortcut evaluation there is a chance that

the evaluation of e4 is bypassed by the edge such as when

e2 is evaluated to false or e3 is evaluated to true.

However, after e4 is cached at the sensor platform in the

beneath layer, e4 becomes blind and cannot contribute to

any shortcut occurrences in the edge; it could only push

its data to the edge for event evaluation, when the value

of e4 is detected to change even if not needed. In this

sense, caching an atomic event to beneath layer can

reduce the transmission cost of sensor node by

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

19

Listing 2: Calculation of Pns for an event ea

performing filtered push and reducing the sampling cost

of sensor node by enabling AAAS; nevertheless, it

sacrifices the reduction of energy consumption (both

transmission cost and sampling cost) due to the

ignorance of the occurrence of shortcut evaluation at the

edge. Based on above reasons, a caching benefit

evaluation model is proposed next to decide for each

atomic event in the ERT cached at the edge whether it

should be further cached at the beneath layer or remain

in the edge for potential short cut evaluation.

7.2 Beneath Caching Benefit Evaluation Model

(BCBEM)

The idea of the Beneath Caching Benefit Evaluation

Model (BCBEM) is straightforward. Given an atomic

event, it calculates the estimated overall energy saving

that can be achieved by caching it to the beneath layer.

To calculate the overall energy saving, AFCA-2 needs to

consider the benefits brought by the filtered push and

AAAS as well as cost of compromising shortcut

evaluation. If the calculated energy saving is positive

and exceeds a pre-specified threshold (counteract the

application caching overhead), the atomic event will be

cached at the beneath layer which causes the filtered

push to replace pure pull for the data transmission of the

sensor node and also starts the execution of AAAS.

Again we assume that data transmission (receiving and

sending packet) and sensor sampling are the two major

contributors to the overall energy consumption of a

sensor node.

First, the energy consumed per second by sensor s to

evaluate the atomic event ea (associated with sensor s)

before caching it to the beneath is calculated in (5).

Where α1, α2 and β are the energy coefficients of a sensor

node defined in section 5. Pns indicates the probability

of shortcut not occurring to ea on one event evaluation.

fs denotes the evaluation frequency (1/sec) for ea defined

by TFM.

𝐶𝑏𝑒𝑓𝑜𝑟𝑒 = 𝑃𝑛𝑠 ∙ (𝛼1 + 𝛼2 + 𝛽) ∙ 𝑓𝑠 (5)

To calculate Pns for event ea, two-round traversal of

the ERT is needed which is shown in Listing 2.

Algorithm: Calculate Pns for ea

1. node = ea, Pns =1;

2. while node . parent != null

3. if node · parent · first_child != node

 and node · parent · operator in { ˅, ˄, *T* }

4. for n = node · parent · first_child; n != node; n = n · next_sibling

5. eventL.add(n); // eventL contains all siblings left to node

6. endfor

7. ST . push(eventL, node.parent.operator);

8. endif

9. node = node.parent;

10. endwhile

11. for (eventL, operator) = ST .pop()

12. switch operator

13. case ˄ :

14. for n in eventL 𝑝𝑛𝑠 = 𝑝𝑛𝑠 × 𝑝𝑟𝑜𝑏𝐹𝑎𝑙𝑠𝑒(𝑛); endfor

15. break;

16. case ˅ :

17. for n in eventL 𝑝𝑛𝑠 = 𝑝𝑛𝑠 × (1 − 𝑝𝑟𝑜𝑏𝐹𝑎𝑙𝑠𝑒(𝑛)); endfor

18. break;

19. case *T* :

20. 𝑝𝑛𝑠 = 𝑝𝑛𝑠 × (1 − 𝑝𝑟𝑜𝑏𝐹𝑎𝑙𝑠𝑒(𝑛)); break;

21. endswitch;

22. endfor

23. return Pns;

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

20

At the first round, ERT is traversed from bottom to

up, starting at the node ea. When a node with the operator

falls in {˅, ˄, *T *} is encountered and ea is not at its

leftmost branch, all the children of the node left to the

branch where ea is located (i.e., can cause shortcut

evaluation) along with the operator will be pushed to a

stack ST (lines 3-8). This process continues until it

reaches the root of the ERT. In the second round, the

algorithm pops ERT elements (i.e., event lists and

operators) iteratively from the ST, and meanwhile

calculates Pns. For example, in Listing 2, Pns for e4 is

calculated as (1 − 𝑝𝑟𝑜𝑏𝐹𝑎𝑙𝑠𝑒(𝑒2)) × 𝑝𝑟𝑜𝑏𝐹𝑎𝑙𝑠𝑒(𝑒3)
which indicates that e4 will get evaluated, only when e2

occurs while e3 does not.

Next, we calculate the energy cost per second of

sensor s after caching the atomic event ea to its sensor

platform. This includes two components: 1) the

transmission cost of using filtered push, and 2) the

sampling cost after using AAAS. To calculate the first

component, the edge monitors the probability that the

result of ea is evaluated to be different from the previous

evaluation (push data) over time, denoted as Pc. Then

this component of energy consumption is calculated as

𝐶𝑎𝑓𝑡𝑒𝑟
1 = 𝑃𝑐 ∙ 𝛼2 ∙ 𝑓𝑠.

To estimate the second component, the accuracy of

sensor data prediction cannot be foreseen by the edge

layer. However, we know that the sampling frequency fs’

falls in the range of [1/MSSL, fs]. That is, 𝑓′ = 𝜏 ∙
𝑓𝑠, 1/(𝑀𝑆𝑆𝐿 ∙ 𝑓𝑠) ≤ 𝜏 ≤ 1. The calculation of MSSL

is given in (4). Then, two strategies can be used in

estimating fs’. One is optimistic, which assumes that fs’

is 1/MSSL (i.e, 𝜏 = 1/(𝑀𝑆𝑆𝐿. 𝑓𝑠) and the other is

pessimistic, which assumes that fs’ equals to fs (i.e.,𝜏 =
1). Therefore, the second component of energy cost is

calculated as 𝐶𝑎𝑓𝑡𝑒𝑟
2 = 𝜏 ∙ 𝛽 ∙ 𝑓𝑠, and the overall energy

cost per second of sensor s after caching to the beneath

is

𝐶𝑎𝑓𝑡𝑒𝑟 = 𝐶𝑎𝑓𝑡𝑒𝑟
1 + 𝐶𝑎𝑓𝑡𝑒𝑟

2 = (𝑃𝑐 ∙ 𝛼2 + 𝜏 ∙ 𝛽) ∙ 𝑓𝑠 (6)

Now, caching evaluation model calculates the energy

saving rate after caching ea to the beneath layer and

compares the result with a positive constant threshold 𝜎

(counteract event caching overhead). If the saving rate

is higher than 𝜎, then the atomic event ea will be cached

to the beneath layer. Otherwise, it remains in the edge

layer and uses pull (after shortcut fails) to acquire sensor

data from the beneath layer. Then, the condition of

performing caching ea to the beneath is

𝐶𝑏𝑒𝑓𝑜𝑟𝑒 − 𝐶𝑎𝑓𝑡𝑒𝑟 = 𝑃𝑛𝑠 ∙ 𝛼1 + (𝑃𝑛𝑠 − 𝑃𝑐) ∙ 𝛼2

+ (𝑃𝑛𝑠 − 𝜏) ∙ 𝛽 > 𝜎
(7)

After ea is cached at the beneath layer, τ keeps being

tracked by the sensor platform and will be sent back to

the edge layer, if it is greater than its original value by a

certain amount (the actual energy saving by AAAS is

less than what is expected by AFCA-2). This will trigger

the AFCA-2 to re-evaluate the BCBEM for the cached

atomic event to decide if its caching needs to be revoked.

In addition, as we will explain in the next section, the

BCBEM requires to be evaluated periodically in order

to adapt to the dynamics from both the application and

data domain.

7.3 Description of AFCA-2

To maintain reliable and beneficial optimization

performance, system dynamics need to be monitored

and reacted to properly. These dynamics primarily come

from two domains - application and data, as we

summarize as follows:

Application domain dynamics. New event services

(i.e., ERTs) in the cloud are chosen to cache at the edge

layer by AFCA-1, or event services that are cached at the

edge layer are removed by AFCA-1. In either of the

above cases, we say that the application domain

dynamic is observed on the added or removed ERTs.

Data domain dynamics. Due to the dynamics of the

sensor data, parameters used to calculate the BCBEM

such as 𝑃𝑛𝑠 , 𝑃𝑐 and 𝜏 may change at runtime. For any of

these parameters, if the absolute difference between its

current value and the value used to calculate the

BCBEM exceeds a particular level (i.e., dynamics

observation threshold), the dynamics of the data domain

is said to be observed, meaning that the earlier caching

benefit estimated by AFCA-2 becomes unreliable.

Combined application and data domain dynamics. In

order to adapt to the dynamics from the data domain, the

Branch Permutation algorithm takes actions

periodically, which could change the structure of the

ERTs (application dynamics) cached at the edge layer.

The ERT structure change could consequently affect the

value of Pns for the atomic events of the ERT, which

makes earlier caching benefit estimated by AFCA-2

become unreliable.

Therefore, the AFCA-2 has to keep track of the

factors that are listed in the above three categories to

monitor the system dynamics. In order to adapt to any of

three categories of dynamics, we establish three specific

actions that need to be performed by AFCA-2:

1. Action A. Evaluating the BCBEM for all the atomic

events (leaves) of the affected ERT’s.

2. Action B. Based on the newly estimated caching

benefits, cache new atomic events to the beneath

layer, or

3. Action C. Revoke an earlier cached atomic event

from beneath, if the estimated caching benefit is

negative

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

21

Listing 3: Pseudocode of AFCA-2 Algorithm

Apparently, without any regulations, the level of

system dynamics determines the frequency of

performing the above actions. As discussed earlier,

unlike the cloud with elastic resource supply, edge

servers have limited resources (computing and

memory), which requires the AFCA-2 to be concerned

about the resource limit at the edge server, while

performing the A, B and C actions. To achieve this

requirement, we first examine and compare the resource

usage by action A, B and C via experiments (in the

experiment section) and from the results, we observed

the following fact:

Actions B and C use much more edge resources than A.

Based on this observation, we designed a dynamics

adaptation scheme in which action A is performed,

whenever the system dynamics is observed. After the

completion of action A, a set of action B and C are

created and enter standby mode (ready to be performed).

For each of these actions, a value ΔC is calculated as a

by-product of performing action A indicating the energy

saving that can be achieved by taking that action. For

action B, the value of ΔC is calculated in (7); and for

action C, the value of ΔC is the negation of the value

calculated in (7). Then AFCA-2 orders all the actions of

B and C by its ΔC in decreasing order, and

opportunistically performs these actions in sequence so

long as the current resource usage of the edge server has

not reached its maximum quota.

Based on above discussions, we describe the AFCA-

2 algorithm in Listing 3.

Algorithm: AFCA-2

 Gobal Variable: ActionList <action> // In decreasing order of Δc

Thread-1:

1. while an ERT t is observed to be affected by the system dynamics

2. for e in all of t’s atomic events

3. if t is not cached at beneath

4. Δc = Equation (7);

5. if Δc > 𝜎 (caching overhead constant)

 // Action (action_type, atomic event, Δc)

6. Action a = new Action (DO_CACHE, e, Δc);

7. insertIntoActionList (a);

8. endif

9. else

10. Δc = -Equation (7);

11. if Δc > 𝜎 (caching revocation overhead)

12. Action a = new Action (REVOKE _CACHE, e, Δc);

13. insertIntoActionList (a);

14. endif

15. end-if-else

16. endfor

17. endwhile

Thread-2:

1. while ActionList is not empty

 AND edge resource usage does not exceed max quota

2. Action a = ActionList.remove();

3. if a belong to action B

4. cache atomic event e in action a to the beneath layer;

5. else

6. revoke the caching of event e in action a from the beneath layer;

7. end-if-else

8. endwhile

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

22

7.4 The Effects of AFCA-2

Now we discuss the effects of performing AFCA-2 on

the energy consumption of the CEB-based cloud-IoT

systems. Given an event representation tree (ERT)

cached at the edge layer, through branch permutation

algorithm (BPA), events that act as the shortcut enablers

(i.e., shortcut the evaluation of its sibling events) tends

to be evaluated earlier than the rest of the events (i.e.,

placed at the left branch of the tree). In AFCA-2, we can

infer from (7) that the nodes: 1) located at the left

branches (i.e., higher Pns), and 2) whose value change

slowly (i.e., lower Pc and τ) tend to be selected and

cached down to the beneath layer. Therefore, running

AFCA-2 after BPA causes the atomic events who play

as shortcut enablers and whose value changes relatively

slowly to be cached at the beneath layer. Because the

value of these events rarely changes, the sensor

sampling as well as the data transmission caused by

evaluating these events are greatly suppressed. Also,

even if the value of such event changes (would be sent

to the edge layer), it will be very likely to shortcut the

evaluation of its sibling events at the ERT. Therefore,

AFCA-2 can significantly suppress the system actions

and improve the energy efficiency of sensor devices in

the cloud-IoT system. In a later section, we validate the

above analysis through experiments.

8 EXPERIMENTAL EVALUATION

In this section, we quantify and measure the effects of

various combinations of the AFCA-1, BPA/Shortcut,

AAAS and AFCA-2 on energy saving of the sensor

devices in the cloud-IoT systems utilizing our CEB

architecture. We first set up a prototype of CEB

architecture on which smart home sensor based

applications are deployed to monitor a variety of events.

To prepare test cases that reach city scale, we

synthesized a benchmark for both sensor data and cloud

applications based on a real dataset. It is noted that

evaluation of CEB scalability is not presented in this

paper. Initial scalability results can be found

elsewhere [32].

8.1 A Benchmark for Cloud-IoT Data and

Applications

We use our previously developed benchmark for large-

scale cloud-IoT systems explained with details in [30].

The data/application benchmark is for a smart home

cloud-IoT system with a scale of 2000 houses in which

a variety of applications (emergency-detection, security,

activity recognition, and healthcare) in the form of

events are created based on a huge set of household and

resident-worn sensors. It is based on the PLCouple1

dataset collected from the PlaceLab [22] and the events

and sensor data have been further synthesized to be

extended to 2000 smart homes.

Based on the data/application benchmark, we

investigate the energy-saving performance of our

proposed optimizations. To do so, we first create the

main metrics of sensor energy consumption for

performance evaluations.

8.2 Evaluation Metrics

One of the main performance metrics, which is

measured throughout all experiments, is the energy

saving rate Rsave of the specific optimization approach or

combination group, all with respect to the reference no-

optimization or “pure-pull” scheme. The energy saving

rate in all experiments is given by

𝐶𝑝𝑢𝑟𝑒−𝑝𝑢𝑙𝑙 =

∑ (𝛼1(𝑠) + 𝛼2(𝑠) + 𝛽(𝑠)) ∙ 𝑁(𝑠)

𝑠∈𝑆𝐸𝑁𝑆𝑂𝑅𝑆

(8)

𝐶𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 =

∑ (𝛼1(𝑠) 𝑁𝑟𝑒𝑐𝑣(𝑠)

𝑠∈𝑆𝐸𝑁𝑆𝑂𝑅𝑆

+ 𝛼2(𝑠) 𝑁𝑠𝑒𝑛𝑑(𝑠)

+ 𝛽(𝑠) 𝑁𝑠𝑎𝑚𝑝𝑙(𝑠))

(9)

𝑅𝑠𝑎𝑣𝑒 = 1 −
𝐶𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

𝐶𝑝𝑢𝑟𝑒−𝑝𝑢𝑙𝑙
 (10)

Equation (8) indicates the total energy cost for all the

sensors (i.e., SENSORS) in the cloud-IoT system by

using the “pure-pull” scheme. The 𝛼1(𝑠),
𝛼2(𝑠) and 𝛽(𝑠) denote the energy cost factors explained

earlier (in Branch Permutation Algorithm) for the

particular sensor s, and N(s) means the total number of

data requests received by sensor s during the

experiment. Equation (9) represents the total energy cost

for all the sensors by adopting a particular optimization

approach, where Nrecv(s) denotes the total number of

messages (packets) received by sensor s during the

experiment, Nsend(s) denotes the total number of

messages sent by sensor s, and Nsampl(s) represents the

total number of samplings acted by sensor s.

Another performance metric measured in our

experiments is the percentage of the atomic events

chosen by AFCA-2 to cache to the beneath layer (to

perform AAAS) among all the atomic events at the edge

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

23

Table 1: Four Experiment Study Groups

Experiment Groups Conversion from Gaussian and CGS EMU to SI a

1 Pure Pull

2 Add Shortcut Evaluation to group 1

3 Add BPA to group 2

4 Add AFCA-2 (selective push, AAAS) to group 3

Figure 7: Average energy saving rate for three experiment groups with different number of homes

Figure 8: Energy saving rate for three experiment groups along timeline (number of homes = 2000)

 layer. The increase or decline of this metric reflects the

growing inclination of AFCA-2 towards the AAAS or

Shortcut Evaluation algorithms respectively, which

consequently affects the push-pull envelop between the

edge and the beneath layer.

8.3 Performance Evaluation Results

We first present four groups of experiments; three of

which correspond to combinations of our optimization

approaches, and one being the reference, no

optimization (pure pull) experiment. Then we conduct

experiments for each group and compare their

performances. Furthermore, during the experiments, we

vary several parameters of the tested event set (e.g.,

dynamism of the events) to examine its effects on the

overall energy savings as well as the decision making by

AFCA-2 in selecting the atomic event for application

caching at the beneath layer.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 500 1000 1500 2000

En
e

rg
y

Sa
vi

n
g

R
at

e

Number of Homes

Group 2 Group 3 Group 4

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40 45 50 55

En
e

rg
y

Sa
vi

n
g

R
at

e

Time (minute)

Group 2

Group 3

Group 4

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

24

Figure 9: Performance for a spectrum of dynamic events

Figure 10: Percentage of atomic events chosen to cache at beneath layer by AFCA-2 with different ratios of

dynamic events

8.3.1 Experiment I: Comparison of

Combination Group of Optimizations

Table I lists four experiment groups each evaluates and

analyzes the effect of applying a particular combination

of optimization methods that we propose in this paper.

We compared the performance (i.e., average Rsave) of

the experiment groups 2-4 by choosing the number of

smart homes that participate in the experiment as the

stress variable, and showed the results in Fig. 7. The

results demonstrate that as more optimization

algorithms are combined, the CEB system performance

is improved. Shortcut Evaluation was found to be

responsible for 16% of energy saving on average. The

Branch Permutation Algorithm add-on to application

caching showed marginal additional energy savings of

about 4%-5%. The combined application of Shortcut,

BPA and AAAS almost doubled the savings in energy to

a hefty 28%. In addition, from the experiment results,

changing the number of smart homes does not obviously

affect the performance of the optimizations.

Fig. 8 records the energy saving rate (i.e., Rsave) along

the timeline, when the number of homes is 2000. From

the results, we see that the performance of the

optimizations drops dramatically several times during

the experiments (e.g., at time 18 and time 45). These

drops result from the fact that the dynamics from the

data and applications render the optimization decisions

made earlier by the algorithms to stale. Therefore, re-

evaluations of these algorithms were performed after

these dramatic performance drops in order to adapt to

the system dynamics which causes the subsequent

optimization performance rise as shown in the figure.

Next we vary several parameters of the experiment

test cases in order to investigate how their changes could

affect the performance of the optimization approaches

on sensor energy saving and the application caching

decision made by AFCA-2. The first parameter we

choose is the event dynamics.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100

En
e

rg
y

Sa
vi

n
g

R
at

e

Ratio of Dynamic Events (%)

Group 2 Group 3 Group 4

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
ta

ge
 o

f
A

to
m

ic
 E

ve
n

ts

C
h

o
se

n
 t

o
 C

ac
h

e
 a

t
B

e
n

e
at

h

Ratio of Dynamic Events (%)

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

25

Figure 11: Performance for a spectrum of shortcut operators, AFCA-2 with different ratios of dynamic

events

Figure 12: Percentage of atomic events chosen to cache at beneath layer by AFCA-2 with different ratios of

shortcut operators

8.3.2 Experiment II:

Spectrum of Dynamic Events

To validate the reaction of the optimizations to different

event dynamics, we manipulated the basic events we

created in the data/application benchmark by enlarging

or reducing the range of query specified by their atomic

events to reduce or increase the event dynamic changes

respectively. We classify the events into two types:

dynamic event, with the average rate of event value

change higher than 0.20/sec, and static event, with the

average rate of event value change lower than 0.05/sec.

In the experiment, we changed the ratio of the dynamic

events in the basic event set and recorded the results in

Fig. 9. From the results, we can see that the performance

of shortcut and BPA did not change much, when the ratio

of the dynamic events varies. However, the performance

of AAAS declined obviously, as the ratio increases. This

is consistent with the results shown in Fig. 10 which

records the number of atomic events that are cached

from the edge to the beneath layer by AFCA-2 with

different ratio of dynamic events in the cloud-IoT

systems. From Fig. 10, fewer atomic events were chosen

by AFCA-2 to cache at the beneath layer, when their

value change rate is higher.

This is because, based on (7), higher event dynamics

cause higher 𝑃𝑐 and 𝜏 which makes AFCA-2 think the

benefit to be obtained from AAAS would be lower. And

since the benefits of shortcut evaluation obtained at the

edge layer are not affected significantly by the variation

of event dynamisms (as observed in Fig. 10), lower

benefit of AAAS will make AFCA-2 inclined to making

decision of not caching events from the edge to the

beneath layer.

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
ta

ge
 o

f
A

to
m

ic
 E

ve
n

ts

C
h

o
se

n
 t

o
 C

ac
h

e
 a

t
B

e
n

e
at

h

Ratio of Shortcut Operators (%)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100

En
e

rg
y

Sa
vi

n
g

R
at

e

Ratio of Shortcut Operators (%)

Group 2 Group 3 Group 4

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

26

8.3.3 Experiment III:

Spectrum of Shortcut Operators

In this experiment, we continue to examine the effects

of another parameter to the performance of the

optimization algorithms and the application caching

decision made by AFCA-2 – the ratio of “shortcut”

operator (i.e., AND, OR and *time*) among all the event

operators. Again, we recorded the result of energy

saving rate achieved by our optimizations at a spectrum

of ratio of shortcut operators in Fig. 11.

Fig. 11 shows that the energy saving rate achieved by

BPA-Shortcut increases along with ratio of shortcut

operators. However, its speed of growth is much larger

than the speed of growth for the overall benefit of the

combination of Shortcut/BPA and AAAS. Especially,

the adoption of AAAS does not help achieve much of

additional energy saving, when the ratio of shortcut

operators reaches around 60%. In Fig. 12, we record the

percentage of atomic events chosen to cache at beneath

layer by AFCA-2 with different ratios of shortcut

operators. The percentage of cached atomic event drops

from ~30% to 8%, as the ratio of shortcut operators

increases from 0% to 100%. This is because when the

number of shortcut operators is high, the change of

shortcut evaluation occurred at the edge layer is

consequently higher. Therefore, AFCA-2 thinks the

energy saving achieved from shortcut evaluation at the

edge layer would be superior to the savings from AAAS

for most of the atomic events.

9 CONCLUSIONS

IoT applications and web services are pressed to reside

on the cloud for many practical reasons especially in

large-scale IoT deployments, including reductions in

services cost and equal access to all stakeholders.

However, this will require extensive interactions

between the cloud (applications and services) and the

physical world (devices to be controlled and sensors

whose data is queried by the applications and services).

This will pose challenges to the scalability and power

awareness at scale. Edge computing offers great

opportunities to architect scalable and energy-optimized

Cloud-IoT systems. We exploit the edge to bring the

physical world and its data up closer to the cloud and to

cache “fragments” of the cloud applications down closer

to the physical world. We presented a three-tiered

waterfall optimization framework and developed four

optimization algorithms that exploit the combined effect

of data/application dynamics in managing scale and

reducing energy use for IoT deployments. The novelty

of the framework is the definition and use of “sentience-

efficiency” which is a dynamic utilization of joint

semantics of data/applications to reduce the work

needed to execute applications and minimize the

movements (data and applications). We investigated the

energy-saving performance using a cloud-IoT smart

home data/application benchmark of 2000 houses with

variety of applications based on a huge set of household

and resident-worn sensors, where the energy saving rate

of a specific optimization approach or a combination

group is the main performance metric and the percentage

of the atomic events chosen to cache to the physical

layer is another metric. The results demonstrate that as

more algorithms are combined, the more the system

performance is improved. The Shortcut Evaluation

introduced an average of 16% energy saving, the BPA

add-on to application caching showed an additional

energy savings of about 4%. The combined application

of Shortcut, BPA and AAAS showed energy saving of

28%. Changing the number of smart homes does not

obviously affect the performance. To validate the

reaction to event dynamics, we manipulated the range of

query.

REFERENCES

[1] Amazon EC2. https://aws.amazon.com/ec2/, Last

accessed 30th May 2019.

[2] ARIMA.https://en.wikipedia.org/wiki/Autoregre

ssive_integrated_moving_average. April 2019.

[3] Y. Bai, S. Liu, M. Sha, Y. Lu, and C. Xu, “An

energy optimization protocol based on cross-layer

for wireless sensor networks,” JCM, vol. 3, no. 6,

pp.27-34, 2008

[4] R. E: Bellman, Dynamic Programming. Princeton

University Press, Princeton, NJ, 1957.

[5] S. Chatterjea, and P. Havinga,, “An adaptive and

autonomous sensor sampling frequency control

scheme for energy-efficient data acquisition in

wireless sensor networks,” In DCOSS’08, pp. 60-

78, June 2008.

[6] C. Chen, and A. Helal, “Device integration in

SODA using the device description language,”

In 2009 Ninth Annual International Symposium

on Applications and the Internet, pp. 100-106,

July 2009.

[7] C. Chen, Y. Xu, K. Li, and S. Helal, “Reactive

programming optimizations in pervasive

computing,” In 2010 10th IEEE/IPSJ

International Symposium on Applications and the

Internet, pp. 96-104, July 2010.

[8] A. Deshpande, C. Guestrin, S. R. Madden, J. M.

Hellerstein, and W. Hong, “Model-driven data

acquisition in sensor networks,” In Proceedings

of the 13th VLDB, pp. 588-599, August 2004

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems

27

[9] S. Deugd, R. Carroll, K. Kelly, B. Millett, and J.

Ricker, “SODA: Service oriented device

architecture,” IEEE Pervasive Computing, vol. 3,

no. 1, pp.94-96, 2006.

[10] A. Feistel, M. Wiczanowski, and S. Stanczak,

“Optimization of energy consumption in wireless

sensor networks,” In Proceedings of ITG/IEEE

International Workshop on Smart Antennas

(WSA), pp. 26-27, 2007.

[11] S. A. Hashish, and A. Karmouch, “Topology-

based on-board data dissemination approach for

sensor network,” In Proceedings of the 5th ACM

international workshop on Mobility management

and wireless access, pp. 33-41, October 2007

[12] J. A. Hartwell, G. Messier, and R. J. Davies,

“Optimizing physical layer energy consumption

for wireless sensor networks,” In IEEE 65th

Vehicular Technology Conference, pp. 76-79,

April 2007.

[13] R. Jurdak, P. Baldi, and C. V. Lopes, “State-

driven energy optimization in wireless sensor

networks,” In Proceedings of 2005 Systems

Communications (ICW'05, ICHSN'05,

ICMCS'05, SENET'05), pp 356-363, August

2005.

[14] J. King, R. Bose, H. I. Yang, S. Pickles, S. and A.

Helal, “Atlas: A service-oriented sensor platform:

Hardware and middleware to enable

programmable pervasive spaces,” In Proceedings

of the 31st IEEE Conference on Local Computer

Networks, pp. 630-638, November 2006.

[15] D. Kossmann, “The state of the art in distributed

query processing,” ACM Computing

Surveys, vol. 32, no. 4, pp.422-469, 2000.

[16] C. Liu, K. Wu, and M. Tsao, “Energy efficient

information collection with the ARIMA model in

wireless sensor networks,” in IEEE Global

Telecommunications Conference, pp. 1-5,

December 2005.

[17] X. Liu, Q. Huang, and Y. Zhang, “Balancing push

and pull for efficient information discovery in

large-scale sensor networks,” IEEE Transactions

on Mobile Computing, vol. 6, no. 3, pp.241-251,

2007.

[18] A. Masoum, N. Meratnia, and P. J. Havinga, “A

decentralized quality aware adaptive sampling

strategy in wireless sensor networks,”

In UTC/ATC’12, pp. 298-305, September, 2012.

[19] K. Miranda, and T. Razafindralambo, “Using

efficiently autoregressive estimation in wireless

sensor networks,” In CITS’13, pp. 1-5, May

2013.

[20] Open Services Gateway Init. (OSGi 4.2)

Specification, osgi.org/download/r4v42/

r4.cmpn.pdf, August. 2009.

[21] OSGi Cloud Computing (RFP133).

https://www.osgi.org/bugzilla/show_bug.cgi?id=

114, April 2013.

[22] PlaceLab. http://web.mit.edu/cron/group/

house_n/data/PlaceLab/PlaceLab.htm, 2005.

[23] K. S. Prabh, and T. F. Abdelzaher, “Energy-

conserving data cache placement in sensor

networks,” ACM TOSN, vol. 1, no. 2, pp.178-

203, 2005

[24] M. A. Rahman, and S. Hussain, “Effective

caching in wireless sensor network,” In 21st

AINAW'07, pp. 43-47, May 2007.

[25] S. Reilly, and M. Haahr, “Extending the event-

based programming model to support sensor-

driven ubiquitous computing applications,”

In IEEE International Conference on Pervasive

Computing and Communications, pp. 1-6, March

2009.

[26] M. Satyanarayanan, V. Bahl, R. Caceres, and N.

Davies, “The case for vm-based cloudlets in

mobile computing,” IEEE pervasive Computing,

vol. 8, no. 4, pp. 14-23, 2009.

[27] A. Silberstein, R. Braynard, and J. Yang,

“Constraint chaining: on energy-efficient

continuous monitoring in sensor networks,”

In Proceedings of the 2006 ACM SIGMOD, pp.

157-168, June 2006.

[28] E. Souto, G. Guimarães, G. Vasconcelos, M.

Vieira, N. Rosa, C. Ferraz, and J. Kelner, “Mires:

A publish/subscribe middleware for sensor

networks,” Personal and Ubiquitous Computing,

vo. 10, no. 1, pp.37-44, 2005.

[29] Z. J. Tao, Z. H. Gong, Z. Z. OuYang, and J. Y.

Xu, “Two new push-pull balanced data

dissemination algorithms for any-type queries in

large-scale wireless sensor networks,” In 2008 i-

Span Conference, pp. 111-117, May 2008.

[30] Y. Xu, and A. Helal, “Scalable cloud–sensor

architecture for the Internet of Things,” IEEE

Internet of Things Journal, vol. 3, no. 3, pp.285-

298, 2015.

[31] Y. Xu, and S. Helal, “An optimization framework

for cloud-sensor systems,” In IEEE 6th

International Conference on Cloud Computing

Technology and Science, pp. 38-45, December

2014.

[32] Y. Xu, and S. Helal, “Application caching for

cloud-sensor systems,” In Proceedings of the 17th

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

28

ACM International Conference on Modeling,

Analysis and Simulation of Wireless and Mobile

Systems, pp. 303-306, September 2014.

[33] Y. Xu, S. Helal, M. Thai, and M. Scmalz, M.,

“Optimizing push/pull envelopes for energy-

efficient cloud-sensor systems,” In Proceedings

of the 14th ACM International Conference on

Modeling, Analysis and Simulation of Wireless

and Mobile Systems, pp. 17-26, October 2011.

[34] L. Ying, Z. Liu, D. Towsley, and C. H. Xia,

“Distributed operator placement and data caching

in large-scale sensor networks,” In Proceedings of

the 27th Conference on Computer

Communications, pp. 977-985, April 2008.

[35] Z. Zhang, M. Ma, and Y. Yang, “Energy-efficient

multihop polling in clusters of two-layered

heterogeneous sensor networks,” IEEE

Transactions on Computers, vol. 57, no. 2, pp.

231-245, 2008.

AUTHOR BIOGRAPHIES

Yi Xu received the Ph.D. degree

in 2014, in computer science

from University of Florida,

Gainesville, FL, USA, where he

worked at Mobile and Pervasive

Computing Laboratory. He is

currently working for Google,

Mountain View. His research

interests span pervasive and

mobile computing, programming

models and middleware for

cloud-IoT systems, and internet of things.

Abdelsalam (Sumi) Helal
received the Ph.D. degree in

computer sciences from

Purdue University, West

Lafayette, IN, USA. He is

currently professor and the

Chair in Digital Health,

School of Computing and

Communications, and the

Division of Health Research, Lancaster University, UK.

Before joining Lancaster University, he was professor in

the department of Computer and Information Science

and Engineering, University of Florida, USA, where he

directed the Mobile and Pervasive Computing

Laboratory and the Gator Tech Smart House. His

research interests span pervasive systems, the Internet of

Things, smart spaces, with applications to digital health

and assistive technologies for successful aging and

independence.

Choonhwa Lee received the

B.S. and M.S. degrees in

computer engineering from

Seoul National University,

Seoul, South Korea, in 1990 and

1992, respectively, and the

Ph.D. degree in computer eng.

from the University of Florida,

USA, in 2003. He is currently a

Professor with the Dept of

Computer Science and

Engineering, Hanyang University, Seoul, South Korea.

His research interests include cloud computing, peer-to-

peer and mobile networking and computing, and

services computing technology.

Ahmed E. Khaled received

the Ph.D. degree (August 18)

in computer science from

University of Florida, Florida,

USA. He is currently assistant

professor, computer science

department, Northeastern

Illinois University, USA. He

received the B.Sc. and M.Sc.

degrees in computer engineering from Cairo University,

Egypt in 2011 and 2013, respectively. His current

research interests include Internet of Things, smart

spaces, and ubiquitous computing.

