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ABSTRACT 
 

Opposite to the original cloudlet approach in which an edge is utilized to bring the cloud and its benefits closer 

to the applications, in cloud- and edge-connected IoT systems where the applications are deployed and run in the 

cloud, we exploit the edge somewhat differently, either by bringing the physical world and its data up closer to the 

cloud or by caching parts of the applications down closer to the physical world. Aggressive optimizations seeking 

substantial IoT energy savings are needed to maintain the scalability of large-scale IoT deployments and to stay 

within cloud cost constraints (avoiding costly elasticity when working with a budget limit). In this paper, we 

present a novel optimization approach that relies on the simple principle of minimizing all movements: movements 

of data from the IoT up to the Edge and Cloud, and movements of application fragments from the cloud down to 

the edge and the IoT itself.  Our approach is novel in that it involves and utilizes the dynamic characteristics and 

variability of both the data and applications simultaneously.  Another novelty of our approach is the definition 

and use of “sentience-efficiency” as a precursor to “energy-efficiency” for achieving truly aggressive savings in 

energy. We present our bi-directional optimization approach and its implementation in terms of algorithms within 

an architecture we name the cloud-edge-beneath architecture (CEB). We present a performance evaluation study 

to measure the impact of our optimization approach on energy saving. 
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1 INTRODUCTION 
 

As IoT proliferates into a massive scale, data and related 

services (applications) will be pressed to move to the 

 

cloud given its economies of scale and highly 

anticipated reductions in services costs. Another key 

advantage of the cloud is its ability to facilitate multi-

stakeholder access to the IoT applications, especially in 

smart city scenarios. The cloud central involvement in 

large scale IoT deployments will therefore emerge as an 

IoT architecture in which the physical sensors and 

devices must remain external to the cloud and cannot be 

farmed or provided dynamically as cloud resources. 

Considering the anticipated growth of IoT in terms 

of devices, many driven by smart city deployments 
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including smart parking, smart meters, etc. (over 20B by 

2020 according to Gartner), cloud-IoT systems must be 

carefully architected to scale up to such massive scale in 

devices and the applications that would utilize them. The 

extensive interactions between the cloud (IoT 

applications and services) and the physical sensors and 

devices will pose significant challenges to the scalability 

and energy demand of any cloud-IoT system. 

Cloud Scalability: Extensive external interactions 

between cloud services and the physical sensors could 

pose significant challenges to the scalability of the 

overall system. The excessive interactions could result 

in expensive cloud “attention”, not only per device such 

as a sensor, but per each sensor duty cycle. For instance, 

if sensors push data once every minute, then millions of 

sensors will produce billions of sensor-cloud 

interactions, daily; and billion sensors will produce 

trillion interactions. This will require tremendous 

processing power, memory resources and huge 

incoming/outgoing cloud traffic, leading to heavy and 

constant draw on cloud elasticity. As a result, the cloud 

economies of scale per sensor will not stand, rendering 

the cloud too expensive to pay for, given the existing 

use-based price models. 

Energy Constraint of IoT Devices: Unlike elastic 

cloud resources which can be provisioned on demand, 

devices and sensor cannot be provided dynamically. 

Many of these sensors and devices are battery-powered 

which makes them vulnerable to power drainage. In 

smart city scenarios, a sensor may be queried by 

hundreds of applications each of which requires constant 

evaluation of events based on the sensor readings. This 

could lead to continuous data sampling by the sensor 

nodes and transmission through the sensor network 

which incurs substantial energy cost to the sensor 

hardware as well as the entire sensor network. Without 

optimization, sensors’ energy could be depleted rapidly, 

failing services and making them unreliable and 

unavailable. 

Therefore, a structural basis for optimizing the 

cloud’s interactions with IoT sensors and devices is 

critically needed or cloud-IoT systems will not be 

dependable. To achieve this goal, both the supply of data 

from the IoT devices and the demand on this data from 

cloud applications will need to be carefully optimized. 

In [30], we proposed the cloud-edge-beneath (CEB) 

architecture to enable the efficient operation of such 

cloud-IoT systems. An event-driven application model 

was also proposed within the same framework in [32] to 

enhance the programmability of cloud-IoT system 

applications. In [31], we demonstrated the optimization-

enabling aspects of CEB and introduced the bi-

directional waterfall optimization framework whose 

goal is minimizing overall system dynamics to maintain 

acceptable levels of scalability and minimize sensor 

energy consumption. 

In this paper, we build on our prior work on CEB and 

its optimization framework and present an 

implementation of the bi-directional waterfall model in 

terms of detailed algorithms and an experimental 

evaluation study. Prior work focused on details of the 

CEB architecture, details of one algorithm – the 

application fragment caching algorithm (AFCA-1) 

summarized in this paper in section 4, and on the bi-

directional waterfall model. In this paper, we summarize 

and include our prior work, in addition to presenting the 

details of three other optimization algorithms in section 

5, 6 and 7.  The paper is organized as follows. In Section 

2, we present important related work and layout the 

optimization goals and guiding principles for large-scale 

cloud-IoT systems. In Section 3, we provide a brief 

summary of CEB and its event-driven application model 

(details can be found in [30] and [32] but a summary is 

provided here for readability). We also summarize the 

bi-directional waterfall optimization framework which 

is based on the event-driven instance of CEB. Our 

optimization approach and framework are implemented 

through several optimization algorithms presented in 

Sections 4, 5, 6 and 7, which aim to achieve a greater 

cloud scalability and energy-efficiency of sensor 

devices. In Section 8, we evaluate the performance of 

the proposed implementation of the optimization 

framework utilizing a semi-synthesized city-scale 

application/data benchmark. Conclusion and future 

work are presented in Section 9. 

 

2 RELATED WORK AND OPTIMIZATION 

PRINCIPLES 
 

2.1  Related Work 
 

Special data acquisition techniques have been developed 

for event detection supporting real-time wireless sensor 

network application execution. A typical scheme is 

polling [35], in which a data sink sequentially polls its 

underlying sensors for new data. In contrast, a bottom-

up sensor-driven model [25] has also been proposed, 

assuming that sensors are capable of pushing data to 

applications when an event occurs. To improve the 

efficiency of data delivery and enable data sharing, 

messaging paradigms such as publish/subscribe [28] and 

push-pull [17] have been widely adopted in sensor data 

acquisition. Optimization techniques to balance push 

and pull have been extensively discussed in [17][29][11] 

which focus on network topology and routing 

algorithms. Furthermore, a new model discussed in [7] 

utilizes the mixed push/pull strategy and takes 

advantage of the optimization opportunity provided by 

the event structure and its data coherency relaxations 
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(e.g., time-frequency sampling relaxations). However, 

none of the above approaches fit cloud-IoT systems.  

This is especially true when one considers the 

massiveness of sensors and applications that tend to be 

invisible to each other. In order to overcome this 

problem, we develop optimization strategies based on 

the relative characteristics of sensor requests (demand 

side from the cloud) and sensor data (supply side from 

beneath). These two features can be easily captured in 

our model and support our claims of effectiveness and 

significance in promoting our approach’s energy 

efficiency.  

In addition, among the traditional efforts to achieve 

sensor network efficiency (e.g., energy efficiency), a 

widely-studied approach is to minimize transmit power 

subject to some QoS constraints. It was pointed out that 

the total energy consumption should be understood as 

transmission energy consumption together with 

hardware (or circuit) energy consumption [10]. A 

certain transmit power level is necessary to satisfy 

certain QoS requirements. For instance, if the data-rate 

increases, the required transmit power level increases as 

well. However, at the same time, the transmission time 

decreases, so that the change in energy spent for 

transmission mirrors the resulting shift in the trade-off 

between transmission time and transmission power. 

Consequently, several efforts have been performed to 

minimize the energy consumption the optimal power-

time tradeoff subject to the given SIR requirements. On 

the other hand, the use of physical layer symbol error 

rate (SER) optimization was investigated to minimize 

wireless sensor network (WSN) energy consumption 

[12]. The study proposed a technique for SER 

optimization that balances the energy saving due to 

rising SER and the corresponding extra amount of 

energy spent on frame retransmission. Another energy 

optimization strategy was proposed for wireless sensor 

networks by which each node is able to select its optimal 

listening mode according to its local state, which 

reduces the global network cost [13]. To reduce energy 

cost in WSNs, a more comprehensive effort [3] focused 

on the computation of optimal transmission power, 

routing, and duty-cycle schedule that optimize the 

WSNs energy-efficiency. In that effort, a feedback 

algorithm computes the proper transmission power level 

between nodes; then, a routing protocol can make use of 

the transmission power as a metric by choosing routes 

with optimal power consumption to forward packets. 

Finally, the cross-layer routing information is exploited 

to form a duty-cycle schedule in the MAC layer. 

The optimization approaches discussed thus far 

share the limitation that the inputs of the optimization 

equation are solely derived from the metrics and other 

characteristics of the sensor network and sensor 

hardware. By bringing more influential inputs to the 

optimization problem, additional powerful optimization 

opportunities may be realizable; optimization 

opportunities were explored by investigating the 

characteristic of sensor data and by adopting a 

transmission suppression scheme, both temporal and 

spatial, to filter and aggregate data transmitted to the 

data sink in order to reduce energy cost due to radio 

transmission [27]. Also, a more sophisticated statistical 

model of real-world processes that maps the raw sensor 

data onto physical reality was introduced for the sensor 

query process [8]. This approach presented a model of 

real-world process, and claimed that sensors should be 

used to acquire data, only when the statistical model is 

not sufficiently rich to answer the query with acceptable 

confidence. The approach enables so called declarative 

query to achieve high energy efficiency for interacting 

with networks of wireless sensors. Both optimization 

schemes [27][8] take data and their models as additional 

inputs to the optimization equation and do achieve 

further energy efficiency. 

In this paper, we also utilize data models as a crucial 

additional input for optimization. Furthermore, we 

exploit an additional opportunity for optimization and 

improving system efficiency by taking cloud 

applications as input and part of the optimization choice 

variables. By simultaneously combing and learning the 

relative characteristics of both demand (applications) 

and supply (data), we are able to achieve powerful 

optimization opportunities and aggressive levels of 

scalability. To this end, we revisit and extend the 

traditional caching technology, which has been widely 

adopted for sensor-based computing [8][23], to improve 

the energy efficiency and latency of the overall sensor 

system. However, in any of these approaches, the 

entities to cache are usually limited to sensor readings. 

In the meantime, a novel caching scheme was proposed 

in which operators in query graph that carries the 

semantics from application layer can be pushed down 

inside the network to perform “in-network” processing 

with the intent of reducing data transmission [24]. In our 

work, to further improve the system scalability and 

energy efficiency, we extend the traditional caching 

scheme and propose an optimization framework in 

which both sensor readings and fragments of 

applications can be cached at different layers of CEB in 

opposite directions. Compared to query shipping widely 

adopted in distributed database systems whose stored 

data are relatively constant [34], data in cloud-IoT 

systems are dynamic and constantly changing. Such 

system dynamism poses a major challenge in deciding 

the proper application fragments and sensor data to 

cache in the system to achieve maximal scalability and 

energy efficiency, while adapting to the dynamic 

changes. 
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Additionally, caching application closer to the 

sensor layer allows the system to learn both the 

characteristics of sensor data and their consumers 

(applications) at the same time, which helps optimize the 

energy consumption of the sensor nodes. Data 

predictions could be utilized to skip sensor samplings to 

save sensor energy based on data correlation [33][15]. 

In this paper, we observe that with both the history of 

sensor data observed from the sensor layer and the 

application semantics retrieved from the application 

layer, a relatively low sampling rate can be achieved and 

adjusted based on a relaxed requirement of data 

accuracy (i.e., QoS). 

 

2.2  Optimization Principles and Goals 
 

Before exploring any specific optimization opportunity, 

we lay down simple principles specific to cloud-IoT 

systems that will guide our own algorithm designs.  

Generally speaking, capturing the dynamics of the 

monitored environment and reacting to changes are the 

goal of our model. In order to achieve this goal, sensor 

devices are sampled periodically by the applications in 

the cloud to capture the most updated environmental 

conditions and trigger corresponding actions once a pre-

specified event occurs.  However, relative 

characteristics of the sensor data and the relevant 

applications in the cloud, if learned by the system, can 

suppress the dynamism of the system in a way that only 

a subset of the data or data changes are required to be 

supplied to the application without affecting application 

behavior. This is similar to the principle of minimum 

amount of work leading to minimizing total energy 

consumption in the cloud-IoT systems without affecting 

the semantics of the applications. More precisely, our 

suppressed system dynamics approach aims at 

minimizing the actions (conveyance of data request 

down by the applications or movement of data up by the 

sensors) that must be taken in the cloud-IoT system, 

while at the same time ensuring the adequacy and 

timeliness of the minimized actions. 

Suppressed system dynamics promises greater and 

unprecedented energy-efficiency by additionally 

pursuing sentience-efficiency – a utilization of hidden 

joint semantics of data and applications that offers 

significant reduction in the work needed to execute IoT 

applications, and hence, reduces system dynamics and 

overall energy expenditure. For example, even if a 

sensor datum changes or if an application explicitly asks 

for certain data, nothing may need to be done in response 

in certain conditions, as we will show later in our 

optimization algorithms. Powering applications with the 

minimum sentience required is a precursor to doing so 

energy–efficiently. Hence, in our approach, we pursue 

energy efficiency in a sentience-efficient system. Any 

optimization solution that we pursue must follow the 

suppressed system dynamics principle, and hence must 

firstly be sentient-efficient, and secondly, energy-

efficient. This promises significant improvements in 

cloud scalability as well as significant savings in the 

total energy as will be explained later. 

In a cloud-IoT system, cloud applications are 

constantly requesting data, and as sensor data changes, 

sensors continuously send data up to the cloud. An 

efficient cloud-IoT system must utilize influential 

optimization opportunities exploiting the distributed 

nature of the multi-tiers across the paths of data and 

application requests. For instance, the system must 

adaptively match the mix of cyber data demands in the 

cloud from the various independent applications. It most 

certainly should exploit caching. It could optimize 

further, if it better understands the application behavior 

as well as the sensor data behaviors. To this end, in the 

cloud-edge-beneath (CEB) architecture, the Cloud layer 

senses the characteristics of the applications. The 

Beneath layer senses its own sensor data characteristics. 

The Edge layer is able to “solve the puzzle” and 

consolidate and share hints from the Cloud and Beneath.  

In the paper, we present detailed optimization ideas 

and algorithms to maximize sentience and energy 

efficiency within CEB. We are currently utilizing an 

eventing model for programming applications in CEB. 

The programming model could affect (enable or limit) 

the potential optimization space. We will consider other 

application models in the future, including 

publish/subscribe and functional programming models. 

We consider only application models that allow high 

degree of freedom in fragmenting and caching app 

fragments within the cloud-IoT system.  

 

 

3 SUMMARY OF CEB ARCHITECTURE  

AND BIDIRECTIONAL WATERFALL 

OPTIMIZATION FRAMEWORK 

 
In [30], we proposed the Cloud, Edge, and Beneath 

(CEB) which is an open architecture and framework for 

deploying and managing cloud-IoT systems whose 

applications are programmed, hosted and run on the 

cloud. The architecture organizes sensor nodes and the 

cloud along with intermediate edge layer and draws on 

well-established and extensible standards. Our current 

implementation is based on a specific application model 

that abstracts sensor data into events. Based on and 

limited to this specific application model, we proposed 

a bi-directional waterfall optimization framework [32]. 



 

 
 

 

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019 

 
10 

 

 

Figure 1: Overview of the CEB architecture 

 
3.1  CEB Architecture Overview 
 

CEB (Fig.1) is a multi-tier architecture which we 

collectively refer to as the “Cloud-Edge-Beneath” where 

the beneath refers to the physical sensors and their 

sensor platforms. Sensor platforms are low-power 

computing and communication platforms through which 

physical sensors connect to the edge. In practice, edge 

as an intermediate layer (e.g., standalone server) 

connects and manages a group of geo-related sensors. 

Finally, the cloud is where sensor-based services and 

applications are developed, deployed and run. This 

three-tiered structure aims to achieve scalability, since 

sensor networks operate independently, and are 

connected to the cloud through a scalable number of 

power-unconstrained edge servers.  

CEB is built on top of Atlas [14] which is an 

implementation of the service-oriented device 

architecture (SODA) [9]. Atlas automates the process of 

sensor integration through Atlas sensor platform and 

Atlas middleware which are eventually integrated into 

the cloud availed for use by cloud applications. Next, we 

explain each layer of CEB concisely. 

The beneath layer consists of the physical layer and 

the sensor platform layer. The former refers to the 

sensors and their “drivers” – documents written 

according to the Device Description Language (DDL) 

[6]. DDL documents contain the information required 

for automatic (on power-up) device integration, 

including service registration, discovery and the main 

operations of the sensor hardware. The sensor platform 

layer hosts one prong of the Atlas middleware which is 

responsible for identifying the connected devices, using 

their DDLs to generate corresponding sensor service(s) 

on the edge and beyond. 

The edge runs the one prong of the Atlas middleware 

which uses OSGi [20] as its basis to provide service 

discovery and configuration. The middleware includes a 

bundle generator, which, when contacted by an  
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 Equation (1):    

𝐸 = 𝑠𝑒𝑠𝑜𝑟(𝑣𝑎𝑙𝑢𝑒)|𝑠𝑒𝑛𝑠𝑜𝑟[𝑎, 𝑏]   
= |~𝐸  
= |𝐸𝐸|𝐸𝐸 
= |𝐸?𝐸: 𝐸 
= |𝐸 ∗ 𝑡𝑖𝑚𝑒 ∗ 𝐸 
= |{𝐸} 

(atomic event) 

(negation) 

(or/and) 

(condition operation) 

(sequence) 

(scope block) 

(1) 

 

 

 

Figure 2: ERT-based event evaluation 

 

initializing Atlas sensor platform, creates a pair of 

software bundles for each sensor: 1) edge sensor service 

to be hosted at the Atlas edge middleware, and 2) cloud 

sensor service to be passed through to the Atlas cloud 

middleware in the cloud layer. The pair of sensor 

services communicate with each other, enabling data 

and control between the edge and cloud layer.  

The Cloud layer is built on OSGi Cloud [21] in 

which applications are composed by loosely-coupling 

modules as OSGi services hosted at a distribution of 

cloud nodes. The cloud layer provides solutions that 

address the cloud-wide discovery, configuration and 

'wire-up' of services across different OSGi frameworks 

in the dynamic cloud environment into applications and 

services. To help explain our work in this paper, we give 

more details of two specific components in the cloud 

layer. 

Atlas Cloud Middleware (ACM): Cloud layer holds 

another prong of the Atlas middleware. For every edge, 

there exists a corresponding ACM at the cloud layer. It 

hosts the cloud sensor service bundles passed from the 

edge and, when the sensor is activated, provision them 

as services ready to be subscribed to by other cloud 

services or applications. ACM acts as the cloud gateway 

to the lower layers, and meanwhile, it hosts the most 

basic “clouding” of sensors based on which sensor-

based cloud applications can be built. 

Cloud Application Runtime (CAR): It is the container 

where application-specific services are deployed and 

managed. An application makes an invocation to the 

cloud sensor services at the Atlas cloud middleware to 

acquire raw sensor readings from the physical 

deployment. 

Note that both ACM and CAR are composed of 

OSGi frameworks which are installed and provisioned 

with cloud VMs. Optimizers and caches (application 

and data) are included at different layers to orchestrate 

distributed optimizations throughout the CEB cloud-IoT 

system.  

 

3.2  E-SODA Application Model 
 

CEB could support different application models to 

utilize different computational abstractions (e.g., events, 

activities, context, episode, and phenomena). In this 

paper, we use a specific application model – E-SODA 

which we first proposed in [30]. It abstracts sensor data 

into service events. E-SODA follows a rule-oriented 

paradigm in which an application is composed of a list 

of event/condition/action rules. In implementation, an 

application is a composition of interrelated services 

together performing the function of rule evaluation. 

Among those services, in this paper, we focus on the 

Event Services which subscribe to and invoke the cloud 

sensor services at the ACM to implement event-level 

abstractions of sensor data. An event service listens to 

the occurrence of a particular event denoted as its  
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Equation (2):  
 

𝑇𝐹𝑀 = < 𝑊, 𝐼𝑒 > 
     𝑊 = nil | date/time  date/time | time  time 

      𝐼𝑒  = Interval (# of seconds) between two successive 

evaluations  

date = MM/DD/YY 

time = hh:mm:ss 

(2) 

 

 

 

Figure 3: TFM applied to E1 and E2 in the smart parking application 

 

representative event which is a logical expression over 

sensor values. The event is evaluated against an event 

representation tree (ERT) based on real-time sensor 

values. Equation (1) shows a snippet of event composite 

grammars and Fig. 2 illustrates an ERT tree-based event 

evaluation to be explained shortly. 

In E-SODA, we introduce an application specific 

relaxation operator, the time/frequency modifier (TFM), 

which is intended to specify and vary the evaluation rate 

of events. In itself, TFM is an application-level 

optimization for what we call sentience-efficiency, and 

is specified as Equation (2). 

Fig. 3 illustrates an application of TFM to the car 

parking application depicted in Fig. 2. Initially, an event 

service S0 pulls sensor readings from parking and GPS 

sensors to evaluate event E. Later, a TFM (Ie=10s) is 

applied to E1 to relax the evaluation over parking 

sensors and another TFM is applied to E2 to relax the 

evaluation of GPS sensor to 1/20s. For all parking 

sensors connected to the same edge, one query can be 

issued to request data from all sensors and listens to one 

response that carries all sensor data. 

 

3.3  Bi-Directional Waterfall Optimization 

Framework 
 

Based on the CEB architecture and E-SODA application 

model, we summarize our bi-directional waterfall 

optimization framework [31]. In non-optimized cloud-

IoT systems, applications reside in the cloud requesting 

and processing data originating from the physical layer. 

To optimize cloud-IoT system operation, we propose a 

bi-directional waterfall optimization framework which 

allows not only data to move upward but also 

applications, or more precisely application fragments, to 

move downward and get cached at lower layers. Under 

the E-SODA application model in which sensor data are 

abstracted as events, application fragments that flow 

from the cloud to the lower layers are event 

representation trees (ERT). A cached event is evaluated 

at the layer it is cached to and its event value is pushed 

back to its upper layer only when it changes (we call 

this: selective push). For any event cached to a lower 

layer, a single “shadow event” is created to act as a 

proxy of the cached event to its consumer, and receiver 

of selective push messages. 

With application caching, cloud scalability can be 

addressed effectively due to the fact that the workload 

on the cloud is dispersed across a group of edges or even 

sensor platforms at the beneath layer. Also, optimization 

opportunities for the energy consumption of the sensors 

can be further provided, because a cloud-IoT system can 

obtain a local view of both data and applications at any 

layer, and therefore the interactions and interplays 

between application and data can be monitored and 

analyzed at these layers. We have investigated the 

following four optimization opportunities that can be 

applied at different layers of CEB (Fig. 4): 

 Cloud-to-Edge Application Fragment Caching 

Algorithm (AFCA-1) – cloud scalability: AFCA-1 

selects application fragments from the cloud to cache 

at the edge layer so as to maximize the potential 

benefits of reducing the usage of cloud resources, 

while staying within the limitation of the resources in 

edge servers. Unlike the cloud with elastic resource  

Event 
Service

Sensor 
Service

Event

S0

E2

E1

E

parking sensor 

services

…

…

GPS sensor 

service

…

S2S1

TFM: 

Ie=10s
TFM: 
Ie=20s

E1

parking spot sensor 

services

…

…

E2

S0
E

…

GPS sensor 

service



 

 
 

 

Y. Xu, S. Helal, C. Lee, A. Khaled: Energy Savings in Very Large Cloud-IoT Systems   
 

 
13 

 

 

Figure 4: Interplay of optimization algorithms 

 
supply, edge servers have limited resources. AFCA-1 

is explained in details in our prior work [32]. 

 Shortcut Evaluation and Branch Permutation 

Algorithm (BPA) – saving sensor energy: In 

processing the application fragments cached at the 

edge layer, shortcut evaluation can be utilized, when 

a subset of sensor data suffice to derive the occurrence 

of an event, saving the sensor power due to the 

skipped sensor samplings. BPA permutes the 

branches of the ERT affecting the order of sensor 

sampling and sub-event evaluation to enhance the 

chances of shortcutting. 

 Application-Aware Adaptive Sampling Algorithm 

(AAAS) – saving sensor energy: Atomic events 

defined in (1) imply application’s interest of sensor 

data. By caching atomic events (the most primitive 

application fragment) to the beneath layer, the sensor 

sampling rate can be minimized, while ensuring the 

adequacy and timeliness of sensor samplings required 

by the application semantics. 

 Edge-to-Beneath Application Fragment Caching 

Algorithm (AFCA-2) – saving sensor energy: AFCA-

2 selects the atomic events to cache at the beneath 

layer to achieve optimized energy efficiency of the 

sensor nodes. It takes into consideration both the 

BPA-guided shortcut evaluation as well as AAAS. 

 

3.4  Optimization Algorithms Interplay 
 

AFCA-1 selects events as fragments of the cloud 

applications and cache them at the edge layer. After 

events are cached at the edge layer, the BPA-guided 

shortcut evaluation is then activated at the edge to 

process the cached application fragments in an energy-

efficient way. Specifically, BPA structures the ERT of 

the cached events to permute the order of the leaf nodes 

(i.e., atomic events) with the goal of maximizing the 

occurrence of shortcut to achieve optimized energy 

efficiency of the sensor nodes. Then, based on the 

restructured ERT, AFCA-2 is performed to cache the 

atomic events as more fine-grained application 

fragments further down to the beneath layer. To assess 

if an atomic event should be cached at the beneath layer, 

AFCA-2 calculates the penalty caused by compromising 

shortcut evaluation on the event (if cached) as well as 

predicting the benefits to be achieved by performing 

AAAS at the beneath layer. If the benefit outweighs the 

penalty, atomic events is cached further down to the 

beneath layer, which consequently activates the 

execution of the AAAS algorithm to further reduce the 

energy cost of the sensor nodes. 

Due to the dynamics of the cloud applications and 

sensor data in the cloud-IoT systems, re-evaluation of 

the algorithms would be necessary periodically to adapt 

to any dramatic changes. Change at any layer of the CEB 

architecture may cause a series of executions or 

revocations of application caching, which requires very 

lightweight application caching schemes. In the 

remaining sections, we present all our optimization 

algorithms (except for AFCA-1 whose details can be 

found in [32]) and present a performance evaluation 

study of the proposed algorithms utilizing a smart-city 

scale application/data benchmark. 

 
4 CLOUD-AWARE, CLOUD TO EDGE 

APPLICATION FRAGMENT CACHING  

(AFCA-1) 
 

As discussed earlier, caching application fragments 

from the cloud layer to the edge layer reduces the 

workload of processing events on the cloud servers. In 

addition, with application caching, the data transmission 

between the cloud and edge layer switches from “pull” 

to “selective push” (edge pushes an event value to the 

cloud only when that value changes). This reduces the 

usage of bandwidth between the cloud and edge as well 

as computing and other resources in the cloud allocated 

for data transmission. Consequently, cloud scalability is 

improved as fewer cloud instances can be provisioned to 

handle the same amount of tasks. Meanwhile, caching 

events to the edge layer consumes its resources (e.g., 

processing and memory). Unlike the cloud whose  
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Figure 5: Event representation tree of an event e7 

 
 
resources can be provisioned on demand, edge layer 

consists mostly of commodity servers that have limited 

resources, and hence we cannot unlimitedly cache 

applications from the cloud. Guided by this discussion 

in our prior work [32], we proposed the AFCA-1 

algorithm to select the application fragments (i.e., 

events) from the cloud to cache down at the edge layer 

with the specific objective: to minimize the cloud 

dimension (i.e., number of cloud instances), under the 

constraint of staying within the resource limitations of 

the edge servers. 

Importantly, to understand how application caching 

affects the cloud scale, we have to determine the 

dominant resources that decide the dimension for all 

cloud components affected by application caching and 

examine how their usages are affected by application 

caching. Additionally, the dominant resources of the 

cloud components may change over time which makes 

them variables that affect the logic of AFCA-1. Earlier, 

we presented an experimental study that guides the 

determination of and adaptation to such critical  

variables [32]. 

 

5 POWER-AWARE PROCESSING OF 

APPLICATION FRAGMENTS  

AT EDGE LAYER 
 

Under the bi-directional waterfall optimization 

framework, after application fragments are cached down 

to the edge layer guided by AFCA-1, the edge layer 

thereafter obtains a local view of both application and 

sensor data which allows the interplays between 

application and data to be observed. Based on such 

analysis, optimizations can be carried out to process the 

cached application fragments in a power-efficient 

manner. In this section, we present two specific 

optimization algorithms which can be applied 

collaboratively to optimize sensor energy consumption 

in cloud-IoT systems. 

5.1  Motivation 
 

After an event is cached from the cloud layer to an edge 

guided by AFCA-1, the edge layer takes the 

responsibility of evaluating the cached event and 

reporting its value to the cloud applications. In our 

approach, event evaluation is performed by traversing 

the event representation tree. Fig. 5 shows an example 

in which the evaluation of e7 follows the path: e0-e1–e2–

e10–e9–e3-e4–e11-e8–e5–e6–e13–e14-e12–e7.  

With the help of data caching at edge layer, before 

sending sampling request to the beneath layer, the edge 

always checks the validity of the cached value for each 

sensor in an attempt to use the cache and avoid issuing 

sampling requests to the beneath layer. 

Consider the case where an event in the ERT has its 

two children connected by ˅ (logical or) such as e12. 

Obviously, e12 evaluates to true if either of its children 

(e5, e13 and e14) is true. So there is no need to evaluate 

the rest of the events when one has already evaluated to 

true. Similarly, no need to evaluate its siblings to the 

right when a child event has evaluated to false for both 

˄ composite events (e.g., e8 = e9 ˄ e11) and *T* 

composite events (e.g., e7 = e8 *T* e12). In addition, the 

conditional operation 𝑒a? 𝑒b: can also be converted to 

combination of logical OR and AND 

operations(𝑒a˄𝑒b)˅(˄). This inspires what we call the 

shortcut evaluation, similar to what can be found in 

compiler expression optimization, applied in the event 

evaluation process to reduce the number of events to be 

evaluated and hence the need to sample sensors for their 

data. Therefore, taking advantage of data caching and 

shortcut evaluation, energy consumption of sensor 

devices can be reduced without affecting the proper 

behavior of applications because of the skipped data 

transmissions and sensor samplings. This is an obvious 

form of sentience-efficiency. 

However, our optimization does not stop here. We 

consider another critical factor that affects the 
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performance of the event evaluation – the order in which 

the events in an ERT tree are evaluated. In our 

specification, the left branch always gets evaluated 

before its right branches. However, according to the 

shortcut evaluation strategy, there is a possibility that the 

value of an event can be derived by evaluating only part 

of its branches. In our event model, branches of an event 

that are connected by commutative operators ˄ or ˅ 

(parallel operations) can be swapped without changing 

the result of event evaluation. Therefore, which branch 

gets evaluated first can lead to very different 

performance in terms of the number of events to 

evaluate and the number of sensors to sample. We 

therefore propose the branch permutation algorithm that 

dynamically adjusts the structure of an ERT to 

manipulate the order in which the tree nodes are 

evaluated with the purpose of achieving further energy 

efficiency of sensor sampling. Such branch permutation 

scheme is motivated by the following observations: 

1. For an event whose children are connected by ˅, if its 

left child has high probability of being evaluated to 

true, then shortcut evaluation will be likely to take 

place. Similarly, for an event whose children are 

connected by ˄, if its left child has high probability of 

being evaluated to false, then shortcut evaluation will 

likely occur. 

2. Or if the branches are not balanced, we would prefer 

the shortcut evaluation to occur on the “heavier” 

branch in order to sample fewer sensors. 

3. The weight of branch is determined by not only the 

number of sensors in that branch but also the cache 

miss rate on those sensors (the lower cache miss rate, 

the less branch weight). Cache miss rate of a sensor is 

partially determined by its cache coherence (i.e., time-

to-live). In addition, sensors that are more frequently 

accessed by cloud applications (e.g., shared by large 

number of applications) tend to have lower cache miss 

rate. This is because their caches are updated more 

frequently so that, when their data are required, the 

data in the cache are more likely to be fresh. 

 

5.2  Branch Permutation Algorithm 
 

Based on above discussion, we give the branch 

permutation algorithm (BPA) as shown in Listing 1. 

Generally, BPA starts at the atomic events of an ERT and 

follows a bottom-up order to perform branch 

permutation for each event whose branches are 

connected by either ˄ or ˅ operator. For such an event, 

the algorithm estimates the respective costs of its 

evaluation under all the possible permutations of its 

branches (i.e., orders of evaluating its branches). 

Thereafter, the algorithm chooses the permutation with 

the minimum cost and reorder the event’s branches 

based on it. The minimum cost will become the cost of 

evaluating the event and will be saved and later on 

utilized to estimate the evaluation cost for its ancestor 

events. In order to perform the algorithm, two 

information have to be acquired by edge: 1) the 

probability of event being evaluated to false denoted as 

probFalse (event) for all leaf events of the ERT, and 2) 

cache miss rate of sensor s denoted as m(s) for all 

sensors whose data is required to evaluate the ERT. This 

information are derived by combining the semantics of 

both events and data which are obtained by edge through 

recording recent sensing history. 

According to our previous study [7], we consider 

sensor sampling and data transmission as the two major 

contributions to the overall energy cost of a sensor 

device, while neglect processing cost. We use coefficient 

1 and 2 to represent the energy consumption of a 

sensor receiving a data request from and sending data to 

edge respectively and use  to represent the energy cost 

for one sensor sampling (reading). 

Lines 1-2 calculate the sensor energy cost of 

evaluating a leaf event (atomic event) in the ERT where 

sensor data are pulled from the sensors for event 

evaluation. The cost of a pull operation is 1 + 2 +  

(receiving query + sending data + sampling) and it 

happens only when a cache miss occurs. Lines 9-23 deal 

with the node (i.e., event) in the ERT of which the 

operator connecting its branches are either logical OR or 

AND.  It first permutes all of the event’s branches and 

calculates the energy cost of evaluating the event under 

all possible branch permutations (lines 10-19). Then, the 

permutation that leads to the lowest energy cost will be 

chosen according to which the event’s branches are re-

ordered, and consequently, the lowest energy cost 

becomes the energy cost of evaluating the event node 

(lines 20-22). 

Line 24 in the algorithm computes the cost of 

evaluating an event whose children are connected by 

*T* (sequential operation). δ represents, if event’s left-

child event event.first_child occurs, the frequency of 

evaluating event’s right-child 

event.left_child.next_sibling during [tcurrent, tcurrent+T ]. 

Then the total number of times that the right child is to 

be evaluated can be from 1 to δ·T and the respective 

probabilities are 1-pr, pr(1-pr), pr2(1-pr),…, pr·δ·T·(1-pr) 

where pr stands for the probability that event’s right 

child is false. Then the expected number of times that 

event’s right child will be evaluated is Equation (3). 

Thus, the expected sensor energy cost of evaluating 

event is calculated as shown in line 29. 

In conclusion, by learning and consolidating hints 

from both applications (ERT) and the sensor data (cache 

coherence, probability of event), the branch permutation 

algorithm is able to gain insight as to how sensor data 

influence the behavior of applications (event evaluation)
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Listing 1: Pseudocode of Branch Permutation Algorithm (BPA) 

 
 

Equation (3):  

𝐸𝑛 = (1 − 𝑝𝑟) + 2𝑝𝑟(1 − 𝑝𝑟) + 3𝑝𝑟
2(1 − 𝑝𝑟) + ⋯+ 𝛿𝑇𝑝𝑟

𝛿𝑇−1(1 − 𝑝𝑟) 

= 
1 − 𝑝𝑟

𝛿𝑇

1 − 𝑝𝑟
− 𝛿𝑇 (3) 

 

BPA: double branchPermutation(event) 
 
 Parameter:  event Root of the tree 

Return: minimized estimated cost of evaluating the ERT 

Algorithm:  

1.  if  event · first_child == null    // event is an atomic event     

2.     return  (𝛼1 + 𝛼2 + 𝛽) ×𝑚(𝑠)𝑠∈𝑆(𝑒𝑣𝑒𝑛𝑡)  

3.  else 

4.    for child  = event · first_child ; child != null; child = child· next_sibling  

5.      costOfChild = branchPermutation (child); 

6.      eventCostMap.put(child, costOfChild);  // <event, evaluation cost> map 

7.   endfor 

8.   switch (event · operator)  

9.     case  ˅: 

10.    branchPermutations[n] = permute branches of event;  

11.    for i =1 to n   // get the ith permutation 

12.      cost[i] = 0; 

13.      c = 0;  probOfNotShortcut = 1; 

14.      for  child  = event · first_child ; child != null; child = child · next_sibling 

15.        c += eventCostTable.get(child); 

16.        cost[i] += probOfNotShortcut * (1 – probFalse(child)) * c; 

17.        probOfNotShortcut *= probFalse(child);  

18.       endfor 

19.      endfor 

20.      find minimum cost[k], 1 ≤ 𝑘 ≤ 𝑛 ; 

21.      re-order the branches of event according to branchPermutations[k]; 

22.      return cost[k]; 

23.    case  ˄ :  [ similar to case ˅ …] 

24.     case  *T * : 

25.       cl = eventCostMap.get(event · first_child); 

26.     cr = eventCostMap.get(event · first_child · next_sibling); 

27.    pl = probFalse (event ·first_child); 

28.    pr = probFalse (event · first_child· next_sibling) ;   

29.      return  𝑝𝑙𝑐𝑙 + (1 − 𝑝𝑙)[ 
1−𝑝𝑟

𝛿𝑇

1−𝑝𝑟
− 𝛿𝑇 𝑐𝑟 + 𝑐𝑙] 

30.    default: 

31.     cost = 0; 

32.     for i in eventCostTable.keyset();  cost += eventCostTable.get(i); endfor 

33.     return cost; 

34.   endswitch              

35. endifelse 
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and based on which it suppresses the demands of non-

influential sensor data without affecting the semantics of 

the applications. The performance of the BPA will be 

evaluated in the later section. 
 

6 POWER-AWARE PROCESSING OF 

APPLICATION FRAGMENTS AT  

BENEATH LAYER 
 

6.1  Motivation 
 

The edge can extract fine-grained application fragments 

from the cached event services and cache them in the 

beneath layer. Such fragments are the atomic events 

defined over a single sensor and define a desired range 

of data value (filters) associated with a sampling 

frequency (TFM). Caching atomic event to the sensor 

platform enables event processing at the beneath layer 

which pushes sensor data to the edge layer, only when 

the value of the cached atomic event is different from 

the last reported value. Such “filtered push” can further 

reduce the transmissions between the sensor platform 

and edge server, leading to lower sensor-node energy 

consumption. 

Furthermore, the cached atomic event 

metaphorically and practically implies the interest and 

increased curiosity of the application toward a scope of 

the sensor data domain. We observe that, since the 

application only cares if the sensor data falls in or 

outside of this scope, the sensor sampling rate can be 

reasonably and confidently set lower, when the current 

reading is far from the boundaries of the range compared 

to when the reading is close to the range boundaries. As 

a result, if we allow a sensor node to adapt its sampling 

rate at runtime, we can potentially save further sensor 

energy by reducing the sensor sampling rate, while 

guaranteeing data currency. 
 

6.2 Existing Adaptive Sampling Models  

and Algorithms 
 

Several existing algorithms were proposed to achieve 

adaptive sampling rate by exploiting the temporal 

correlation among sensor data, while maintaining high 

data quality. In our early work [33], we proposed a lazy 

sampling algorithm built on top of the CEB architecture 

in which the sensor sampling rate is adapted based on 

the dynamics of the sensor data. However, lazy sampling 

requires relatively high computation capacity for sensor 

platforms, especially when sensor data is highly 

dynamic. At the same time, several models are built 

based on the temporal correlation exhibited by sensor 

readings to predict sensor readings, of which the Auto-

Regressive Moving Average model (ARMA) [2] is 

widely adopted. When utilizing ARMA for data 

prediction, the trend or seasonal components in a history 

of sensor data needs to be first identified and removed 

to get stationary residuals. Thereafter, ARMA model 

can be applied to represent the residuals, and the 

subsequent sensor data can be predicted by forecasting 

the residuals and transform to the sensor reading. The 

ARMA model includes two parts, the auto-regressive 

part (AR) and the moving average part (MA). 

Researchers adopted the ARMA as the data 

prediction model to skip sensor sampling by predicting 

next sensor data [5]. The number of skipped samplings 

increases as long as the predictions remain to be 

considered accurate based on the proposed data quality 

model. Initially, the sensor platform samples the first w 

consecutive readings, and based on these readings, the 

reading for the epoch w+1 is not only sampled but also 

predicted. The two values are compared to check the 

accuracy of the current prediction. If the prediction is 

considered accurate, the ARMA model can be utilized to 

the next epoch. Therefore, the sampling of data at epoch 

w+2 will be skipped. Here, the model defines 

CurrentSkipSampleLimit (CSSL) which denotes the 

number of samples that will be replaced by prediction 

and is set to 1. For accurate predictions, the CSSL is 

incremented. Otherwise, it is set to zero and the sensor 

platform has to sample at each time stamp. However, a 

long sequence of correct predictions may increase the 

CSSL infinitely. To avoid this situation, the approach 

introduces a constant guard margin – 

MaximumSkipSamplesLimit(MSSL) to limit maximum 

number of samples that can be skipped. More 

specifically, MSSL is defined to be a constant 

(Buffersize–2) where Buffersize is the size of the buffer that 

holds the historical sensor data [5]. 

While ARMA model has a widespread adoption 

[5][16][19], none of the sampling algorithms are 

application-aware, missing out significant energy saving 

clues. In the next section, we propose an adaptive 

sampling approach that utilizes application semantic 

cached at the beneath layer to achieve greater energy 

efficiency of the cloud-IoT systems. 

 
6.3 Application-Aware Adaptive Sampling 

Algorithm (AAAS) 
 

In CEB, atomic events that represent the most primitive 

application fragment of E-SODA application model can 

be further moved from the edge layer and cached 

(evaluated) at the beneath layer. Atomic events 

transform a sensor value provided by a sensor to a 

Boolean, with lx and ux indicating the lower and upper 

boundary of the sensor data range within which the 

atomic event is evaluated to true. Such beneath layer 

application caching gives us an opportunity to improve 

the aforementioned adaptive sampling approach in two 

aspects:  
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Figure 6: Before/after atomic event e4 flows to the Beneath Layer 

 
First, we can improve the ARMA-based data 

prediction model by giving a less stringent accuracy 

validation model with lower requirement of data quality 

that is based on the range [lx, ux] of the sensor data 

specified by the cached atomic event. Therefore, a 

sensor does not track any small change in data readings, 

which results in fewer observations, and hence better 

energy efficiency. 

Second, instead of being a constant, MSSL can be 

adjusted based on the offset of the most recent sensor 

data relative to the range [lx, ux] of the sensor data 

specified by the cached atomic event. If the offset is 

large, the MSSL can be set larger, setting a larger 

maximum skip sampling length which affords higher 

energy savings at acceptable risk. On the other hand, 

MSSL is set smaller when the current sensor reading is 

closer to the boundary of the range [lx, ux]. The 

adjustment sets a more conservative (smaller) maximum 

skip sampling length, which would maintain data 

accuracy and could still save some energy. In addition, 

there is a chance that the duration of the cached atomic 

event (i.e., event value is true) is too short to be detected 

by the MSSL. 

Eventually, the MSSL for the data prediction is 

calculated as in (4), where d is the minimum offset of 

the most recent sensor data relative to the range [lx, ux], 

and m represents the MSSL value that can be calculated 

from the user specified maximal probability of missing 

an event together with the duration of the shortest 

possible event, and (Buffersize-2) makes sure that there 

are at least two non-predicted sensor reading in the 

sliding window. 

𝑀𝑆𝑆𝐿 = 𝑚𝑖𝑛(𝑑, 𝑚, 𝐵𝑢𝑓𝑓𝑒𝑟𝑠𝑖𝑧𝑒 − 2)           (4) 

As a result, when the sensor data is relatively static, 

the prediction of sensor data is more accurate. In this 

case, the sampling rate of a sensor node is adjusted based 

on the offset of the sensor reading and the boundaries 

defined by the cached atomic event. 

 

7 EDGE TO BENEATH APPLICATION 

FRAGMENT CACHING ALGORITHM  

(AFCA-2) 
 

7.1  Motivation 
 

According to the bi-directional waterfall optimization 

framework, through the caching of atomic events from 

the edge layer to the beneath layer, filtered push replaces 

pull to transmit sensor data from the beneath to the edge 

layer. The replacement of pull (reactive) with push 

(proactive) can also reduce the time latency spent to 

evaluate the ERT. Moreover, with the knowledge of 

application semantics at the beneath layer, application-

aware adaptive sampling can be performed to reduce the 

sensor sampling rate leading to better energy efficiency 

of the sensor nodes.  

However, caching an atomic event to the beneath 

layer may not always guarantee the best benefit that 

could be had, considering the potentially competing 

benefit of the shortcut evaluation that may occur only at 

the edge. For example, in Fig. 6, e4 is an atomic event 

defined over sensor s4 that specifies the interested range 

of the readings of s4 to be [l1, l2]. Before caching e4 at 

beneath, due to shortcut evaluation there is a chance that 

the evaluation of e4 is bypassed by the edge such as when 

e2 is evaluated to false or e3 is evaluated to true. 

However, after e4 is cached at the sensor platform in the 

beneath layer, e4 becomes blind and cannot contribute to 

any shortcut occurrences in the edge; it could only push 

its data to the edge for event evaluation, when the value 

of e4 is detected to change even if not needed. In this 

sense, caching an atomic event to beneath layer can 

reduce the transmission cost of sensor node by 
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Listing 2: Calculation of Pns for an event ea 

 
performing filtered push and reducing the sampling cost 

of sensor node by enabling AAAS; nevertheless, it 

sacrifices the reduction of energy consumption (both 

transmission cost and sampling cost) due to the 

ignorance of the occurrence of shortcut evaluation at the 

edge. Based on above reasons, a caching benefit 

evaluation model is proposed next to decide for each 

atomic event in the ERT cached at the edge whether it 

should be further cached at the beneath layer or remain 

in the edge for potential short cut evaluation. 

 

7.2 Beneath Caching Benefit Evaluation Model 

(BCBEM) 
 

The idea of the Beneath Caching Benefit Evaluation 

Model (BCBEM) is straightforward. Given an atomic 

event, it calculates the estimated overall energy saving 

that can be achieved by caching it to the beneath layer. 

To calculate the overall energy saving, AFCA-2 needs to 

consider the benefits brought by the filtered push and 

AAAS as well as cost of compromising shortcut 

evaluation. If the calculated energy saving is positive 

and exceeds a pre-specified threshold (counteract the 

application caching overhead), the atomic event will be 

cached at the beneath layer which causes the filtered 

push to replace pure pull for the data transmission of the 

sensor node and also starts the execution of AAAS. 

Again we assume that data transmission (receiving and 

sending packet) and sensor sampling are the two major 

contributors to the overall energy consumption of a 

sensor node. 

First, the energy consumed per second by sensor s to 

evaluate the atomic event ea (associated with sensor s) 

before caching it to the beneath is calculated in (5). 

Where α1, α2 and β are the energy coefficients of a sensor 

node defined in section 5. Pns indicates the probability 

of shortcut not occurring to ea on one event evaluation. 

fs denotes the evaluation frequency (1/sec) for ea defined 

by TFM. 

𝐶𝑏𝑒𝑓𝑜𝑟𝑒 = 𝑃𝑛𝑠 ∙ (𝛼1 + 𝛼2 + 𝛽) ∙ 𝑓𝑠                    (5)  

To calculate Pns for event ea, two-round traversal of 

the ERT is needed which is shown in Listing 2. 

Algorithm: Calculate Pns  for ea 
 

1.  node = ea, Pns =1;   

2.  while node . parent != null 

3.    if  node · parent · first_child !=  node  

           and node · parent · operator in { ˅, ˄, *T* } 

4.      for n = node · parent · first_child; n !=  node; n = n · next_sibling 

5.         eventL.add(n);  // eventL contains all siblings left to node 

6.       endfor 

7.       ST . push(eventL, node.parent.operator); 

8.    endif 

9.     node = node.parent; 

10. endwhile  

11. for (eventL, operator) = ST .pop()     

12.   switch operator                

13.     case ˄ : 

14.       for n in eventL   𝑝𝑛𝑠 = 𝑝𝑛𝑠 × 𝑝𝑟𝑜𝑏𝐹𝑎𝑙𝑠𝑒(𝑛);  endfor 

15.       break;  

16.     case ˅ :    

17.       for n in eventL   𝑝𝑛𝑠 = 𝑝𝑛𝑠 × (1 − 𝑝𝑟𝑜𝑏𝐹𝑎𝑙𝑠𝑒(𝑛));  endfor  

18.       break; 

19.     case *T* : 

20.       𝑝𝑛𝑠 = 𝑝𝑛𝑠 × (1 − 𝑝𝑟𝑜𝑏𝐹𝑎𝑙𝑠𝑒(𝑛)); break; 

21.   endswitch; 

22. endfor 

23.   return Pns; 
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At the first round, ERT is traversed from bottom to 

up, starting at the node ea. When a node with the operator 

falls in {˅, ˄, *T *} is encountered and ea is not at its 

leftmost branch, all the children of the node left to the 

branch where ea is located (i.e., can cause shortcut 

evaluation) along with the operator will be pushed to a 

stack ST (lines 3-8). This process continues until it 

reaches the root of the ERT. In the second round, the 

algorithm pops ERT elements (i.e., event lists and 

operators) iteratively from the ST, and meanwhile 

calculates Pns. For example, in Listing 2, Pns for e4 is 

calculated as (1 − 𝑝𝑟𝑜𝑏𝐹𝑎𝑙𝑠𝑒(𝑒2)) × 𝑝𝑟𝑜𝑏𝐹𝑎𝑙𝑠𝑒(𝑒3) 
which indicates that e4 will get evaluated, only when e2 

occurs while e3 does not. 

Next, we calculate the energy cost per second of 

sensor s after caching the atomic event ea to its sensor 

platform. This includes two components: 1) the 

transmission cost of using filtered push, and 2) the 

sampling cost after using AAAS. To calculate the first 

component, the edge monitors the probability that the 

result of ea is evaluated to be different from the previous 

evaluation (push data) over time, denoted as Pc. Then 

this component of energy consumption is calculated as 

𝐶𝑎𝑓𝑡𝑒𝑟
1 = 𝑃𝑐 ∙ 𝛼2 ∙ 𝑓𝑠. 

To estimate the second component, the accuracy of 

sensor data prediction cannot be foreseen by the edge 

layer. However, we know that the sampling frequency fs’ 

falls in the range of [1/MSSL, fs]. That is, 𝑓′ = 𝜏 ∙
𝑓𝑠,    1/(𝑀𝑆𝑆𝐿 ∙ 𝑓𝑠 ) ≤ 𝜏 ≤ 1. The calculation of MSSL 

is given in (4). Then, two strategies can be used in 

estimating fs’. One is optimistic, which assumes that fs’ 

is 1/MSSL (i.e, 𝜏 = 1/(𝑀𝑆𝑆𝐿. 𝑓𝑠 ) and the other is 

pessimistic, which assumes that fs’ equals to fs (i.e.,𝜏 =
1). Therefore, the second component of energy cost is 

calculated as 𝐶𝑎𝑓𝑡𝑒𝑟
2 = 𝜏 ∙ 𝛽 ∙ 𝑓𝑠, and the overall energy 

cost per second of sensor s after caching to the beneath 

is 

𝐶𝑎𝑓𝑡𝑒𝑟 = 𝐶𝑎𝑓𝑡𝑒𝑟
1 + 𝐶𝑎𝑓𝑡𝑒𝑟

2 = (𝑃𝑐 ∙ 𝛼2 + 𝜏 ∙ 𝛽) ∙ 𝑓𝑠       (6) 

Now, caching evaluation model calculates the energy 

saving rate after caching ea to the beneath layer and 

compares the result with a positive constant threshold 𝜎 

(counteract event caching overhead). If the saving rate 

is higher than 𝜎, then the atomic event ea will be cached 

to the beneath layer. Otherwise, it remains in the edge 

layer and uses pull (after shortcut fails) to acquire sensor 

data from the beneath layer. Then, the condition of 

performing caching ea to the beneath is 

𝐶𝑏𝑒𝑓𝑜𝑟𝑒 − 𝐶𝑎𝑓𝑡𝑒𝑟 = 𝑃𝑛𝑠 ∙ 𝛼1 + (𝑃𝑛𝑠 − 𝑃𝑐) ∙ 𝛼2                        

+   (𝑃𝑛𝑠 − 𝜏) ∙ 𝛽 > 𝜎 
(7) 

After ea is cached at the beneath layer, τ keeps being 

tracked by the sensor platform and will be sent back to 

the edge layer, if it is greater than its original value by a 

certain amount (the actual energy saving by AAAS is 

less than what is expected by AFCA-2). This will trigger 

the AFCA-2 to re-evaluate the BCBEM for the cached 

atomic event to decide if its caching needs to be revoked. 

In addition, as we will explain in the next section, the 

BCBEM requires to be evaluated periodically in order 

to adapt to the dynamics from both the application and 

data domain. 

 

7.3  Description of AFCA-2 
 

To maintain reliable and beneficial optimization 

performance, system dynamics need to be monitored 

and reacted to properly. These dynamics primarily come 

from two domains - application and data, as we 

summarize as follows: 

Application domain dynamics. New event services 

(i.e., ERTs) in the cloud are chosen to cache at the edge 

layer by AFCA-1, or event services that are cached at the 

edge layer are removed by AFCA-1. In either of the 

above cases, we say that the application domain 

dynamic is observed on the added or removed ERTs.  

Data domain dynamics. Due to the dynamics of the 

sensor data, parameters used to calculate the BCBEM 

such as 𝑃𝑛𝑠 , 𝑃𝑐 and 𝜏 may change at runtime. For any of 

these parameters, if the absolute difference between its 

current value and the value used to calculate the 

BCBEM exceeds a particular level (i.e., dynamics 

observation threshold), the dynamics of the data domain 

is said to be observed, meaning that the earlier caching 

benefit estimated by AFCA-2 becomes unreliable. 

Combined application and data domain dynamics. In 

order to adapt to the dynamics from the data domain, the 

Branch Permutation algorithm takes actions 

periodically, which could change the structure of the 

ERTs (application dynamics) cached at the edge layer. 

The ERT structure change could consequently affect the 

value of Pns  for the atomic events of the ERT, which 

makes earlier caching benefit estimated by AFCA-2 

become unreliable. 

Therefore, the AFCA-2 has to keep track of the 

factors that are listed in the above three categories to 

monitor the system dynamics. In order to adapt to any of 

three categories of dynamics, we establish three specific 

actions that need to be performed by AFCA-2: 

1. Action A.  Evaluating the BCBEM for all the atomic 

events (leaves) of the affected ERT’s. 

2. Action B. Based on the newly estimated caching 

benefits, cache new atomic events to the beneath 

layer, or 

3. Action C. Revoke an earlier cached atomic event 

from beneath, if the estimated caching benefit is 

negative
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Listing 3: Pseudocode of AFCA-2 Algorithm 

 
 

Apparently, without any regulations, the level of 

system dynamics determines the frequency of 

performing the above actions. As discussed earlier, 

unlike the cloud with elastic resource supply, edge 

servers have limited resources (computing and 

memory), which requires the AFCA-2 to be concerned 

about the resource limit at the edge server, while 

performing the A, B and C actions. To achieve this 

requirement, we first examine and compare the resource 

usage by action A, B and C via experiments (in the 

experiment section) and from the results, we observed 

the following fact:  

Actions B and C use much more edge resources than A. 

Based on this observation, we designed a dynamics 

adaptation scheme in which action A is performed, 

whenever the system dynamics is observed. After the 

completion of action A, a set of action B and C are 

created and enter standby mode (ready to be performed). 

For each of these actions, a value ΔC is calculated as a 

by-product of performing action A indicating the energy 

saving that can be achieved by taking that action. For 

action B, the value of ΔC is calculated in (7); and for 

action C, the value of ΔC is the negation of the value 

calculated in (7). Then AFCA-2 orders all the actions of 

B and C by its ΔC in decreasing order, and 

opportunistically performs these actions in sequence so 

long as the current resource usage of the edge server has 

not reached its maximum quota. 

Based on above discussions, we describe the AFCA-

2 algorithm in Listing 3. 

Algorithm: AFCA-2 

 Gobal Variable:  ActionList <action>  // In decreasing order of Δc  

Thread-1: 

1.  while an ERT t is observed to be affected by the system dynamics 

2.    for e in all of t’s atomic events 

3.      if  t is not cached at beneath 

4.        Δc = Equation (7); 

5.        if Δc > 𝜎 (caching overhead constant) 

             // Action (action_type, atomic event, Δc) 

6.          Action a = new Action (DO_CACHE, e, Δc); 

7.          insertIntoActionList (a);  

8.        endif  

9.       else 

10.      Δc = -Equation (7); 

11.      if Δc > 𝜎 (caching revocation overhead) 

12.       Action a = new Action (REVOKE _CACHE, e, Δc);  

13.        insertIntoActionList (a); 

14.      endif  

15.     end-if-else 

16.    endfor 

17. endwhile 

Thread-2: 

1. while ActionList is not empty  

        AND edge resource usage does not exceed max quota  

2.   Action a = ActionList.remove(); 

3.   if a belong to action B 

4.      cache atomic event e in action a to the beneath layer; 

5.   else 

6.     revoke the caching of event e in action a from the beneath layer; 

7.   end-if-else 

8.  endwhile 
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7.4  The Effects of AFCA-2 
 

Now we discuss the effects of performing AFCA-2 on 

the energy consumption of the CEB-based cloud-IoT 

systems. Given an event representation tree (ERT) 

cached at the edge layer, through branch permutation 

algorithm (BPA), events that act as the shortcut enablers 

(i.e., shortcut the evaluation of its sibling events) tends 

to be evaluated earlier than the rest of the events (i.e., 

placed at the left branch of the tree). In AFCA-2, we can 

infer from (7) that the nodes: 1) located at the left 

branches (i.e., higher Pns), and 2) whose value change 

slowly (i.e., lower Pc and τ) tend to be selected and 

cached down to the beneath layer. Therefore, running 

AFCA-2 after BPA causes the atomic events who play 

as shortcut enablers and whose value changes relatively 

slowly to be cached at the beneath layer. Because the 

value of these events rarely changes, the sensor 

sampling as well as the data transmission caused by 

evaluating these events are greatly suppressed. Also, 

even if the value of such event changes (would be sent 

to the edge layer), it will be very likely to shortcut the 

evaluation of its sibling events at the ERT. Therefore, 

AFCA-2 can significantly suppress the system actions 

and improve the energy efficiency of sensor devices in 

the cloud-IoT system. In a later section, we validate the 

above analysis through experiments. 

 

8 EXPERIMENTAL EVALUATION 
 

In this section, we quantify and measure the effects of 

various combinations of the AFCA-1, BPA/Shortcut, 

AAAS and AFCA-2 on energy saving of the sensor 

devices in the cloud-IoT systems utilizing our CEB 

architecture. We first set up a prototype of CEB 

architecture on which smart home sensor based 

applications are deployed to monitor a variety of events. 

To prepare test cases that reach city scale, we 

synthesized a benchmark for both sensor data and cloud 

applications based on a real dataset. It is noted that 

evaluation of CEB scalability is not presented in this 

paper. Initial scalability results can be found  

elsewhere [32]. 

 

8.1  A Benchmark for Cloud-IoT Data and 

Applications 
 

We use our previously developed benchmark for large-

scale cloud-IoT systems explained with details in [30]. 

The data/application benchmark is for a smart home 

cloud-IoT system with a scale of 2000 houses in which 

a variety of applications (emergency-detection, security, 

activity recognition, and healthcare) in the form of 

events are created based on a huge set of household and 

resident-worn sensors. It is based on the PLCouple1 

dataset collected from the PlaceLab [22] and the events 

and sensor data have been further synthesized to be 

extended to 2000 smart homes. 

Based on the data/application benchmark, we 

investigate the energy-saving performance of our 

proposed optimizations. To do so, we first create the 

main metrics of sensor energy consumption for 

performance evaluations. 

 

8.2 Evaluation Metrics 
 

One of the main performance metrics, which is 

measured throughout all experiments, is the energy 

saving rate Rsave of the specific optimization approach or 

combination group, all with respect to the reference no-

optimization or “pure-pull” scheme. The energy saving 

rate in all experiments is given by 

 

𝐶𝑝𝑢𝑟𝑒−𝑝𝑢𝑙𝑙 = 

 

∑  (𝛼1(𝑠) + 𝛼2(𝑠) + 𝛽(𝑠)) ∙ 𝑁(𝑠)

𝑠∈𝑆𝐸𝑁𝑆𝑂𝑅𝑆

 
(8) 

 

 

𝐶𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 

 

∑ (𝛼1(𝑠) 𝑁𝑟𝑒𝑐𝑣(𝑠)

𝑠∈𝑆𝐸𝑁𝑆𝑂𝑅𝑆

+ 𝛼2(𝑠) 𝑁𝑠𝑒𝑛𝑑(𝑠)

+ 𝛽(𝑠) 𝑁𝑠𝑎𝑚𝑝𝑙(𝑠)) 

(9) 

 

 

𝑅𝑠𝑎𝑣𝑒 = 1 −
𝐶𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

𝐶𝑝𝑢𝑟𝑒−𝑝𝑢𝑙𝑙
                              (10) 

 
Equation (8) indicates the total energy cost for all the 

sensors (i.e., SENSORS) in the cloud-IoT system by 

using the “pure-pull” scheme. The 𝛼1(𝑠),
𝛼2(𝑠) and 𝛽(𝑠) denote the energy cost factors explained 

earlier (in Branch Permutation Algorithm) for the 

particular sensor s, and N(s) means the total number of 

data requests received by sensor s during the 

experiment. Equation (9) represents the total energy cost 

for all the sensors by adopting a particular optimization 

approach, where Nrecv(s) denotes the total number of 

messages (packets) received by sensor s during the 

experiment, Nsend(s) denotes the total number of 

messages sent by sensor s, and Nsampl(s) represents the 

total number of samplings acted by sensor s. 

Another performance metric measured in our 

experiments is the percentage of the atomic events 

chosen by AFCA-2 to cache to the beneath layer (to 

perform AAAS) among all the atomic events at the edge 
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Table 1: Four Experiment Study Groups 

Experiment Groups Conversion from Gaussian and CGS EMU to SI a 

1 Pure Pull 

2 Add Shortcut Evaluation to group 1 

3 Add BPA to group 2 

4 Add AFCA-2 (selective push, AAAS) to group 3 

 

 

 

Figure 7: Average energy saving rate for three experiment groups with different number of homes 

 

 

Figure 8: Energy saving rate for three experiment groups along timeline (number of homes = 2000) 

 

 layer. The increase or decline of this metric reflects the 

growing inclination of AFCA-2 towards the AAAS or 

Shortcut Evaluation algorithms respectively, which 

consequently affects the push-pull envelop between the 

edge and the beneath layer. 

 

8.3 Performance Evaluation Results 
 

We first present four groups of experiments; three of 

which correspond to combinations of our optimization 

approaches, and one being the reference, no 

optimization (pure pull) experiment. Then we conduct 

experiments for each group and compare their 

performances. Furthermore, during the experiments, we 

vary several parameters of the tested event set (e.g., 

dynamism of the events) to examine its effects on the 

overall energy savings as well as the decision making by 

AFCA-2 in selecting the atomic event for application 

caching at the beneath layer. 
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Figure 9: Performance for a spectrum of dynamic events 

 

 
Figure 10: Percentage of atomic events chosen to cache at beneath layer by AFCA-2 with different ratios of 

dynamic events 

 

8.3.1 Experiment I: Comparison of 

Combination Group of Optimizations 
 

Table I lists four experiment groups each evaluates and 

analyzes the effect of applying a particular combination 

of optimization methods that we propose in this paper. 

We compared the performance (i.e., average Rsave) of 

the experiment groups 2-4 by choosing the number of 

smart homes that participate in the experiment as the 

stress variable, and showed the results in Fig. 7. The 

results demonstrate that as more optimization 

algorithms are combined, the CEB system performance 

is improved. Shortcut Evaluation was found to be 

responsible for 16% of energy saving on average. The 

Branch Permutation Algorithm add-on to application 

caching showed marginal additional energy savings of 

about 4%-5%. The combined application of Shortcut, 

BPA and AAAS almost doubled the savings in energy to 

a hefty 28%. In addition, from the experiment results, 

changing the number of smart homes does not obviously 

affect the performance of the optimizations. 

 
Fig. 8 records the energy saving rate (i.e., Rsave) along 

the timeline, when the number of homes is 2000. From 

the results, we see that the performance of the 

optimizations drops dramatically several times during 

the experiments (e.g., at time 18 and time 45). These 

drops result from the fact that the dynamics from the 

data and applications render the optimization decisions 

made earlier by the algorithms to stale. Therefore, re-

evaluations of these algorithms were performed after 

these dramatic performance drops in order to adapt to 

the system dynamics which causes the subsequent 

optimization performance rise as shown in the figure. 

Next we vary several parameters of the experiment 

test cases in order to investigate how their changes could 

affect the performance of the optimization approaches 

on sensor energy saving and the application caching 

decision made by AFCA-2. The first parameter we 

choose is the event dynamics. 
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Figure 11: Performance for a spectrum of shortcut operators, AFCA-2 with different ratios of dynamic 

events 

 
 

 

Figure 12: Percentage of atomic events chosen to cache at beneath layer by AFCA-2 with different ratios of 

shortcut operators 

 

8.3.2 Experiment II:  

Spectrum of Dynamic Events 
 

To validate the reaction of the optimizations to different 

event dynamics, we manipulated the basic events we 

created in the data/application benchmark by enlarging 

or reducing the range of query specified by their atomic 

events to reduce or increase the event dynamic changes 

respectively. We classify the events into two types: 

dynamic event, with the average rate of event value 

change higher than 0.20/sec, and static event, with the 

average rate of event value change lower than 0.05/sec. 

In the experiment, we changed the ratio of the dynamic 

events in the basic event set and recorded the results in 

Fig. 9. From the results, we can see that the performance 

of shortcut and BPA did not change much, when the ratio 

of the dynamic events varies. However, the performance 

of AAAS declined obviously, as the ratio increases. This 

is consistent with the results shown in Fig. 10 which 

records the number of atomic events that are cached 

from the edge to the beneath layer by AFCA-2 with 

different ratio of dynamic events in the cloud-IoT 

systems. From Fig. 10, fewer atomic events were chosen 

by AFCA-2 to cache at the beneath layer, when their 

value change rate is higher. 

This is because, based on (7), higher event dynamics 

cause higher 𝑃𝑐  and 𝜏  which makes AFCA-2 think the 

benefit to be obtained from AAAS would be lower. And 

since the benefits of shortcut evaluation obtained at the 

edge layer are not affected significantly by the variation 

of event dynamisms (as observed in Fig. 10), lower 

benefit of AAAS will make AFCA-2 inclined to making 

decision of not caching events from the edge to the 

beneath layer.  
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8.3.3 Experiment III:  

Spectrum of Shortcut Operators 
 

In this experiment, we continue to examine the effects 

of another parameter to the performance of the 

optimization algorithms and the application caching 

decision made by AFCA-2 – the ratio of “shortcut” 

operator (i.e., AND, OR and *time*) among all the event 

operators. Again, we recorded the result of energy 

saving rate achieved by our optimizations at a spectrum 

of ratio of shortcut operators in Fig. 11. 

Fig. 11 shows that the energy saving rate achieved by 

BPA-Shortcut increases along with ratio of shortcut 

operators. However, its speed of growth is much larger 

than the speed of growth for the overall benefit of the 

combination of Shortcut/BPA and AAAS. Especially, 

the adoption of AAAS does not help achieve much of 

additional energy saving, when the ratio of shortcut 

operators reaches around 60%. In Fig. 12, we record the 

percentage of atomic events chosen to cache at beneath 

layer by AFCA-2 with different ratios of shortcut 

operators. The percentage of cached atomic event drops 

from ~30% to 8%, as the ratio of shortcut operators 

increases from 0% to 100%. This is because when the 

number of shortcut operators is high, the change of 

shortcut evaluation occurred at the edge layer is 

consequently higher. Therefore, AFCA-2 thinks the 

energy saving achieved from shortcut evaluation at the 

edge layer would be superior to the savings from AAAS 

for most of the atomic events. 

 

9 CONCLUSIONS 
 

IoT applications and web services are pressed to reside 

on the cloud for many practical reasons especially in 

large-scale IoT deployments, including reductions in 

services cost and equal access to all stakeholders. 

However, this will require extensive interactions 

between the cloud (applications and services) and the 

physical world (devices to be controlled and sensors 

whose data is queried by the applications and services). 

This will pose challenges to the scalability and power 

awareness at scale. Edge computing offers great 

opportunities to architect scalable and energy-optimized 

Cloud-IoT systems. We exploit the edge to bring the 

physical world and its data up closer to the cloud and to 

cache “fragments” of the cloud applications down closer 

to the physical world. We presented a three-tiered 

waterfall optimization framework and developed four 

optimization algorithms that exploit the combined effect 

of data/application dynamics in managing scale and 

reducing energy use for IoT deployments. The novelty 

of the framework is the definition and use of “sentience-

efficiency” which is a dynamic utilization of joint 

semantics of data/applications to reduce the work 

needed to execute applications and minimize the 

movements (data and applications). We investigated the 

energy-saving performance using a cloud-IoT smart 

home data/application benchmark of 2000 houses with 

variety of applications based on a huge set of household 

and resident-worn sensors, where the energy saving rate 

of a specific optimization approach or a combination 

group is the main performance metric and the percentage 

of the atomic events chosen to cache to the physical 

layer is another metric. The results demonstrate that as 

more algorithms are combined, the more the system 

performance is improved. The Shortcut Evaluation 

introduced an average of 16% energy saving, the BPA 

add-on to application caching showed an additional 

energy savings of about 4%. The combined application 

of Shortcut, BPA and AAAS showed energy saving of 

28%. Changing the number of smart homes does not 

obviously affect the performance. To validate the 

reaction to event dynamics, we manipulated the range of 

query.  
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