

Igor Leão dos Santos et al.: Data-Centric Resource Management in Edge-Cloud Systems for the IoT

29

Data-Centric Resource Management

 in Edge-Cloud Systems for the IoT

Igor Leão dos SantosA, Flávia C. DelicatoB, Paulo F. Pires B,

Marcelo Pitanga AlvesC, Ana OliveiraD, Tiago Salviano CalmonD

A Programa de Pós-graduação em Engenharia de Produção e Sistemas (PPPRO), Centro Federal de Educação

Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, Brazil, igor.santos@cefet-rj.br
B Programa de Engenharia de Sistemas e Computação (PESC), Universidade Federal do Rio de Janeiro (UFRJ),

Rio de Janeiro, Brazil, paulo.f.pires@gmail.com, fdelicato@dcc.ufrj.br
C Programa de Pós-Graduação em Informática (PPGI), Universidade Federal do Rio de Janeiro (UFRJ),

Rio de Janeiro, Brazil, mpitanga@gmail.com
D Dell EMC Brazil, Rio de Janeiro, Brazil, {ana.oliveira,tiago.calmon}@dell.com

ABSTRACT

A major challenge in emergent scenarios such as the Cloud-assisted Internet of Things is efficiently managing the

resources involved in the system while meeting requirements of applications. From the acquisition of physical data

to its transformation into valuable services or information, several steps must be performed, involving the various

players in such a complex ecosystem. Support for decentralized data processing on IoT devices and other devices

near the edge of the network, in combination with the benefits of cloud technologies has been identified as a

promising approach to reduce communication overhead, thus reducing delay for time sensitive IoT applications.

The interplay of IoT, edge and cloud to achieve the final goal of producing useful information and value-added

services to end user gives rise to a management problem that needs to be wisely tackled. The goal of this work is

to propose a novel resource management framework for edge-cloud systems that supports heterogeneity of both

devices and application requirements. The framework aims to promote the efficient usage of the system resources

while leveraging the Edge Computing features, to meet the low latency requirements of emergent IoT applications.

The proposed framework encompasses (i) a lightweight and data-centric virtualization model for edge devices,

(ii) a set of components responsible for the resource management and the provisioning of services from the

virtualized edge-cloud resources.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Resource management, Edge computing, Cloud-assisted IoT, Virtualization model

 1 INTRODUCTION

Cloud computing technology has revolutionized the way

end-users and enterprises gain access to computing

resources, enabling the on-demand allocation and

release of a wide range of services and resources. The

flexibility and business model provided by the cloud

 Open Access

Open Journal of Internet Of Things (OJIOT)

Volume 5, Issue 1, 2019

www.ronpub.com/ojiot

ISSN 2364-7108

© 2019 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

This paper is accepted at the International Workshop on Very

Large Internet of Things (VLIoT 2019) in conjunction with the

VLDB 2019 conference in Los Angeles, USA. The proceedings

of VLIoT@VLDB 2019 are published in the Open Journal of

Internet of Things (OJIOT) as special issue.

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

30

computing make this paradigm very appealing and

enable novel applications. Another technological trend

that has been gaining momentum recently is the Internet

of Things (IoT) [1], which enables the interconnection

with the Internet of the most varied physical objects,

instrumented by intelligent sensors and actuators. With

the possibility of addressing each physical object

individually and making it part of a global network, the

IoT has the potential to provide novel applications to

make life easier and healthier for citizens, to increase the

productivity of companies and to promote the building

of more intelligent and sustainable cities, environments

and countries.

A key challenge in IoT is efficiently managing the

system resources. IoT devices, such as sensor devices,

have limited computing and energy resources, and thus

are not able to perform sophisticated processing and

storing large amounts of data. Therefore, it is often

necessary to rely on more powerful devices to fully

perform the transformation process required by IoT

applications [9]. With its vast capacity of processing and

long-term storage, cloud computing is an appealing

platform to be combined with IoT to create complex,

large-scale, distributed, and data-oriented ecosystems.

However, some features of cloud computing make it

unsuitable to meet requirements of IoT applications.

The essentially centralized nature of the cloud does

not fit well with the inherently decentralized nature of

IoT. In IoT, data is often generated from geographically

distributed sources, and can be consumed by equally

dispersed users, often using devices that themselves are

also part of IoT. Blindly sending this distributed data for

processing and storage centrally in the cloud, then

forwarding it back to users near data sources, can result

in unwanted delays. For some applications, response

time is a critical quality requirement, and the latency and

unpredictability of communication with the cloud can

lead to performance degradation.

Support for decentralized data processing on devices

near the edge of the network, in combination with the

benefits of cloud technologies has been identified as a

promising approach to reduce communication overhead

and data transfer time (hence the latency for

applications). In this context, the conceptual approach

known as Fog [3] or Edge Computing [30] has emerged,

which advocates moving part of the computing and

storage resources closer to the edge of the network, in a

decentralized way.

Physical edge devices are heterogeneous in terms of

their capabilities and can be either resource-poor devices

such as access points, routers, switches, base stations,

and smart sensors, or resource-rich machines like a

“cloud-in-a-box”, or Cloudlets [27]. Edge devices may

perform several tasks, such as data preprocessing and

filtering, reconstructing raw data into a more useful

form, uploading only the necessary data to the cloud. In

addition, edge nodes can monitor smart objects and

sensors activities, keeping check on their energy

consumption. The edge consumes locally the portion of

data generated by sensors that require real-time

processing (from milliseconds to tenths of seconds).

Then, it transmits the rest of such data to the cloud, for

operations with less stringent time constraints (from

seconds to minutes). Therefore, edge computing allows

delivery of data with low latency. On the other hand, the

closer to the cloud, the longer the time scale, and the

wider is the geographical coverage. The cloud provides

the ultimate and global coverage and serves as a

repository for data for the duration of months or years,

besides allowing more complex data analytics.

The interplay of IoT, edge and cloud to achieve the

final goal of producing useful information and value-

added services to end users gives rise to a management

problem that needs to be wisely tackled. Both cloud and

edge computing strongly build on the virtualization

concept. However, virtualization of devices at the edge

needs to follow a lighter and more flexible approach to

meet the constraints and heterogeneity of devices and

exploit their specific features. The authors in [19] claim

that to fully achieve the potential of edge computing for

IoT, four concerns need to be addressed: abstraction,

programmability, interoperability, and elasticity. In

particular for a three-tier IoT-edge-cloud architecture, it

is crucial to provide simple and yet efficient

configuration and instantiation methods that are

independent of the technologies used by different IoT

and cloud providers.

We propose a novel resource management

framework for edge-cloud systems that supports

heterogeneity of both devices and application

requirements. The framework promotes the efficient

usage of the system resources while leveraging the Edge

Computing features, exploring the advantages of service

provision at the edge of the network, to meet the low

latency requirements of emergent applications. The

framework encompasses (i) a lightweight and data-

centric virtualization model for edge devices, (ii) a set of

components responsible for the resource management

and the provisioning of services from the virtualized

edge-cloud resources.

2 CHALLENGES IN EDGE-CLOUD ECOSYSTEMS

Considering a heterogeneous edge-cloud ecosystem,

built to serve multiple applications with different

requirements, the need arises to provide a framework to

manage the available resources in an efficient and cost-

effective way. The core issue of this problem is how to

allocate the resources available in the heterogeneous

edge-cloud system in order to accommodate the

Igor Leão dos Santos et al.: Data-Centric Resource Management in Edge-Cloud Systems for the IoT

31

requirements posed by multiple applications. At first

glance, this issue is similar to the typical resource

allocation problem, which has been exhaustively studied

in several areas of computing systems. However,

resource allocation for edge-cloud systems poses new

challenges that call for novel solutions, tailored for such

an emerging scenario. Examples of specific features are

the huge heterogeneity of the participant devices (from

tiny sensors to middle-tier gateways to powerful data

center nodes), the highly dynamic execution

environment, and the nature of the data generated by IoT

devices.

The complexity in the development of solutions for

resource allocation in edge-cloud attract the attention of

researchers in search of efficient computational

solutions to meet the requirements of emerging

applications (e.g., low latency, mobility, energy

efficiency, scalability, etc.) envisioned to execute on

such scenarios [3][36]. Solutions for resource

management, including resource allocation and

provisioning, are well established in the Cloud

computing field. However, in the context of Edge and

Fog computing, there are still many open issues in this

regard [25][10][35]. According to [35], there are no

distributed computing frameworks that fully and

properly manage edge node resources.

We claim that resource management is a key issue to

deal with the diverse nature of resources encompassed

in an edge-cloud system and to optimize the overall

system performance. Providing effective solutions to

this challenge will bring benefits on one hand, to end

users and on the other hand, to infrastructure providers

and device owners. In this sense, we propose a novel

approach for resource management in edge-cloud

systems.

2.1 Heterogeneous Devices

In the edge-cloud environment, multiple devices with

different processing capabilities exist and can

collaborate to meet the applications’ goals and

requirements. Powerful computers such as the ones

hosted in the cloud can rely on legacy virtualization

technologies without major issues, but devices in the

lower tiers might get their performance impacted

critically with these technologies. It is important, then,

to consider the heterogeneity of devices in the design of

the virtualization engine. Specifically, the resource

constrained nature of several types of devices at the edge

tier needs to be taken into account in any solution for

virtualization and resource management. Due to

resource constraints from edge devices compared to data

centers in the cloud, multiple edge devices often need to

somehow collaborate so as to accomplish intensive

application tasks by sharing the workload between them.

The resource management framework, supported by its

virtualization model, must enable such collaboration in

a natural way.

2.2 Heterogeneous Applications

In addition to the high heterogeneity of devices, multiple

applications with different functional and non-

functional (QoS-related) requirements can co-exist

using resources from the same underlying infrastructure.

Some applications might be more computationally

intensive, whereas others might have low latency

requirements, for example. Moreover, several

applications have severe restrictions on data security.

Data generated by users’ devices often contain personal

information, such as photos/videos taken by mobile

phones, GPS information on the user location, health

information sensed by wearable devices, and smart

home status. Processing and storage of sensitive data

must be handled carefully to avoid privacy issues. The

decision of placing a given service in one computational

node (located at the edge or the cloud for instance) must

consider the requirements of the specific applications

the node is serving. A resource management framework

must be able to handle different kinds of applications

with different (and sometimes even conflicting)

requirements.

2.3 Ultra-Large Scale

Edge-cloud ecosystems are complex environments

encompassing many heterogeneous components. One

major component is the myriad of devices acting as data

sources. Considering the increasing availability of smart

sensors, mobile phones, wearable and other IoT devices,

the resulting system may encompass hundreds to

millions of connected devices, producing a massive

amount of data to be processed and stored. Therefore,

any solution for resource management must be scalable

in terms of the number of computational nodes and the

number of application requests to be served. The ultra

large scale of systems brings several challenges mainly

regarding the coordination of the nodes actively engaged

in providing the required resources to meet the

application requests. It is important to mention that

several authors (as [7]) point out that a considerable

deficiency in current works in edge computing is the

lack of support for collaborative computation.

2.4 Data-Centric Nature

The current overabundance of data, generated by various

emerging applications as social media and IoT, has

caused several changes in how such data should be

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

32

processed and stored. Data generated by embedded

sensors and applications running on mobile devices in

users' personal space may not necessarily be sent blindly

to the remote cloud. There are new demands to shepherd

data within and across multiple tiers from the edge of the

network, through the core to the super data centers in the

cloud. Data may be shared, (pre)processed and cached

in local and/or edge nodes and then may transit to other

tiers of the infrastructure while being used, reused,

combined and re-purposed to derive value-added

information, analytical insights en route to being

consumed and possibly archived [28].

Processing in the multiple tiers of an edge-cloud

system needs to take advantage of node heterogeneity,

take into account the dynamism of the environment, and

also needs to consider the data content in decision-

making tasks. The execution of application-specific

functions, data fusion procedures, and knowledge

extraction can occur at various points along the path

between the data source and the cloud. Sometimes

results can be taken en route, without even requiring

additional forwarding to the cloud. For this, the content

of the data has fundamental value in decision-making

and intermediate processing. Furthermore, a piece of

data might be re-used by several applications in different

contexts, placed in different nodes.

In short, we argue that the data needs to be raised to

first-class citizens in these ecosystems. Therefore,

virtualization solutions for such environments must be

data-centric. Not only features like Virtual Machines

(VMs) and processing cores, commonly used in

traditional virtualization models, but the data itself, its

metadata and handling functions, need to be virtualized.

Moreover, VMs created with this data-centric view

should be placed on distributed physical nodes across

multiple tiers, not only at the cloud.

3 A NOVEL RESOURCE MANAGEMENT

FRAMEWORK FOR EDGE-CLOUD SYSTEMS

To address the aforementioned challenges, our proposal

comprises a software framework encompassing (i) a

light data-centric virtualization model for edge-cloud

systems, and (ii) a set of software components

responsible for the resource management and the

provisioning of services using the virtualized edge-

cloud resources.

3.1 LW-Dc4EC (Light Weight Data-Centric

Model for Edge-Cloud)

In this section, we detail LW-Dc4EC, our novel data-

centric virtualization model for edge-cloud systems. Its

goal is to offer a lightweight virtualization on top of

physical sensor and actuator nodes (here denoted as

PSAN), of Edge nodes (EN) and of Cloud Nodes (CN).

This model is supported by a three-tier architecture for

edge-cloud systems (shown in Figure 1). LW-Dc4EC

uses a set of different techniques for the creation of

virtual nodes. Six built-in, predefined types of virtual

nodes are initially provided (explained later and

depicted in Figure 2). However, since LW-Dc4EC was

conceived with extensibility in mind, new types can be

defined and easily incorporated in the model. A new

type is created by extending a virtual node super-class

available into the framework core library and template

files to configure the desired data type.

3.1.1 The Three-Tier Architecture

Figure 1 illustrates the architecture to support the

proposed virtualization model. It is composed of three

tiers: (i) Cloud tier (CT), (ii) Edge tier (ET), and (iii)

Sensor (or data source) tier (ST).

The Edge tier (ET) encompasses the edge nodes

(EN) whereas the Cloud tier (CT) encompasses the

cloud nodes (CN). Both tiers host the physical devices

of the ET and CT, respectively. The EN and CN are

virtualized by using traditional models for cloud and

edge virtualization. They have properties such as

processing speed, total memory, bandwidth and

geographical location. However, there are some

important differences between ENs and CNs. ENs are

less powerful devices than CNs, regarding the resources

available (e.g., memory capacity). Besides, they are

geographically closer to the data sources (for instance

sensors and IoT devices) than CNs. Another difference

is the centralized nature of the nodes at the Cloud tier,

while edge nodes are typically decentralized entities and

may leverage distributed and collaborative computing.

The distributed nature and the proximity of the data

sources make it possible to exploit context and location-

awareness capabilities in the edge tier. Thus, instead of

providing resources from a centralized and remote

infrastructure, one can explore the provision of

resources regionally distributed, either closer to the data

source, the data consumer, or both. This feature has the

potential to increase the efficiency of the usage of the

infrastructure and the quality of the user experience with

the services provided.

Igor Leão dos Santos et al.: Data-Centric Resource Management in Edge-Cloud Systems for the IoT

33

Figure 1: Three-tier architecture

In our architecture, we actively promote the

collaboration among edge nodes and the location-

awareness features. The nodes in the Edge Tier are

grouped in a hierarchical fashion, so that we have both

vertical and horizontal communication/collaboration

within the system [17]. To reach this goal, firstly, we

created hierarchical groups of edge nodes using an

appropriate hierarchy algorithm to promote vertical

communication/collaboration. In our solution, the

horizontal communication/collaboration only occurs

between the master edges nodes of each hierarchy. Thus,

we used the Weighted Voronoi Diagram (WVD) [14] as

a solution to build neighborhoods of the master edge

nodes in order to promote collaboration between them.

The WVD uses "sites" (geographic locations) on a map

to divide it into regions. Therefore, to use the WVD

algorithm, we need to provide the master edge nodes

geographic locations.

In the created hierarchy, the master nodes are

responsible for engaging slave edge nodes to serve an

application request. We also organize the master edge

nodes in a neighborhood, in order to enable the

collaboration among them. Thus, the master edge nodes

can perform a collaboration process with each other to

identify a group of edge nodes that can serve the

application request. With such hierarchical and

geographical organization of the nodes, it is possible (i)

to facilitate the collaboration between the edge nodes,

(ii) to assign physical nodes (at the Sensor Tier) to edge

nodes that are closer to them, thus minimizing the

consumption of resources with data and control

messages, since we keep the communications within a

limited geographic region.

Finally, the Sensors Tier (ST) encompasses a set of

constrained end devices deployed over a geographic

area that consist the data sources for the edge-cloud

system. Each device is heterogeneous regarding its

processing speed, total memory, and energy capacity.

Besides, end devices at this tier have the capacity of

providing sensing data and/or performing actuation

tasks over a region. Examples of devices are wireless

sensors grouped to compose Wireless Sensor and

Actuator Networks (WSANs), and smart devices such as

smart phones, smartwatches, etc.

In the considered architecture, we assume that the

CN is responsible for hosting the Virtual Node Service

Delivery (VNSD). It is an entry point to receive the user

requests. In addition, the CN is responsible for hosting a

centralized version of the Resource Allocation process.

The edge nodes (ENs) provide the major computational

units organized in two subsystems, namely

Virtualization Subsystem Manager (VSM) and Virtual

Node subsystem (VNS). The VSM encompasses the

ResourceAllocationMgr, ResourceProvisioningMgr,

VNInstanceMgr (VNIR) and Virtual Node Service

Delivery (VNSD) whereas the VNS includes the

RegistriesRepositoryMgr, Virtual Node Manager,

Virtual Node and Sensing&ActuationMgr. These units

are responsible for handling the user requests by

performing tasks to either provide sensing data or

perform actuations on the physical environment.

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

34

Figure 2: Types of VNs

3.1.2 Virtualization Model

The concept of virtualization is commonly adopted to

hide heterogeneity and complexity of resources to be

provided, thus facilitating their management and

utilization. The core idea of virtualization in an edge-

cloud system is to abstract away “physical resources”,

which can then be “composed” at a logical level to

support usage by multiple independent users and even

by multiple concurrent applications.

As traditional cloud platforms, edge computing is

also strongly built on the virtualization concept.

However, virtualization of resources at the edge tier

needs to follow a lighter and more flexible approach to

meet the constraints and heterogeneity of devices and to

exploit the specific features of these nodes. Moreover,

for emerging applications as IoT, besides processing,

storage and bandwidth capacities, and an extremely

valuable resource is the sensing data produced by the

IoT devices. Therefore, first-order entities in a

virtualization process are no longer just virtual machines

and computational cores, but also sensing data (raw or

in different processing states). An edge-cloud

virtualization model that addresses such applications

needs to consider this data-driven nature as well.

To meet the requirements of being lightweight, the

proposed virtualization model is based on microservices

and container technology. More specifically, for the

specification of our virtualization model, we adopted an

approach based on microservices [11][20] and for the

implementation of this model we propose adopting a

container-based solution [22][15].

Microservices are small, highly decoupled

applications, built on a single responsibility. They are

independently deployable, scalable, and testable and

they communicate with each other using well defined

application programming interfaces (API). In turn, the

container-based approach can be defined as a

lightweight virtualization technology for packaging,

delivering and orchestrating both software

Table 1: Types of VNs

Parameters Description

UF User function

Se Sensing

Ac Actuation

Df Data function

Ch Cache

Ev Event

infrastructure services and applications, aiming at

increasing interoperability and portability.

The motivation for using microservices in the

context of this work is to allow the development of

independent and lightweight components for running on

the edge nodes. We use containers to package such

components in lightweight images, thus facilitating their

distribution and managing. Another relevant feature of

containers is to facilitate their migration between

computational nodes, in the context of this work,

between edge nodes [33]. Component migration is an

important feature for many applications, mainly in the

presence of mobile nodes, since the edge nodes serving

an application running in the mobile device may become

too far to meet the required delay.

To meet the requirement of being data-oriented, and

thus more tailored for IoT applications, data is the core

entity for creating the virtual nodes in the proposed

virtualization model. We defined several types of virtual

nodes that represent data-driven resources to be

provided by the edge-cloud infrastructure. Applications

access the resources provided by our three-tier

architecture through the virtualization model.

The virtual node (VN) is the central element of the

model in LW-Dc4EC. The VN (Figure 2) is a software

instance providing data in response to application

requests directly at the edge of the network. It is

responsible for abstracting the computation and

communication capabilities provided by a set of

underlying nodes. Moreover, our VN is based on the

microservice concept, as it is small, highly decoupled,

and performs a single responsibility. Thus, each virtual

node is designed to implement one data type. Therefore,

our model already provides predefined types of VNs for

each one data type provided (Table 1).

A virtual node is formally defined as a tuple VN =

(RS, GL, NT), where RS represents the resource

provided by the VN; GL = (longitude, latitude) is the

geographic location of interest; and NT = {UF, Se, Ac,

DF, Ch, Ev} is a collection of VN types (Table 1).

Resources can be of simple type such as Temperature or

a complex type, such as the description of an event

Igor Leão dos Santos et al.: Data-Centric Resource Management in Edge-Cloud Systems for the IoT

35

Figure 3: Components for resource management in edge-cloud systems

 of interest (as Fire Detection, Fire Intrusion, Rain,

Target Detected, etc.). Hereafter, we describe each type

of VN. The VN of type user function (UF) allows the

user to inject code for performing custom operations

(application specific) over data.

The VN of type sensing (Se) provides a stream of

raw data sensed from the physical environment and has

a set of properties p: p = (fr, sr), where fr denotes the

data freshness and sr the sampling data rate. The data

stream can be retrieved from historical databases

maintained at the edge tier or by a direct connection with

the physical nodes at the sensor tier. The data freshness

[4] is an important requirement that a VN must verify

during the processing of the request to determine the

source of the data to send to the application. For

instance, if the last data delivered is in a valid range time

of data freshness, the VN transmits the data obtained

from the cache to the application. Otherwise, a fresh data

is gotten using the Sensing & Actuation sub-process

before forwarding it to the application.

The VN of type actuation (Ac) provides actuation

capabilities over the physical environment and has a set

of properties p: p = (op, tx), where op denotes the type

of actuation function provided by the VN and tx is the

frequency that the actuation command must be

performed by the system.

The VN of type data fusion (DF) provides value-

added information through the execution of queries

using a Complex Event Processing (CEP) engine [8] and

has a set of properties p: p = (af, sn), where af denotes

an information/aggregation function and sn the number

of samples to be used by af. This is a very powerful type

of VN since it allows defining application-specific

functions, domain-specific functions or generic event

processing functions.

The VN of type cache (Ch) is a subtype of DF that

adds the capability of persisting the results of af in

memory. The VN Ch has a set of properties p: p = (ts),

where ts denotes the timestamp of the execution of af

(that produced the data cached by VN Ch). This VN is

important to avoid unnecessary use of resources of an

EN when several requests are received for processing

the same query using the same parameters.

Finally, the VN of type event (Ev) aims to notify an

application or another VN whenever an event of interest

occurs by using a publish/subscribe communication

model [2][34]. VN Ev has a set of properties p: p = (rl),

where rl denotes a rule to trigger the event.

3.2 Resource Management Framework

The Resource Management activity in cloud computing

encompasses the resource allocation and resource

provisioning, among other activities. These are two key

processes and planned to ensure the operational

efficiency of the entire cloud system. Proper resource

allocation improves overall performance of the system

and avoids different kinds of bottlenecks, that could

otherwise degrade performance of the running

applications.

In this context, we propose a novel approach for

resource management in edge-cloud systems. An

innovative aspect of our proposal is to consider in an

integrated way the virtualization and the resource

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

36

management processes. We believe that, since edge-

cloud ecosystems essentially provides virtualized

resources, the efficient and cost-effective provisioning

and allocation of such resources are intrinsically

entangled with the virtualization process itself.

Therefore, our resource management framework

provides a set of components and respective activities

for the instantiation of VNs that encompass the

processes for (i) the resource allocation, (ii) the resource

provisioning, (iii) managing sensing & actuation tasks

(required for task scheduling), (v) data provisioning, and

(vi) collaboration process. Figure 3 summarizes the

relation among the components in charge of performing

such processes. In the following we briefly describe

each component in the context of the edge-cloud

infrastructure operational flow.

End users submit their requests to the edge-cloud

system using an API deployed at the Cloud or via an

Edge node. The arriving requests are handled by the

ResourceAllocationMgr (RA) component responsible

for implementing the Resource Allocation process

(described in the next section). When requests arrive via

Cloud, a centralized version of the RA component is

responsible for forwarding each request to the master

edge node (EN) capable of meeting it. Upon receiving

the requests, the RA executing in the EN must provide a

VN instance to meet such requests. To do so, the RA

component searches in its cache of VN instances and

queries all its available slave nodes by a VN matching

the received requests. When a matching VN is found, the

RA component forwards the request for the VN to

execute the tasks thus providing the requested data/event

as outcome. However, if a VN is not found or if the

available VNs are busy (with other, previously received)

then the ResourceProvisioningMgr component is

invoked.

The ResourceProvisioningMgr (RP) is the

component in charge of executing the action to select

and prepare the underlying physical infrastructure that is

capable of hosting and running a VN instance (a

container in our proposal) matching application

requests. The action of selecting physical nodes that

meet the requirements of data provisioning to compose

a virtual node is a mapping function, for which there are

some proposals in recent literature [32][18][6][23][31].

In our proposed framework, in order to provision a

VN, the RP component invokes the VirtualNode

Manager (VNM) component. The VNM is an auxiliary

component in charge of instantiating the appropriate

type of VN to meet the application request, besides

registering the new VN instance into the instance

repository. However, if the RP is not capable to provide

the necessary resources to instantiate a VN, the

following operational decisions are executed:

 If the EN is a slave node and the request has arrived

directly by the VNSD (entry-point), the request is

forwarded to its respective master node;

 If the EN is a master node and the request has

arrived by the point of entry or forwarded by a slave

node, the master node invokes the collaboration

process to find a neighbor node and then, forwards

the request to the neighbor master node. Whenever

the collaboration process is not able to find a

neighbor master node to meet the request, then it is

forwarded to the centralized Resource

AllocationMgr component at the Cloud.

Collaboration is the process responsible for enabling

the cooperative work and the division of the workload to

meet an application request among the edge nodes. This

process is available (deployed) into all the edge nodes,

but only the edge nodes classified into the hierarchy as

Masters are in charge of executing the collaboration.

Thus, the collaboration process provides for each master

edge node the capability of decision-making to engage

neighboring master edge nodes to allocate or provision

VNs whenever it is necessary.

Several authors (as [7]) identify a lack of support for

collaborative computation in edge-cloud systems. That

is, existing approaches do not seem to consider

situations when multiple edge devices can somehow

collaborate to accomplish an intensive task by sharing

the workload between them. In this sense, the proposed

framework fills a research gap by providing mechanisms

and building blocks to promote collaboration between

edge nodes.

When a VN receives a request from the RA to

process, it uses the services of the Sensing & Actuation

Mgr. It is the component implementing the process in

charge of managing all interactions between the VN and

the physical environment, i.e., the Sensor (data source)

Tier (ST). It is an independent component that

continuously gets data/events from the physical devices

and persists them into the historical database maintained

at the Edge tier. Its importance is to abstract the

complexity of the VN to deal with the highly

heterogeneous devices that directly get data/perform

actuations from/upon the physical environment.

Therefore, the SA provides the services for the VN to

acquire sensing data and/or send actuation commands

(depending on the type of VN).

The provided data can be either preprocessed or

unprocessed. Unprocessed data are retrieved from

historical databases or by directly accessing the physical

nodes at the sensor tier whenever fresh data is required.

The processed data are provided by a Complex Event

Processing (CEP) engine. The CEP [8] engine is

responsible for the execution of queries that making use

of single or a set of raw data as input.

Igor Leão dos Santos et al.: Data-Centric Resource Management in Edge-Cloud Systems for the IoT

37

Furthermore, the SA services providing data to VNs

make use of the Data provisioning process. The Data

provisioning process is responsible for abstracting the

complexity of dealing with operations for the data

collects from the physical devices, data persistence, data

update, data delete, and data retrieval in the historical

databases.

Figure 4 summarizes the operational flow of the

proposed framework. In the following section, we will

detail the components responsible for performing the

processes covered by the resource management

framework.

3.2.1 The Software Components and their

Behavioral View

Figure 5 illustrates the framework components, their

services, and relationships, as well as the tier in which

they are deployed, considering the 2 upper tiers (Cloud

and Edge) of our 3-tier architecture. The Edge Tier hosts

two subsystems, the Virtual Node Subsystem (VNS) and

the Virtualization Subsystem Manager (VSM).

The SAM provides connectors for abstracting the

heterogeneity of the physical objects/devices and

allowing the interaction with them. Devices or IoT

objects include but are not limited to smart sensors of

several types, home appliances, alarm systems, heating,

and air conditioning, lighting, industrial machines,

irrigation systems, drones, traffic signals, automated

transportation, and so forth. The connector is a

component that encompasses (i) a driver interface

responsible for interaction with the physical device, (ii)

services for data transformations, and (iii) handlers for

servicing requests.

The DSM component is responsible for storing the

data in the temporary database at the edge nodes, besides

providing the basic operations for persistence, update,

delete and retrieval data. VN is an abstraction used to

design six predefined types of VN components (VNSe,

VNac, VNdf, VNuf, VNcache, and VNevent) to handle

the application requests. The VN exposes the IVN

interface to provide its services. It should be mentioned

that, in our view of an edge-cloud system, the

infrastructure provider will offer its services through

formal or semi-formal agreements with users.

Therefore, a predefined set of virtual nodes can already

be provided a priori to meet the potential applications

domains or specific applications whose contracts have

already been established.

Some applications’ requirements may be met by the

services of a single type of virtual node while others will

require combined services of multiple types. As the

envisaged edge-cloud scenario is dynamic, applications

may eventually arrive with requirements that are not met

by the original set of VN types. Such applications may

require the specification of new types, which will be

Figure 4: Overview of the Resource Management operation process

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

38

extensions of the existing ones. UF is the component that

hosts the user defined functions. The DH component is

responsible for abstracting the complexity of executing

queries over sensed data.

The Virtualization Subsystem Manager (VSM)

encompasses six components: VNServiceDeliveryMgr

(VNSDM); ResourceAllocatorMgr (RAM);

VNIntanceMgr (VNIR); ResourceProvisioningMgr

(RPM); RegistriesRepositoryMgr (RR), Monitor. The

VNSDM goal is to receive requests that arrive at the

system. Since requests can enter the system via Edge and

Cloud tiers, this component is deployed in both tiers.

VNSDM offers a set of APIs through the IVNSD

interface to allow users: (i) request data/events to the

system, (ii) send an actuation command to the VN for

execution, and (iii) discover registered VNs. The

component RAM is in charge of implementing the

algorithm that allocates instances of Virtual Nodes

(VNs) to meet application requests. It offers the

ResourceAllocatorInterface (IRA) used to receive the

requests arriving via the VNSDM or forwarded by the

centralized RAM.

The VNIR is the component responsible for

managing a pool of VN instances in memory. RPM is

the component in charge of provisioning a new VN

instance whenever it is necessary. It provides its service

through the ResourceProvisionerInterface IRP. The

component RR is responsible for providing the services

to store, remove, and retrieve metadata related to the

data types registered into the system by the

Infrastructure Provider (InP). Its services are accessed

through the IConfig interface. The Monitor is the

component responsible for capturing a set of metrics and

providing them to the VNManager. It has two interfaces,

Figure 5: Framework software components

Igor Leão dos Santos et al.: Data-Centric Resource Management in Edge-Cloud Systems for the IoT

39

which are: IMonitorMetrics and INodeMetrics. The

metrics captured are (i) specific metrics of the VN

container (e.g., free memory, number of processors

used, threads running, total of threads, peak of threads),

obtained by using the INodeMetrics interface; (ii)

physical metrics of the edge node that hosts the

container (e.g., free physical memory size, the total

physical memory size and the number of available

processors), and (iii) network latency to reach this node,

calculated through a ping operation.

The following components are deployed in the

Cloud Tier: VNServiceDeliveryMgr (VNSDM);

SysManager (SM); and ResourceAllocationMgr

(RAM). The VNSDM and SM are entry points that

receive requests issued the End-User and by applications

via Infrastructure Provider (InP), respectively. The

VNSDM is the same component described in the Edge

tier but deployed at the Cloud tier to manage End-User

requests that enter the system via the Cloud tier. The SM

provides a set of Application Programming Interfaces

(APIs) through the LightWeightManagementInterface

(ILWM). It allows Infrastructure Providers (InPs) to

manage the edge-cloud system and for instance, execute

the registry operation of a VN by invoking the Registries

Repository component using the IConfig interface. The

RAM component deployed at the Cloud tier is the

centralized resource allocation component in charge of

engaging the master edge nodes in identifying the node

(slave or master) capable of meeting the received

application request.

3.2.1.1 Behavioral View

As mentioned in section 3.1.1, our architecture is

designed based on a mix of microservice [11] [20] and

container-based solutions [22][15]. According to [19],

the containerization emerges as an approach that brings

several benefits in an environment of high heterogeneity

and resource-constraints, such as Edge computing.

These benefits are related to the rapid instantiation,

initialization and fast resizing of the resources without

the overhead of restarting the system. Moreover, the use

of containers facilitates the distribution and

management of components on the edge nodes in

contrast to other virtualization solutions such as the

hypervisor [5]. In turn, the microservice is used to

develop the framework components with a loosely

coupled and highly cohesive design, thereby

implementing a unique responsibility.
During the boot of our virtualization system, the

components that encompass both the Edge tier (except

the Virtual Node) and Cloud tier are loaded and

initialized. It is worth to mention that the components of

both tiers can be loaded independently with each other.

Moreover, as our components are packaged in

containers, we assume that each edge node already has

the container images necessary to run the VNs.

Therefore, we avoid incurring any network overhead,

since there is no need of transferring container images

between edge nodes.
 Requests received at the Cloud tier are managed by

the entry points to meet requests issued by applications

via the Infrastructure Provider (InP) and the End-User

respectively. However, each component has specific

responsibilities. The VNSDM is the component in

charge of managing the End-User requests. It offers a set

of APIs through the IVNSD interface to allow users: (i)

request data/events to the system, (ii) send an actuation

command to the VN for execution, and (iii) discover

registered VNs. The VNSDM goal is to receive those

requests that arrive at the system (either at the Cloud tier

(CT) or the Edge tier (ET)) and forward them to the

ResourceAllocationMgr component. An

implementation of the VNSD is also deployed at the

Edge tier to provide an entry point for enabling the

application requests arrival directly at the ET without

going through the CT. The SM provides a set of

Application Programming Interfaces (APIs) through the

LightWeight Management Interface (ILWM). It allows

Infrastructure Providers (InPs) to manage the edge-

cloud system and for instance, execute the registry

operation of a VN by invoking the Registries Repository

component using the IConfig interface.
The centralized ResourceAllocationMgr (RAM),

deployed at this tier. The RAM deployed at the Cloud

tier is the centralized component in charge of engaging

the master edge nodes in iidentifying the one node (slave

or master) capable of meeting the received application

request. Whenever a suitable edge node is identified, the

RAM forwards the application request to it. Otherwise,

the request is refused. Successful requests are then

treated at the Edge tier by the local RAM, which offers

the ResourceAllocatorInterface (IRA) used to receive

the requests arriving via the VNSDM or forwarded by

the centralized RAM. Upon receiving the application

requests, the RAM invokes the VNInstanceMgr (VNIR)

using the IVNIR interface to find a VN instance

matching the request. When a VN instance that matches

the requests is not found, or if the available VNs are busy

(with other, previously received request), the RAM

should make a decision regarding the current request.

The decision should take into account the type of the

edge note: (i) if it is a slave edge node, then the request

is forwarded to its respective master edge node; (ii) if it

is a master edge node, then the horizontal collaboration

process is executed to find a neighbor master node

capable of provisioning a VN.
 Requests are then dealt by the

ResourceProvisioningMgr (RPM). Initially, the RPM

invokes the RegistriesRepositoryMgr (RR) using the

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

40

IConfig interface to seek a VN description that meets the

application request. Then, the RPM executes the action

to select and prepare the underlying physical

infrastructure that is capable of hosting and running a

VN instance according to the respective description.

However, there are 3 exceptions that should be handled:

(i) if a VN description is not found (so, the application

is requesting a service not currently being provided by

the edge-cloud infrastructure), or (ii) if a selected edge

node becomes unreachable or (iii) if a selected edge

node has not enough resources to host and running the

VN, then the RPM is not able to proceed, so it sends a

warning message in response to the application request.

Upon finalizing the above tasks with success, the

RPM invokes the VNManager (VNM) component using

the VirtualNode Interface (IVN) to instantiate the new

VN. Initially, the VNM invokes the RR component

through the IConfig interface to get the data type setting

related to the request. Then, it identifies the type of VN

and executes the VN instantiation. From now on the

behavior depends on the type of VN. The VN exposes

the IVN interface to provide its services upon receiving

the requests from the ResourceAllocationMgr. Also, the

VN operations are supported by engaging the Data

Handler, SAM, and DSM. The interaction among these

components is described as follows.

The VN of type actuation (VNac) invokes the SAM

component using the IPUT interface to perform the

requested actuation. The VN of type sensing (VNse)

interacts with the DSM for retrieving the data streams

from historical databases maintained at the Edge tier.

The VNse can also invoke the SAM using the IGET

interface whenever the data freshness of the stored date

does not meet the target QoS requirement. In this case,

fresh data must be acquired from the physical nodes at

the Sensor tier. The VN of type data fusion (VNdf) (and

its subtype VNcache) sends queries to the Data Handler

(DH) component to fulfil its task. The DH, by its turn,

queries the DSM, through the IEvent interface, to obtain

the data streams needed to answer the VNdf request. The

VN of type user function (UF) also interacts with the

DSM for retrieving the data from historical databases.

However, it performs user injected code (application

specific functions) over data before returning the output

data to the application. Finally, the VN of type event

(VNevent) receives event data from the DSM and sends

them to the application using a callback.

The behavior of the Sensor tier is centered around

the SensingandActuationMgr (SAM) component, which

starts, after the system booting, getting raw sensing data

from the Sensor tier and send them to the

DataStorageManager (DSM) to be stored.

4 THE IMPLEMENTATION ARCHITECTURE

USING EDGEX FOUNDRY

In this Section, we present the proposal of architecture

using Edgex Foundry. Figure 6 illustrates the

architecture composed of specific components from the

EdgeX Foundry framework [12] and third-party

components. We used the EdgeX Foundry Components

(EFC) for supporting the implementation of the

components that encompass only our Edge tier (ET)

since the Cloud tier (CT) has no support in EdgeX

Foundry. The EdgeX Foundry is an open source

framework designed for IoT Edge computing that

encompasses a set of plug-and-play and loosely coupled

microservice.

In LW-Dc4EC we are using the EFCs components to

compose: (i) the Sensing and Actuation Manager (SAM)

component tasks regarding the interaction with the

physical environment, such as getting sensing data,

performing actuation, and managing and

communicating with the Sensor tier; (ii) Data Storage

Manager (DSM) to manager the temporary database of

the sensing data. Moreover, other EFCs are used to

control the registry repository, export sensing data from

the temporary database to cloud and clear the temporary

database. The third-party components are used to (i)

provide historical data processed or unprocessed in

response to the application requests at the Cloud tier, (ii)

a lightweight and high-performance message system,

and (iii) a Complex Event Processing (CEP).

The EFC Device Services (DS) is the component

composing the SAM in charge of receiving raw sensing

data (after the boot of the system) from elements that

encompass the Sensor tier and send them for storage in

the temporary database using the EFC Core Data. Each

DS is an edge connector in charge of abstracting the

heterogeneity the Devices or IoT objects and allowing

the interaction with them. These devices or IoT objects

include, but are not limited to home appliances, alarm

systems, heating and air conditioning, lighting,

industrial machines, irrigation systems, drones, traffic

signals, automated transportation, and so forth.

The edge connector is a component that

encompasses the driver interface responsible for

interaction with the physical device, service for data

transformations, and handlers for servicing requests.

Moreover, the DS interacts with the EFC Metadata to

support its tasks. The SAM is also composed by EFC

Command. It is responsible for providing the essentials

interfaces to support the tasks of the Virtual Nodes (VN)

to send actuation commands (interface IPUT) and get

fresh data from the sensors directly (interface IGET).

The EFC Metadata is an important component used to

stores information about the services, devices and

Igor Leão dos Santos et al.: Data-Centric Resource Management in Edge-Cloud Systems for the IoT

41

Figure 6: Implementation architecture

sensors (type, and organization of data) that are used by

EFC Command, EFC Device Services, and EFC Core

Data.

Regarding the cloud tier, we can observe both the

LW-Dc4EC and third-party components. The third-

party components encompass both the Context Broker

and the Complex Event Processing (CEP) components.

The Context Broker [21] is used as the provider of the

historical data to the applications. The historical data are

data that are no longer necessary to be available at the

Edge tier. They are essential for applications that need

to perform, for instance, a temporal analysis of the data.

The Context Broker provides its services through NGSI

interface [13]. The NGSI is a protocol in charge of

providing a simple yet powerful open API that

implements a RESTful API for Context Management.

The CEP [8] is responsible for the execution of the

queries over raw data from the Context Broker to

provide data processed.

The EFC Configuration&Registry is the foundation

to implement the Registries Repository (RR). It provides

a database for persistence metadata besides the

essentials APIs (store, remove and retrieve) to the

management. The EFC Core Data is the foundation to

implement the DSM. It is the component in charge of

storing and retrieving the data stream from historical

databases maintained at the Edge tier. The EFC Core

Data provides a centralized persistence facility for data

readings collected at the Sensor tier and uses a REST

API for moving data into and out of the local storage. It

also provides a degree of security and protection of the

data collected while the data is at the edge.

The CEP at the Edge tier is the component in charge

of executing queries over sensed data for the data fusion

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

42

VN type (VNdf) using the Data Handling (DH)

component as intermediate. To provide the CEP with

data, the DH obtains the data stream from the EFC Core

Data through an asynchronous process (subscribing to a

queue) using ZeroMQ. ZeroMQ [37] is a high-

performance asynchronous messaging library, aimed to

be used in distributed or concurrent applications. The

VNS also includes the EFC Export Services, a

component used to distribute data for other components

or applications. In our architecture, it is used to move the

data stored in the temporary database from the EFC Core

Data to the Context Broker at the Cloud tier.

Finally, the EFC Scheduling is a component that can

be used to schedule invocation of a URL. It includes the

Scrubber microservice which cleans up the event and

reading data that has already been exported to the

Context Broker. Optionally, the Scrubber can also be

configured to remove the stale event/reading data not

exported.

5 RELATED WORK

Two recent works brought significant advances to the

field of light virtualization models for sensors/IoT

devices. Madria et al. [16] proposed a centralized

virtualization model for Clouds of Sensors (Cos), which

encompasses Virtual Sensors and provides sensing as a

service for the users. Unlike Madria et al. [16], we

implement a decentralized virtualization model tailored

to meet requirements of emergent IoT applications such

as low latency and location-awareness. In Santos et al.

[25], the authors proposed Olympus, a decentralized and

information fusion-based virtualization model for CoS.

Olympus uses information fusion to ensure that the

system will provide data at the abstraction level desired

by each application (either raw or aggregated according

to different levels from the feature to the decision level).

In Santos [26], the authors extended the original design

of Olympus to create a three-tier CoS infrastructure to

provision Virtual Nodes (VN) at the edge of the

network. Our proposal differs from Olympus and its

extension in two essential aspects. First, we provide a

process of collaboration between the VNs to actively

share fresh data with neighboring VNs. Thus, we avoid

re-reading the sensors to get the same data, thereby

improving response time, bandwidth consumption, and

sensor lifespan. Second, Olympus defines the VN as a

program able to perform a set of information fusion

techniques based on application requirements. Unlike

Olympus, our model is more generic and provides

predefined types of VNs representing each data type

provided to serve the application requests.

Shi et al. [29] provide a flat view of Fog Computing

that connects the cloud of sensors and smart devices via

mobile devices. Their proposed infrastructure offers and

consumes resources and services of mobile devices

through the REST pattern using the CoAP protocol,

thereby promoting the dissemination of data between

users in a decentralized way. Unlike such work, we

designed a new virtualization model capable of running

VNs for providing sensing data or performing actuation

in response to the application requests directly at the

edge of the network. Moreover, we implemented a

process of collaboration to allow VNs to share data with

their neighboring nodes without the user mediation,

thereby improving the request response time and saving

bandwidth.

Concerning the collaboration between edge nodes,

Taleb et al. [33] introduced the "Follow Me Edge". It is

a concept based on Mobile Edge Computing (MEC)

providing a two-tiered architecture to enable the

migration of containers across edge nodes according to

the localization of their mobile users. Although the

container migration emerges as a feasible solution for

the mobility requirement, the authors claim that the

selection of the proper technique to perform the

migration is a challenge to avoid both communication

latency and data synchronism issues. Our proposal

differs from Taleb et al. [33] by providing a

collaboration process to share only the sensing data

between edge nodes. Thus, we avoid transferring huge

container images through the network, since each edge

node already provides its services as VN containers

thereby saving bandwidth and decreasing latency.

Wang et al. [35] present the Edge Node Resource

Management (ENORM), a framework for handling the

application requests and performing the workload

offloading from the Cloud to running at the Edge

network. ENORM addresses the resource management

problem through a provisioning and deployment

mechanism to integrate an edge node with a cloud

server, and an auto-scaling tool to dynamically manage

edge resources. Although our work was inspired by

ENORM, our proposal is fully decentralized at the edge

network. Such feature enables the edge nodes to find or

provision the best VNs for providing either raw or

aggregated sensing data, or performing actuation in

response to the user application requests arriving from

the cloud or the edge of the network.

Sahni et al. [24] present a novel computing approach

named Edge Mesh integrating the best characteristics of

the Cloud Computing, Edge Computing, and

Cooperative Computing into a mesh network of edge

devices to decentralize decision-making tasks. It enables

collaboration between edge devices for data sharing and

computation tasks. However, the authors present several

open issues for implementing the communication

between different types of devices. Some open issues

concern how and which data should be shared between

edge devices, and the appropriate local to execute the

Igor Leão dos Santos et al.: Data-Centric Resource Management in Edge-Cloud Systems for the IoT

43

intelligence of the application at the edge of the network.

Our proposal leverages the advances promoted by the

Edge mesh approach and addresses the related open

issues by proposing all the steps for a collaboration

process at the edge tier for enabling the data sharing

between VNs.

6 FINAL REMARKS AND ONGOING WORK

The edge-cloud computing systems require a

lightweight virtualization approach, to deal with the

resource constraints of edge devices. Our proposal is

adopting a virtualization approach based on containers

and microservices, thus providing a virtualization model

with low overhead. Moreover, we propose a data-centric

approach, in which the virtual nodes are defined based

on the data (either raw or processed), instead of on

virtual machines or processing cores. Therefore,

resources offered by the edge-cloud infrastructure, as

well as application requests issued by end users, are

described based on the data to be provided/consumed.

Our data-centric virtualization model leverages data

reutilization among different application with similar

requirements in terms of data sources, thus promoting

higher return-of-investments for infrastructure

providers. Our virtualization model provides several

built-in types of virtual nodes that support the definition

of different types of data-driven resources that are

managed by the edge-cloud infrastructure. The

definition of data-centric virtual nodes allows for

various types of granularity in the content of a node, in

order to promote either the reuse (sharing) of resources

either the fulfillment of application-specific

requirements. A virtual node can be specified to be

tailored to the requirements of a single specific

application, an application domain, or represent a

generic function of data fusion or event detection. This

feature helps dealing with the high heterogeneity of

application requirements in edge-cloud systems.

The proposed software framework was specially

designed to address the inherent challenges of resource

management in edge-cloud ecosystems. The specified

software components and description of their behavior

will provide the underpinning and well-formed

guidelines for building concrete resource management

systems for these systems. Adopting a distributed,

hierarchical approach to the framework and supporting

collaboration between edge nodes enable addressing the

challenges of large-scale, device heterogeneity, resource

constraints, and also helps meeting application privacy

requirements. Hierarchical approaches are well known

for minimizing coordination overhead in large-scale

systems, since master nodes are responsible for

controlling their slave nodes, and message exchange is

restricted to a smaller region, rather than requiring

dissemination through all the nodes of the system. One

can also take advantage of the heterogeneity of nodes, in

order to assign the role of masters only to nodes with

greater capacity of resources.

Regarding security requirements, the high

availability of data produced by end users IoT devices

raises privacy issues. For example, analyzing photos and

videos generated by a smartphone can help identifying

terrorist attacks or other public safety situations. Being

able to have such data to be consumed by data analytics

applications in the cloud can bring countless benefits not

only to the device owner but to the community as a

whole. Therefore, on the one hand, it would be important

to share this data, but on the other hand, such

information is often private/ confidential and cannot be

disseminated blindly. The main challenge is to maintain

user privacy while provisioning such analysis services.

The proposed hierarchical approach can be extended to

address this challenge. Each user can register her/his

devices on an edge node in the vicinity, which would be

considered her/his private edge node, and provide

computing and storage capabilities. The raw data

generated by the user would be associated with VMs

instantiated on the private edge node, which could filter,

preprocess and anonymize the relevant data before

passing it to higher levels of the hierarchy for further

analysis.

Our research team has concretized the concepts

described in this paper into a functional prototype that is

being currently tested within the scope of a Dell-funded

R&D project. However, for confidentiality reasons, we

cannot release the link for access to our prototype at this

stage. We can say, in advance, that our functional

prototype was implemented using the open source

platform EdgeX Foundry [12].

ACKNOWLEDGEMENTS

This work is funded by Dell-EMC Brazil (grant number

0058) and by FAPESP (grant 2015/24144-7). Professors

Flavia Delicato and Paulo Pires are CNPq Fellows.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet

of things: A survey,” Computer

Networks, 54(15), pp.2787-2805, 2010.

[2] L. Bass, P. Clements, and R. Kazman, Software

architecture in practice, Addison-Wesley

Professional, 2003.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli,

“Fog computing and its role in the internet of

things,” In Proceedings of the first edition of the

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

44

MCC workshop on Mobile cloud computing, pp.

13-16. ACM 2012.

[4] M. Bouzeghoub, “A framework for analysis of

data freshness,” In Proceedings of the

International Workshop on Information Quality in

Information Systems, pp. 59-67, ACM, June

2004.

[5] T. C. Bressoud, and F. B. Schneider, “Hypervisor-

based fault tolerance,” ACM Transactions on

Computer Systems (TOCS), 14(1), pp.80-107,

1996.

[6] S. Chatterjee, and S. Misra, “Optimal

composition of a virtual sensor for efficient

virtualization within sensor-cloud,” In

Proceedings of IEEE International Conference on

Communications (ICC), pp. 448-453, IEEE, June

2015.

[7] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G.

Merlino, and A. Puliafito, “Pushing intelligence

to the edge with a stream processing architecture,”

In 2017 IEEE International Conference on

Internet of Things (iThings) and IEEE Green

Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData),

pp. 792-799, IEEE, June 2017.

[8] M. Dayarathna, and S. Perera, “Recent

advancements in event processing,” ACM

Computing Surveys (CSUR), 51(2), p.33, 2018.

[9] F. C. Delicato, P. F. Pires, and T. Batista,

Resource management for Internet of Things, pp

1-116, Springer International Publishing, ISBN:

978-3-319-54247-8, 2017.

[10] F. C. Delicato, P. F. Pires, and T. Batista, “The

resource management challenge in IoT,” In

Resource management for Internet of Things, pp.

7-18, Springer International Publishing, ISBN:

978-3-319-54247-8, 2017.

[11] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M.

Mazzara, F. Montesi, R. Mustafin, and L. Safina,

“Microservices: Yesterday, today, and

tomorrow,” In Present and Ulterior Software

Engineering, pp. 195-216, Springer, Cham, 2017.

[12] EdgeX Foundry. Available at: https://www.

edgexfoundry.org. Last access: August 2019.

[13] FIWARE NGSI Open RESTful API

Specification. Available at: http://forge.fiware.

org/plugins/mediawiki/wiki/fiware/index.php/FI-

WARE_NGSI_Open_RESTful_API_Specificati

on. Last access: August 2019.

[14] M. Inaba, N. Katoh, and H. Imai, “Applications of

weighted Voronoi diagrams and randomization to

variance-based k-clustering,” In Proceedings of

the Tenth Annual Symposium on Computational

Geometry, pp. 332-339, ACM, June 1994.

[15] B. I. Ismail, E. M. Goortani, M. B. Ab Karim, W.

M. Tat, S. Setapa, J. Y. Luke, and O. H. Hoe,

“Evaluation of docker as edge computing

platform,” In IEEE Conference on Open Systems

(ICOS), pp. 130-135, IEEE, August 2015.

[16] S. Madria, V. Kumar, and R. Dalvi, “Sensor

cloud: A cloud of virtual sensors,” IEEE

Software, 31(2), pp.70-77, 2013.

[17] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog

computing: A taxonomy, survey and future

directions,” In Internet of everything, pp. 103-

130, Springer, Singapore, 2018.

[18] S. Misra, S. Chatterjee, and M. S. Obaidat, “On

theoretical modeling of sensor cloud: A paradigm

shift from wireless sensor network,” IEEE

Systems Journal, 11(2), pp.1084-1093, 2014.

[19] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar,

and J. Ott, “ Consolidate IoT edge computing with

lightweight virtualization,” IEEE Network, 32(1),

pp.102-111, 2018.

[20] S. Newman, Building microservices: designing

fine-grained systems, O'Reilly Media, Inc., 2015.

[21] Orion Context Broker. Available at:

https://forge.fiware.org/plugins/mediawiki/wiki/f

iware/index.php/Publish/Subscribe_Broker_Orio

n_Context_Broker_User_and_Programmers_Gui

de_R3. Last access: August 2019.

[22] C. Pahl, and B. Lee, “Containers and clusters for

edge cloud architectures -- a technology review,”

In Proceedings of 3rd International Conference on

Future Internet of Things and Cloud, pp. 379-386,

IEEE, August 2015.

[23] C. Roy, A. Roy, and S. Misra, “DIVISOR:

Dynamic virtual sensor formation for overlapping

region in IoT-based sensor-cloud,” In

Proceedings of the IEEE Wireless

Communications and Networking Conference

(WCNC), pp. 1-6, IEEE, April 2018.

[24] Y. Sahni, J. Cao, S. Zhang, and L. Yang, “Edge

mesh: A new paradigm to enable distributed

intelligence in Internet of Things,” IEEE Access,

vol. 5, pp.16441-16458, 2017.

[25] I. L. Santos, L. Pirmez, F. C. Delicato, S. U. Khan,

and A. Y. Zomaya, “Olympus: The cloud of

https://www.edgexfoundry.org/
https://www.edgexfoundry.org/
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Publish/Subscribe_Broker_Orion_Context_Broker_User_and_Programmers_Guide_R3
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Publish/Subscribe_Broker_Orion_Context_Broker_User_and_Programmers_Guide_R3
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Publish/Subscribe_Broker_Orion_Context_Broker_User_and_Programmers_Guide_R3
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Publish/Subscribe_Broker_Orion_Context_Broker_User_and_Programmers_Guide_R3

Igor Leão dos Santos et al.: Data-Centric Resource Management in Edge-Cloud Systems for the IoT

45

sensors,” IEEE Cloud Computing, 2(2), pp.48-56,

2015.

[26] I. L. Santos, L. Pirmez, F. C. Delicato, G. M.

Oliveira, C. M. Farias, S. U. Khan, and Y. Y.

Zomaya, “ Zeus: A resource allocation algorithm

for the cloud of sensors,” Future Generation

Computer Systems, vol. 92, pp.564-581, 2019.

[27] M. Satyanarayanan, V. Bahl, R. Caceres, and N.

Davies, “The case for vm-based cloudlets in

mobile computing,” IEEE Pervasive Computing,

8(4), pp. 14-23, 2009.

[28] E. M. Schooler, D. Zage, J. Sedayao, H.

Moustafa, A. Brown, and M. Ambrosin, “An

architectural vision for a data-centric iot:

Rethinking things, trust and clouds,” In

Proceedings of the IEEE 37th International

Conference on Distributed Computing Systems

(ICDCS), pp. 1717-1728, IEEE, June 2017.

[29] H. Shi, N. Chen, and R. Deters, “Combining

mobile and fog computing: Using coap to link

mobile device clouds with fog computing,” In the

IEEE International Conference on Data Science

and Data Intensive Systems, pp. 564-571, IEEE,

December 2015.

[30] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge

computing: Vision and challenges,” IEEE

Internet of Things Journal, 3(5), pp.637-646,

2016.

[31] O. Skarlat, M. Nardelli, S. Schulte, M.

Borkowski, and P. Leitner, „Optimized IoT

service placement in the fog,” Service Oriented

Computing and Applications, 11(4), pp.427-443,

2017.

[32] O. Skarlat, S. Schulte, M. Borkowski, M. and P.

Leitner, „Resource provisioning for IoT services

in the fog,” In Proceedings of the IEEE 9th

International Conference on Service-Oriented

Computing and Applications (SOCA), pp. 32-39,

IEEE, November 2016.

[33] T. Taleb, S. Dutta, A. Ksentini,, M. Iqbal, and H.

Flinck, “ Mobile edge computing potential in

making cities smarter,” IEEE Communications

Magazine, 55(3), 2017.

[34] S. Tarkoma, Publish/subscribe systems: design

and principles, John Wiley & Sons, 2012.

[35] N. Wang, B. Varghese, M. Matthaiou, and D. S.

Nikolopoulos, “ENORM: A framework for edge

node resource management,” IEEE Transactions

on Services Computing, pp. 1-1, IEEE, 2017.

[36] S. Yi, C. Li, and Q. Li, “A survey of fog

computing: concepts, applications and issues,” In

Proceedings of the Workshop on Mobile Big Data

pp. 37-42, ACM, June 2015.

[37] ZeroMQ. Available at: https://rfc.zeromq.org

/spec:23/ZMTP/. Last access: August 2019.

https://rfc.zeromq.org/spec:23/ZMTP/
https://rfc.zeromq.org/spec:23/ZMTP/

Open Journal of Internet Of Things (OJIOT), Volume 5, Issue 1, 2019

46

AUTHOR BIOGRAPHIES

Igor L. Santos received his

Doctorate degree in Informatics

in 2017 from the Federal

University of Rio de Janeiro. He

is currently a lecturer at Federal

Centre for Technological

Education Celso Suckow da

FonsecaHis research interests

include Industry 4.0, Internet of

Things, Wireless Sensor and Actuator Networks and

Cloud of Sensors.

Flávia C. Delicato is an

Associate Professor at the

Federal University of Rio de

Janeiro. Her primary research

interests are IoT, WSN,

middleware and Edge

Computing. She has published

2 Books and over 160 papers.

Paulo F. Pires is an associate

professor at UFRJ and leader

of the UBICOMP laboratory.

In the last few years his

research efforts have focused

on applying software

engineering techniques in the

context of system development

for the Internet of Things. He

has co-authored two books on

the IoT theme: Middleware

Solutions for the Internet of Things (2013) and Resource

Management for Internet of Things (2017).

Marcelo P. Alves has an M.S.

in informatics and is pursuing

a doctoral degree in

informatics, both at UFRJ. He

is a lecturer at Uniabeu

University Center and an

independent IT consultant. His

research interests include

Internet, and distributed

systems, model driven

software engineering, IoT, and software architectures.

Ana Cristina Oliveira holds

a degree in Systems

Engineering (1992), a degree

in Electronic Engineering

(1993) and a master's degree

in Theory of Controls and

Statistics (1997), from the

Department of Electrical

Engineering at the Pontifical

Catholic University of Rio de Janeiro, Brazil. She is

currently a Senior Manager and a Data Scientist at Dell

EMC. She has experience in the areas of Machine

Learning, Big Data and Applied Statistics.

Tiago Salviano Calmon is a

researcher in the area of data

science at Dell-EMC and a

PhD student at UFRJ, Brazil.

He has experience in the field

of Modeling and control of

Management Systems,

Distributed Systems and

Optimization.

