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ABSTRACT 
 

A major challenge in emergent scenarios such as the Cloud-assisted Internet of Things is efficiently managing the 

resources involved in the system while meeting requirements of applications. From the acquisition of physical data 

to its transformation into valuable services or information, several steps must be performed, involving the various 

players in such a complex ecosystem. Support for decentralized data processing on IoT devices and other devices 

near the edge of the network, in combination with the benefits of cloud technologies has been identified as a 

promising approach to reduce communication overhead, thus reducing delay for time sensitive IoT applications. 

The interplay of IoT, edge and cloud to achieve the final goal of producing useful information and value-added 

services to end user gives rise to a management problem that needs to be wisely tackled. The goal of this work is 

to propose a novel resource management framework for edge-cloud systems that supports heterogeneity of both 

devices and application requirements. The framework aims to promote the efficient usage of the system resources 

while leveraging the Edge Computing features, to meet the low latency requirements of emergent IoT applications. 

The proposed framework encompasses (i) a lightweight and data-centric virtualization model for edge devices, 

(ii) a set of components responsible for the resource management and the provisioning of services from the 

virtualized edge-cloud resources. 

 

TYPE OF PAPER AND KEYWORDS 
 

Regular research paper: Resource management, Edge computing, Cloud-assisted IoT, Virtualization model 

 

 

 1 INTRODUCTION 

Cloud computing technology has revolutionized the way 

end-users and enterprises gain access to computing 

resources, enabling the on-demand allocation and 

release of a wide range of services and resources. The 

flexibility and business model provided by the cloud 
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computing make this paradigm very appealing and 

enable novel applications. Another technological trend 

that has been gaining momentum recently is the Internet 

of Things (IoT) [1], which enables the interconnection 

with the Internet of the most varied physical objects, 

instrumented by intelligent sensors and actuators. With 

the possibility of addressing each physical object 

individually and making it part of a global network, the 

IoT has the potential to provide novel applications to 

make life easier and healthier for citizens, to increase the 

productivity of companies and to promote the building 

of more intelligent and sustainable cities, environments 

and countries. 

A key challenge in IoT is efficiently managing the 

system resources. IoT devices, such as sensor devices, 

have limited computing and energy resources, and thus 

are not able to perform sophisticated processing and 

storing large amounts of data. Therefore, it is often 

necessary to rely on more powerful devices to fully 

perform the transformation process required by IoT 

applications [9]. With its vast capacity of processing and 

long-term storage, cloud computing is an appealing 

platform to be combined with IoT to create complex, 

large-scale, distributed, and data-oriented ecosystems. 

However, some features of cloud computing make it 

unsuitable to meet requirements of IoT applications. 

The essentially centralized nature of the cloud does 

not fit well with the inherently decentralized nature of 

IoT. In IoT, data is often generated from geographically 

distributed sources, and can be consumed by equally 

dispersed users, often using devices that themselves are 

also part of IoT. Blindly sending this distributed data for 

processing and storage centrally in the cloud, then 

forwarding it back to users near data sources, can result 

in unwanted delays. For some applications, response 

time is a critical quality requirement, and the latency and 

unpredictability of communication with the cloud can 

lead to performance degradation. 

Support for decentralized data processing on devices 

near the edge of the network, in combination with the 

benefits of cloud technologies has been identified as a 

promising approach to reduce communication overhead 

and data transfer time (hence the latency for 

applications). In this context, the conceptual approach 

known as Fog [3] or Edge Computing [30] has emerged, 

which advocates moving part of the computing and 

storage resources closer to the edge of the network, in a 

decentralized way. 

Physical edge devices are heterogeneous in terms of 

their capabilities and can be either resource-poor devices 

such as access points, routers, switches, base stations, 

and smart sensors, or resource-rich machines like a 

“cloud-in-a-box”, or Cloudlets [27]. Edge devices may 

perform several tasks, such as data preprocessing and 

filtering, reconstructing raw data into a more useful 

form, uploading only the necessary data to the cloud. In 

addition, edge nodes can monitor smart objects and 

sensors activities, keeping check on their energy 

consumption. The edge consumes locally the portion of 

data generated by sensors that require real-time 

processing (from milliseconds to tenths of seconds). 

Then, it transmits the rest of such data to the cloud, for 

operations with less stringent time constraints (from 

seconds to minutes). Therefore, edge computing allows 

delivery of data with low latency. On the other hand, the 

closer to the cloud, the longer the time scale, and the 

wider is the geographical coverage. The cloud provides 

the ultimate and global coverage and serves as a 

repository for data for the duration of months or years, 

besides allowing more complex data analytics. 

The interplay of IoT, edge and cloud to achieve the 

final goal of producing useful information and value-

added services to end users gives rise to a management 

problem that needs to be wisely tackled. Both cloud and 

edge computing strongly build on the virtualization 

concept. However, virtualization of devices at the edge 

needs to follow a lighter and more flexible approach to 

meet the constraints and heterogeneity of devices and 

exploit their specific features. The authors in [19] claim 

that to fully achieve the potential of edge computing for 

IoT, four concerns need to be addressed: abstraction, 

programmability, interoperability, and elasticity. In 

particular for a three-tier IoT-edge-cloud architecture, it 

is crucial to provide simple and yet efficient 

configuration and instantiation methods that are 

independent of the technologies used by different IoT 

and cloud providers. 

We propose a novel resource management 

framework for edge-cloud systems that supports 

heterogeneity of both devices and application 

requirements. The framework promotes the efficient 

usage of the system resources while leveraging the Edge 

Computing features, exploring the advantages of service 

provision at the edge of the network, to meet the low 

latency requirements of emergent applications. The 

framework encompasses (i) a lightweight and data-

centric virtualization model for edge devices, (ii) a set of 

components responsible for the resource management 

and the provisioning of services from the virtualized 

edge-cloud resources. 

 

2 CHALLENGES IN EDGE-CLOUD ECOSYSTEMS 
 

Considering a heterogeneous edge-cloud ecosystem, 

built to serve multiple applications with different 

requirements, the need arises to provide a framework to 

manage the available resources in an efficient and cost-

effective way. The core issue of this problem is how to 

allocate the resources available in the heterogeneous 

edge-cloud system in order to accommodate the 
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requirements posed by multiple applications. At first 

glance, this issue is similar to the typical resource 

allocation problem, which has been exhaustively studied 

in several areas of computing systems. However, 

resource allocation for edge-cloud systems poses new 

challenges that call for novel solutions, tailored for such 

an emerging scenario. Examples of specific features are 

the huge heterogeneity of the participant devices (from 

tiny sensors to middle-tier gateways to powerful data 

center nodes), the highly dynamic execution 

environment, and the nature of the data generated by IoT 

devices. 

The complexity in the development of solutions for 

resource allocation in edge-cloud attract the attention of 

researchers in search of efficient computational 

solutions to meet the requirements of emerging 

applications (e.g., low latency, mobility, energy 

efficiency, scalability, etc.) envisioned to execute on 

such scenarios [3][36]. Solutions for resource 

management, including resource allocation and 

provisioning, are well established in the Cloud 

computing field. However, in the context of Edge and 

Fog computing, there are still many open issues in this 

regard [25][10][35]. According to [35], there are no 

distributed computing frameworks that fully and 

properly manage edge node resources. 

We claim that resource management is a key issue to 

deal with the diverse nature of resources encompassed 

in an edge-cloud system and to optimize the overall 

system performance. Providing effective solutions to 

this challenge will bring benefits on one hand, to end 

users and on the other hand, to infrastructure providers 

and device owners. In this sense, we propose a novel 

approach for resource management in edge-cloud 

systems. 

 

2.1  Heterogeneous Devices  
 

In the edge-cloud environment, multiple devices with 

different processing capabilities exist and can 

collaborate to meet the applications’ goals and 

requirements. Powerful computers such as the ones 

hosted in the cloud can rely on legacy virtualization 

technologies without major issues, but devices in the 

lower tiers might get their performance impacted 

critically with these technologies. It is important, then, 

to consider the heterogeneity of devices in the design of 

the virtualization engine. Specifically, the resource 

constrained nature of several types of devices at the edge 

tier needs to be taken into account in any solution for 

virtualization and resource management. Due to 

resource constraints from edge devices compared to data 

centers in the cloud, multiple edge devices often need to 

somehow collaborate so as to accomplish intensive 

application tasks by sharing the workload between them. 

The resource management framework, supported by its 

virtualization model, must enable such collaboration in 

a natural way. 

 
2.2 Heterogeneous Applications 
 

In addition to the high heterogeneity of devices, multiple 

applications with different functional and non-

functional (QoS-related) requirements can co-exist 

using resources from the same underlying infrastructure. 

Some applications might be more computationally 

intensive, whereas others might have low latency 

requirements, for example. Moreover, several 

applications have severe restrictions on data security. 

Data generated by users’ devices often contain personal 

information, such as photos/videos taken by mobile 

phones, GPS information on the user location, health 

information sensed by wearable devices, and smart 

home status. Processing and storage of sensitive data 

must be handled carefully to avoid privacy issues. The 

decision of placing a given service in one computational 

node (located at the edge or the cloud for instance) must 

consider the requirements of the specific applications 

the node is serving. A resource management framework 

must be able to handle different kinds of applications 

with different (and sometimes even conflicting) 

requirements. 

 
2.3 Ultra-Large Scale 
 

Edge-cloud ecosystems are complex environments 

encompassing many heterogeneous components. One 

major component is the myriad of devices acting as data 

sources. Considering the increasing availability of smart 

sensors, mobile phones, wearable and other IoT devices, 

the resulting system may encompass hundreds to 

millions of connected devices, producing a massive 

amount of data to be processed and stored. Therefore, 

any solution for resource management must be scalable 

in terms of the number of computational nodes and the 

number of application requests to be served. The ultra 

large scale of systems brings several challenges mainly 

regarding the coordination of the nodes actively engaged 

in providing the required resources to meet the 

application requests. It is important to mention that 

several authors (as [7]) point out that a considerable 

deficiency in current works in edge computing is the 

lack of support for collaborative computation. 

 

2.4 Data-Centric Nature 
 

The current overabundance of data, generated by various 

emerging applications as social media and IoT, has 

caused several changes in how such data should be 
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processed and stored. Data generated by embedded 

sensors and applications running on mobile devices in 

users' personal space may not necessarily be sent blindly 

to the remote cloud. There are new demands to shepherd 

data within and across multiple tiers from the edge of the 

network, through the core to the super data centers in the 

cloud. Data may be shared, (pre)processed and cached 

in local and/or edge nodes and then may transit to other 

tiers of the infrastructure while being used, reused, 

combined and re-purposed to derive value-added 

information, analytical insights en route to being 

consumed and possibly archived [28]. 

Processing in the multiple tiers of an edge-cloud 

system needs to take advantage of node heterogeneity, 

take into account the dynamism of the environment, and 

also needs to consider the data content in decision-

making tasks. The execution of application-specific 

functions, data fusion procedures, and knowledge 

extraction can occur at various points along the path 

between the data source and the cloud. Sometimes 

results can be taken en route, without even requiring 

additional forwarding to the cloud. For this, the content 

of the data has fundamental value in decision-making 

and intermediate processing. Furthermore, a piece of 

data might be re-used by several applications in different 

contexts, placed in different nodes. 

In short, we argue that the data needs to be raised to 

first-class citizens in these ecosystems. Therefore, 

virtualization solutions for such environments must be 

data-centric. Not only features like Virtual Machines 

(VMs) and processing cores, commonly used in 

traditional virtualization models, but the data itself, its 

metadata and handling functions, need to be virtualized. 

Moreover, VMs created with this data-centric view 

should be placed on distributed physical nodes across 

multiple tiers, not only at the cloud. 

 
3 A NOVEL RESOURCE MANAGEMENT 

FRAMEWORK FOR EDGE-CLOUD SYSTEMS 
 

To address the aforementioned challenges, our proposal 

comprises a software framework encompassing (i) a 

light data-centric virtualization model for edge-cloud 

systems, and (ii) a set of software components 

responsible for the resource management and the 

provisioning of services using the virtualized edge-

cloud resources. 

 

3.1 LW-Dc4EC (Light Weight Data-Centric 

Model for Edge-Cloud) 
 

In this section, we detail LW-Dc4EC, our novel data-

centric virtualization model for edge-cloud systems. Its 

goal is to offer a lightweight virtualization on top of 

physical sensor and actuator nodes (here denoted as 

PSAN), of Edge nodes (EN) and of Cloud Nodes (CN). 

This model is supported by a three-tier architecture for 

edge-cloud systems (shown in Figure 1). LW-Dc4EC 

uses a set of different techniques for the creation of 

virtual nodes. Six built-in, predefined types of virtual 

nodes are initially provided (explained later and 

depicted in Figure 2). However, since LW-Dc4EC was 

conceived with extensibility in mind, new types can be 

defined and easily incorporated in the model. A new 

type is created by extending a virtual node super-class 

available into the framework core library and template 

files to configure the desired data type. 

 

3.1.1 The Three-Tier Architecture 
 

Figure 1 illustrates the architecture to support the 

proposed virtualization model. It is composed of three 

tiers: (i) Cloud tier (CT), (ii) Edge tier (ET), and (iii) 

Sensor (or data source) tier (ST). 

The Edge tier (ET) encompasses the edge nodes 

(EN) whereas the Cloud tier (CT) encompasses the 

cloud nodes (CN). Both tiers host the physical devices 

of the ET and CT, respectively. The EN and CN are 

virtualized by using traditional models for cloud and 

edge virtualization. They have properties such as 

processing speed, total memory, bandwidth and 

geographical location. However, there are some 

important differences between ENs and CNs. ENs are 

less powerful devices than CNs, regarding the resources 

available (e.g., memory capacity). Besides, they are 

geographically closer to the data sources (for instance 

sensors and IoT devices) than CNs. Another difference 

is the centralized nature of the nodes at the Cloud tier, 

while edge nodes are typically decentralized entities and 

may leverage distributed and collaborative computing. 

The distributed nature and the proximity of the data 

sources make it possible to exploit context and location-

awareness capabilities in the edge tier. Thus, instead of 

providing resources from a centralized and remote 

infrastructure, one can explore the provision of 

resources regionally distributed, either closer to the data 

source, the data consumer, or both. This feature has the 

potential to increase the efficiency of the usage of the 

infrastructure and the quality of the user experience with 

the services provided. 
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Figure 1: Three-tier architecture 

 

In our architecture, we actively promote the 

collaboration among edge nodes and the location-

awareness features. The nodes in the Edge Tier are 

grouped in a hierarchical fashion, so that we have both 

vertical and horizontal communication/collaboration 

within the system [17]. To reach this goal, firstly, we 

created hierarchical groups of edge nodes using an 

appropriate hierarchy algorithm to promote vertical 

communication/collaboration. In our solution, the 

horizontal communication/collaboration only occurs 

between the master edges nodes of each hierarchy. Thus, 

we used the Weighted Voronoi Diagram (WVD) [14] as 

a solution to build neighborhoods of the master edge 

nodes in order to promote collaboration between them. 

The WVD uses "sites" (geographic locations) on a map 

to divide it into regions. Therefore, to use the WVD 

algorithm, we need to provide the master edge nodes 

geographic locations.  

In the created hierarchy, the master nodes are 

responsible for engaging slave edge nodes to serve an 

application request. We also organize the master edge 

nodes in a neighborhood, in order to enable the 

collaboration among them. Thus, the master edge nodes 

can perform a collaboration process with each other to 

identify a group of edge nodes that can serve the 

application request. With such hierarchical and 

geographical organization of the nodes, it is possible (i) 

to facilitate the collaboration between the edge nodes, 

(ii) to assign physical nodes (at the Sensor Tier) to edge 

nodes that are closer to them, thus minimizing the 

consumption of resources with data and control 

messages, since we keep the communications within a 

limited geographic region. 

Finally, the Sensors Tier (ST) encompasses a set of 

constrained end devices deployed over a geographic 

area that consist the data sources for the edge-cloud 

system. Each device is heterogeneous regarding its 

processing speed, total memory, and energy capacity. 

Besides, end devices at this tier have the capacity of 

providing sensing data and/or performing actuation 

tasks over a region. Examples of devices are wireless 

sensors grouped to compose Wireless Sensor and 

Actuator Networks (WSANs), and smart devices such as 

smart phones, smartwatches, etc. 

In the considered architecture, we assume that the 

CN is responsible for hosting the Virtual Node Service 

Delivery (VNSD). It is an entry point to receive the user 

requests. In addition, the CN is responsible for hosting a 

centralized version of the Resource Allocation process. 

The edge nodes (ENs) provide the major computational 

units organized in two subsystems, namely 

Virtualization Subsystem Manager (VSM) and Virtual 

Node subsystem (VNS). The VSM encompasses the 

ResourceAllocationMgr, ResourceProvisioningMgr, 

VNInstanceMgr (VNIR) and Virtual Node Service 

Delivery (VNSD) whereas the VNS includes the 

RegistriesRepositoryMgr, Virtual Node Manager, 

Virtual Node and Sensing&ActuationMgr. These units 

are responsible for handling the user requests by 

performing tasks to either provide sensing data or 

perform actuations on the physical environment. 
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Figure 2: Types of VNs 

 
3.1.2  Virtualization Model 
 

The concept of virtualization is commonly adopted to 

hide heterogeneity and complexity of resources to be 

provided, thus facilitating their management and 

utilization. The core idea of virtualization in an edge-

cloud system is to abstract away “physical resources”, 

which can then be “composed” at a logical level to 

support usage by multiple independent users and even 

by multiple concurrent applications. 

As traditional cloud platforms, edge computing is 

also strongly built on the virtualization concept. 

However, virtualization of resources at the edge tier 

needs to follow a lighter and more flexible approach to 

meet the constraints and heterogeneity of devices and to 

exploit the specific features of these nodes. Moreover, 

for emerging applications as IoT, besides processing, 

storage and bandwidth capacities, and an extremely 

valuable resource is the sensing data produced by the 

IoT devices. Therefore, first-order entities in a 

virtualization process are no longer just virtual machines 

and computational cores, but also sensing data (raw or 

in different processing states). An edge-cloud 

virtualization model that addresses such applications 

needs to consider this data-driven nature as well. 

To meet the requirements of being lightweight, the 

proposed virtualization model is based on microservices 

and container technology. More specifically, for the 

specification of our virtualization model, we adopted an 

approach based on microservices [11][20] and for the 

implementation of this model we propose adopting a 

container-based solution [22][15]. 

Microservices are small, highly decoupled 

applications, built on a single responsibility. They are 

independently deployable, scalable, and testable and 

they communicate with each other using well defined 

application programming interfaces (API). In turn, the 

container-based approach can be defined as a 

lightweight virtualization technology for packaging, 

delivering and orchestrating both software  

  

Table 1: Types of VNs 

Parameters Description 

UF User function 

Se Sensing 

Ac Actuation 

Df Data function 

Ch Cache 

Ev Event 

 

 

infrastructure services and applications, aiming at 

increasing interoperability and portability. 

The motivation for using microservices in the 

context of this work is to allow the development of 

independent and lightweight components for running on 

the edge nodes. We use containers to package such 

components in lightweight images, thus facilitating their 

distribution and managing. Another relevant feature of 

containers is to facilitate their migration between 

computational nodes, in the context of this work, 

between edge nodes [33]. Component migration is an 

important feature for many applications, mainly in the 

presence of mobile nodes, since the edge nodes serving 

an application running in the mobile device may become 

too far to meet the required delay. 

To meet the requirement of being data-oriented, and 

thus more tailored for IoT applications, data is the core 

entity for creating the virtual nodes in the proposed 

virtualization model. We defined several types of virtual 

nodes that represent data-driven resources to be 

provided by the edge-cloud infrastructure. Applications 

access the resources provided by our three-tier 

architecture through the virtualization model. 

The virtual node (VN) is the central element of the 

model in LW-Dc4EC. The VN (Figure 2) is a software 

instance providing data in response to application 

requests directly at the edge of the network. It is 

responsible for abstracting the computation and 

communication capabilities provided by a set of 

underlying nodes. Moreover, our VN is based on the 

microservice concept, as it is small, highly decoupled, 

and performs a single responsibility. Thus, each virtual 

node is designed to implement one data type. Therefore, 

our model already provides predefined types of VNs for 

each one data type provided (Table 1). 

A virtual node is formally defined as a tuple VN = 

(RS, GL, NT), where RS represents the resource 

provided by the VN; GL = (longitude, latitude) is the 

geographic location of interest; and NT = {UF, Se, Ac, 

DF, Ch, Ev} is a collection of VN types (Table 1). 

Resources can be of simple type such as Temperature or 

a complex type, such as the description of an event 
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Figure 3: Components for resource management in edge-cloud systems 

 

 of interest (as Fire Detection, Fire Intrusion, Rain, 

Target Detected, etc.). Hereafter, we describe each type 

of VN. The VN of type user function (UF) allows the 

user to inject code for performing custom operations 

(application specific) over data.  

The VN of type sensing (Se) provides a stream of 

raw data sensed from the physical environment and has 

a set of properties p: p = (fr, sr), where fr denotes the 

data freshness and sr the sampling data rate. The data 

stream can be retrieved from historical databases 

maintained at the edge tier or by a direct connection with 

the physical nodes at the sensor tier. The data freshness 

[4] is an important requirement that a VN must verify 

during the processing of the request to determine the 

source of the data to send to the application. For 

instance, if the last data delivered is in a valid range time 

of data freshness, the VN transmits the data obtained 

from the cache to the application. Otherwise, a fresh data 

is gotten using the Sensing & Actuation sub-process 

before forwarding it to the application. 

The VN of type actuation (Ac) provides actuation 

capabilities over the physical environment and has a set 

of properties p: p = (op, tx), where op denotes the type 

of actuation function provided by the VN and tx is the 

frequency that the actuation command must be 

performed by the system. 

The VN of type data fusion (DF) provides value-

added information through the execution of queries 

using a Complex Event Processing (CEP) engine [8] and 

has a set of properties p: p = (af, sn), where af denotes 

an information/aggregation function and sn the number 

of samples to be used by af. This is a very powerful type 

of VN since it allows defining application-specific 

functions, domain-specific functions or generic event 

processing functions. 

The VN of type cache (Ch) is a subtype of DF that 

adds the capability of persisting the results of af in 

memory. The VN Ch has a set of properties p: p = (ts), 

where ts denotes the timestamp of the execution of af 

(that produced the data cached by VN Ch). This VN is 

important to avoid unnecessary use of resources of an 

EN when several requests are received for processing 

the same query using the same parameters. 

Finally, the VN of type event (Ev) aims to notify an 

application or another VN whenever an event of interest 

occurs by using a publish/subscribe communication 

model [2][34]. VN Ev has a set of properties p: p = (rl), 

where rl denotes a rule to trigger the event. 
 

3.2  Resource Management Framework 
 

The Resource Management activity in cloud computing 

encompasses the resource allocation and resource 

provisioning, among other activities. These are two key 

processes and planned to ensure the operational 

efficiency of the entire cloud system. Proper resource 

allocation improves overall performance of the system 

and avoids different kinds of bottlenecks, that could 

otherwise degrade performance of the running 

applications. 

In this context, we propose a novel approach for 

resource management in edge-cloud systems. An 

innovative aspect of our proposal is to consider in an 

integrated way the virtualization and the resource 
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management processes. We believe that, since edge-

cloud ecosystems essentially provides virtualized 

resources, the efficient and cost-effective provisioning 

and allocation of such resources are intrinsically 

entangled with the virtualization process itself. 

Therefore, our resource management framework 

provides a set of components and respective activities 

for the instantiation of VNs that encompass the 

processes for (i) the resource allocation, (ii) the resource 

provisioning, (iii) managing sensing & actuation tasks 

(required for task scheduling), (v) data provisioning, and 

(vi) collaboration process. Figure 3 summarizes the 

relation among the components in charge of performing 

such processes. In the following we briefly describe 

each component in the context of the edge-cloud 

infrastructure operational flow. 

End users submit their requests to the edge-cloud 

system using an API deployed at the Cloud or via an 

Edge node. The arriving requests are handled by the 

ResourceAllocationMgr (RA) component responsible 

for implementing the Resource Allocation process 

(described in the next section). When requests arrive via 

Cloud, a centralized version of the RA component is 

responsible for forwarding each request to the master 

edge node (EN) capable of meeting it. Upon receiving 

the requests, the RA executing in the EN must provide a 

VN instance to meet such requests. To do so, the RA 

component searches in its cache of VN instances and 

queries all its available slave nodes by a VN matching 

the received requests. When a matching VN is found, the 

RA component forwards the request for the VN to 

execute the tasks thus providing the requested data/event 

as outcome. However, if a VN is not found or if the 

available VNs are busy (with other, previously received) 

then the ResourceProvisioningMgr component is 

invoked. 

The ResourceProvisioningMgr (RP) is the 

component in charge of executing the action to select 

and prepare the underlying physical infrastructure that is 

capable of hosting and running a VN instance (a 

container in our proposal) matching application 

requests. The action of selecting physical nodes that 

meet the requirements of data provisioning to compose 

a virtual node is a mapping function, for which there are 

some proposals in recent literature [32][18][6][23][31]. 

In our proposed framework, in order to provision a 

VN, the RP component invokes the VirtualNode 

Manager (VNM) component. The VNM is an auxiliary 

component in charge of instantiating the appropriate 

type of VN to meet the application request, besides 

registering the new VN instance into the instance 

repository. However, if the RP is not capable to provide 

the necessary resources to instantiate a VN, the 

following operational decisions are executed: 

 If the EN is a slave node and the request has arrived 

directly by the VNSD (entry-point), the request is 

forwarded to its respective master node; 

 If the EN is a master node and the request has 

arrived by the point of entry or forwarded by a slave 

node, the master node invokes the collaboration 

process to find a neighbor node and then, forwards 

the request to the neighbor master node. Whenever 

the collaboration process is not able to find a 

neighbor master node to meet the request, then it is 

forwarded to the centralized Resource 

AllocationMgr component at the Cloud. 

Collaboration is the process responsible for enabling 

the cooperative work and the division of the workload to 

meet an application request among the edge nodes. This 

process is available (deployed) into all the edge nodes, 

but only the edge nodes classified into the hierarchy as 

Masters are in charge of executing the collaboration. 

Thus, the collaboration process provides for each master 

edge node the capability of decision-making to engage 

neighboring master edge nodes to allocate or provision 

VNs whenever it is necessary. 

Several authors (as [7]) identify a lack of support for 

collaborative computation in edge-cloud systems. That 

is, existing approaches do not seem to consider 

situations when multiple edge devices can somehow 

collaborate to accomplish an intensive task by sharing 

the workload between them. In this sense, the proposed 

framework fills a research gap by providing mechanisms 

and building blocks to promote collaboration between 

edge nodes. 

When a VN receives a request from the RA to 

process, it uses the services of the Sensing & Actuation 

Mgr. It is the component implementing the process in 

charge of managing all interactions between the VN and 

the physical environment, i.e., the Sensor (data source) 

Tier (ST). It is an independent component that 

continuously gets data/events from the physical devices 

and persists them into the historical database maintained 

at the Edge tier. Its importance is to abstract the 

complexity of the VN to deal with the highly 

heterogeneous devices that directly get data/perform 

actuations from/upon the physical environment. 

Therefore, the SA provides the services for the VN to 

acquire sensing data and/or send actuation commands 

(depending on the type of VN). 

The provided data can be either preprocessed or 

unprocessed. Unprocessed data are retrieved from 

historical databases or by directly accessing the physical 

nodes at the sensor tier whenever fresh data is required. 

The processed data are provided by a Complex Event 

Processing (CEP) engine. The CEP [8] engine is 

responsible for the execution of queries that making use 

of single or a set of raw data as input. 
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Furthermore, the SA services providing data to VNs 

make use of the Data provisioning process. The Data 

provisioning process is responsible for abstracting the 

complexity of dealing with operations for the data 

collects from the physical devices, data persistence, data 

update, data delete, and data retrieval in the historical 

databases. 

Figure 4 summarizes the operational flow of the 

proposed framework. In the following section, we will 

detail the components responsible for performing the 

processes covered by the resource management 

framework. 

3.2.1 The Software Components and their 

Behavioral View 

Figure 5 illustrates the framework components, their 

services, and relationships, as well as the tier in which 

they are deployed, considering the 2 upper tiers (Cloud 

and Edge) of our 3-tier architecture. The Edge Tier hosts 

two subsystems, the Virtual Node Subsystem (VNS) and 

the Virtualization Subsystem Manager (VSM). 

The SAM provides connectors for abstracting the 

heterogeneity of the physical objects/devices and 

allowing the interaction with them. Devices or IoT 

objects include but are not limited to smart sensors of 

several types, home appliances, alarm systems, heating, 

and air conditioning, lighting, industrial machines, 

irrigation systems, drones, traffic signals, automated 

transportation, and so forth. The connector is a 

component that encompasses (i) a driver interface 

responsible for interaction with the physical device, (ii) 

services for data transformations, and (iii) handlers for 

servicing requests.  

The DSM component is responsible for storing the 

data in the temporary database at the edge nodes, besides 

providing the basic operations for persistence, update, 

delete and retrieval data. VN is an abstraction used to 

design six predefined types of VN components (VNSe, 

VNac, VNdf, VNuf, VNcache, and VNevent) to handle 

the application requests. The VN exposes the IVN 

interface to provide its services. It should be mentioned 

that, in our view of an edge-cloud system, the 

infrastructure provider will offer its services through 

formal or semi-formal agreements with users. 

Therefore, a predefined set of virtual nodes can already 

be provided a priori to meet the potential applications 

domains or specific applications whose contracts have 

already been established.  

Some applications’ requirements may be met by the 

services of a single type of virtual node while others will 

require combined services of multiple types. As the 

envisaged edge-cloud scenario is dynamic, applications 

may eventually arrive with requirements that are not met 

by the original set of VN types. Such applications may 

require the specification of new types, which will be 

 

Figure 4: Overview of the Resource Management operation process 
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extensions of the existing ones. UF is the component that 

hosts the user defined functions. The DH component is 

responsible for abstracting the complexity of executing 

queries over sensed data. 

The Virtualization Subsystem Manager (VSM) 

encompasses six components: VNServiceDeliveryMgr 

(VNSDM); ResourceAllocatorMgr (RAM); 

VNIntanceMgr (VNIR); ResourceProvisioningMgr 

(RPM); RegistriesRepositoryMgr (RR), Monitor. The 

VNSDM goal is to receive requests that arrive at the 

system. Since requests can enter the system via Edge and 

Cloud tiers, this component is deployed in both tiers. 

VNSDM offers a set of APIs through the IVNSD 

interface to allow users: (i) request data/events to the 

system, (ii) send an actuation command to the VN for 

execution, and (iii) discover registered VNs. The 

component RAM is in charge of implementing the 

algorithm that allocates instances of Virtual Nodes 

(VNs) to meet application requests. It offers the 

ResourceAllocatorInterface (IRA) used to receive the 

requests arriving via the VNSDM or forwarded by the 

centralized RAM.  

The VNIR is the component responsible for 

managing a pool of VN instances in memory. RPM is 

the component in charge of provisioning a new VN 

instance whenever it is necessary. It provides its service 

through the ResourceProvisionerInterface IRP. The 

component RR is responsible for providing the services 

to store, remove, and retrieve metadata related to the 

data types registered into the system by the 

Infrastructure Provider (InP). Its services are accessed 

through the IConfig interface. The Monitor is the 

component responsible for capturing a set of metrics and 

providing them to the VNManager. It has two interfaces, 

 

Figure 5: Framework software components 
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which are: IMonitorMetrics and INodeMetrics. The 

metrics captured are (i) specific metrics of the VN 

container (e.g., free memory, number of processors 

used, threads running, total of threads, peak of threads), 

obtained by using the INodeMetrics interface; (ii) 

physical metrics of the edge node that hosts the 

container (e.g., free physical memory size, the total 

physical memory size and the number of available 

processors), and (iii) network latency to reach this node, 

calculated through a ping operation. 

The following components are deployed in the 

Cloud Tier: VNServiceDeliveryMgr (VNSDM); 

SysManager (SM); and ResourceAllocationMgr 

(RAM). The VNSDM and SM are entry points that 

receive requests issued the End-User and by applications 

via Infrastructure Provider (InP), respectively. The 

VNSDM is the same component described in the Edge 

tier but deployed at the Cloud tier to manage End-User 

requests that enter the system via the Cloud tier. The SM 

provides a set of Application Programming Interfaces 

(APIs) through the LightWeightManagementInterface 

(ILWM). It allows Infrastructure Providers (InPs) to 

manage the edge-cloud system and for instance, execute 

the registry operation of a VN by invoking the Registries 

Repository component using the IConfig interface. The 

RAM component deployed at the Cloud tier is the 

centralized resource allocation component in charge of 

engaging the master edge nodes in identifying the node 

(slave or master) capable of meeting the received 

application request.  

 

3.2.1.1 Behavioral View 
 

As mentioned in section 3.1.1, our architecture is 

designed based on a mix of microservice [11] [20] and 

container-based solutions [22][15]. According to [19], 

the containerization emerges as an approach that brings 

several benefits in an environment of high heterogeneity 

and resource-constraints, such as Edge computing. 

These benefits are related to the rapid instantiation, 

initialization and fast resizing of the resources without 

the overhead of restarting the system. Moreover, the use 

of containers facilitates the distribution and 

management of components on the edge nodes in 

contrast to other virtualization solutions such as the 

hypervisor [5]. In turn, the microservice is used to 

develop the framework components with a loosely 

coupled and highly cohesive design, thereby 

implementing a unique responsibility. 
During the boot of our virtualization system, the 

components that encompass both the Edge tier (except 

the Virtual Node) and Cloud tier are loaded and 

initialized. It is worth to mention that the components of 

both tiers can be loaded independently with each other. 

Moreover, as our components are packaged in 

containers, we assume that each edge node already has 

the container images necessary to run the VNs. 

Therefore, we avoid incurring any network overhead, 

since there is no need of transferring container images 

between edge nodes. 
 Requests received at the Cloud tier are managed by 

the entry points to meet requests issued by applications 

via the Infrastructure Provider (InP) and the End-User 

respectively. However, each component has specific 

responsibilities. The VNSDM is the component in 

charge of managing the End-User requests. It offers a set 

of APIs through the IVNSD interface to allow users: (i) 

request data/events to the system, (ii) send an actuation 

command to the VN for execution, and (iii) discover 

registered VNs. The VNSDM goal is to receive those 

requests that arrive at the system (either at the Cloud tier 

(CT) or the Edge tier (ET)) and forward them to the 

ResourceAllocationMgr component. An 

implementation of the VNSD is also deployed at the 

Edge tier to provide an entry point for enabling the 

application requests arrival directly at the ET without 

going through the CT. The SM provides a set of 

Application Programming Interfaces (APIs) through the 

LightWeight Management Interface (ILWM). It allows 

Infrastructure Providers (InPs) to manage the edge-

cloud system and for instance, execute the registry 

operation of a VN by invoking the Registries Repository 

component using the IConfig interface. 
The centralized ResourceAllocationMgr (RAM), 

deployed at this tier. The RAM deployed at the Cloud 

tier is the centralized component in charge of engaging 

the master edge nodes in iidentifying the one node (slave 

or master) capable of meeting the received application 

request. Whenever a suitable edge node is identified, the 

RAM forwards the application request to it. Otherwise, 

the request is refused. Successful requests are then 

treated at the Edge tier by the local RAM, which offers 

the ResourceAllocatorInterface (IRA) used to receive 

the requests arriving via the VNSDM or forwarded by 

the centralized RAM. Upon receiving the application 

requests, the RAM invokes the VNInstanceMgr (VNIR) 

using the IVNIR interface to find a VN instance 

matching the request. When a VN instance that matches 

the requests is not found, or if the available VNs are busy 

(with other, previously received request), the RAM 

should make a decision regarding the current request. 

The decision should take into account the type of the 

edge note: (i) if it is a slave edge node, then the request 

is forwarded to its respective master edge node; (ii) if it 

is a master edge node, then the horizontal collaboration 

process is executed to find a neighbor master node 

capable of provisioning a VN. 
 Requests are then dealt by the 

ResourceProvisioningMgr (RPM). Initially, the RPM 

invokes the RegistriesRepositoryMgr (RR) using the 
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IConfig interface to seek a VN description that meets the 

application request. Then, the RPM executes the action 

to select and prepare the underlying physical 

infrastructure that is capable of hosting and running a 

VN instance according to the respective description. 

However, there are 3 exceptions that should be handled: 

(i) if a VN description is not found (so, the application 

is requesting a service not currently being provided by 

the edge-cloud infrastructure), or (ii) if a selected edge 

node becomes unreachable or (iii) if a selected edge 

node has not enough resources to host and running the 

VN, then the RPM is not able to proceed, so it sends a 

warning message in response to the application request.  

Upon finalizing the above tasks with success, the 

RPM invokes the VNManager (VNM) component using 

the VirtualNode Interface (IVN) to instantiate the new 

VN. Initially, the VNM invokes the RR component 

through the IConfig interface to get the data type setting 

related to the request. Then, it identifies the type of VN 

and executes the VN instantiation. From now on the 

behavior depends on the type of VN. The VN exposes 

the IVN interface to provide its services upon receiving 

the requests from the ResourceAllocationMgr. Also, the 

VN operations are supported by engaging the Data 

Handler, SAM, and DSM. The interaction among these 

components is described as follows. 

The VN of type actuation (VNac) invokes the SAM 

component using the IPUT interface to perform the 

requested actuation. The VN of type sensing (VNse) 

interacts with the DSM for retrieving the data streams 

from historical databases maintained at the Edge tier. 

The VNse can also invoke the SAM using the IGET 

interface whenever the data freshness of the stored date 

does not meet the target QoS requirement. In this case, 

fresh data must be acquired from the physical nodes at 

the Sensor tier. The VN of type data fusion (VNdf) (and 

its subtype VNcache) sends queries to the Data Handler 

(DH) component to fulfil its task. The DH, by its turn, 

queries the DSM, through the IEvent interface, to obtain 

the data streams needed to answer the VNdf request. The 

VN of type user function (UF) also interacts with the 

DSM for retrieving the data from historical databases. 

However, it performs user injected code (application 

specific functions) over data before returning the output 

data to the application. Finally, the VN of type event 

(VNevent) receives event data from the DSM and sends 

them to the application using a callback. 

The behavior of the Sensor tier is centered around 

the SensingandActuationMgr (SAM) component, which 

starts, after the system booting, getting raw sensing data 

from the Sensor tier and send them to the 

DataStorageManager (DSM) to be stored. 

 

4 THE IMPLEMENTATION ARCHITECTURE 

USING EDGEX FOUNDRY 
 

In this Section, we present the proposal of architecture 

using Edgex Foundry. Figure 6 illustrates the 

architecture composed of specific components from the 

EdgeX Foundry framework [12] and third-party 

components. We used the EdgeX Foundry Components 

(EFC) for supporting the implementation of the 

components that encompass only our Edge tier (ET) 

since the Cloud tier (CT) has no support in EdgeX 

Foundry. The EdgeX Foundry is an open source 

framework designed for IoT Edge computing that 

encompasses a set of plug-and-play and loosely coupled 

microservice. 

In LW-Dc4EC we are using the EFCs components to 

compose: (i) the Sensing and Actuation Manager (SAM) 

component tasks regarding the interaction with the 

physical environment, such as getting sensing data, 

performing actuation, and managing and 

communicating with the Sensor tier; (ii) Data Storage 

Manager (DSM) to manager the temporary database of 

the sensing data. Moreover, other EFCs are used to 

control the registry repository, export sensing data from 

the temporary database to cloud and clear the temporary 

database. The third-party components are used to (i) 

provide historical data processed or unprocessed in 

response to the application requests at the Cloud tier, (ii) 

a lightweight and high-performance message system, 

and (iii) a Complex Event Processing (CEP). 

The EFC Device Services (DS) is the component 

composing the SAM in charge of receiving raw sensing 

data (after the boot of the system) from elements that 

encompass the Sensor tier and send them for storage in 

the temporary database using the EFC Core Data. Each 

DS is an edge connector in charge of abstracting the 

heterogeneity the Devices or IoT objects and allowing 

the interaction with them. These devices or IoT objects 

include, but are not limited to home appliances, alarm 

systems, heating and air conditioning, lighting, 

industrial machines, irrigation systems, drones, traffic 

signals, automated transportation, and so forth. 

The edge connector is a component that 

encompasses the driver interface responsible for 

interaction with the physical device, service for data 

transformations, and handlers for servicing requests. 

Moreover, the DS interacts with the EFC Metadata to 

support its tasks. The SAM is also composed by EFC 

Command. It is responsible for providing the essentials 

interfaces to support the tasks of the Virtual Nodes (VN) 

to send actuation commands (interface IPUT) and get 

fresh data from the sensors directly (interface IGET). 

The EFC Metadata is an important component used to 

stores information about the services, devices and 
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Figure 6: Implementation architecture 

sensors (type, and organization of data) that are used by 

EFC Command, EFC Device Services, and EFC Core 

Data. 

Regarding the cloud tier, we can observe both the 

LW-Dc4EC and third-party components. The third-

party components encompass both the Context Broker 

and the Complex Event Processing (CEP) components. 

The Context Broker [21] is used as the provider of the 

historical data to the applications. The historical data are 

data that are no longer necessary to be available at the 

Edge tier. They are essential for applications that need 

to perform, for instance, a temporal analysis of the data. 

The Context Broker provides its services through NGSI 

interface [13]. The NGSI is a protocol in charge of 

providing a simple yet powerful open API that 

implements a RESTful API for Context Management. 

The CEP [8] is responsible for the execution of the 

queries over raw data from the Context Broker to 

provide data processed.  

The EFC Configuration&Registry is the foundation 

to implement the Registries Repository (RR). It provides 

a database for persistence metadata besides the 

essentials APIs (store, remove and retrieve) to the 

management. The EFC Core Data is the foundation to 

implement the DSM. It is the component in charge of 

storing and retrieving the data stream from historical 

databases maintained at the Edge tier. The EFC Core 

Data provides a centralized persistence facility for data 

readings collected at the Sensor tier and uses a REST 

API for moving data into and out of the local storage. It 

also provides a degree of security and protection of the 

data collected while the data is at the edge. 

The CEP at the Edge tier is the component in charge 

of executing queries over sensed data for the data fusion 
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VN type (VNdf) using the Data Handling (DH) 

component as intermediate. To provide the CEP with 

data, the DH obtains the data stream from the EFC Core 

Data through an asynchronous process (subscribing to a 

queue) using ZeroMQ. ZeroMQ [37] is a high-

performance asynchronous messaging library, aimed to 

be used in distributed or concurrent applications. The 

VNS also includes the EFC Export Services, a 

component used to distribute data for other components 

or applications. In our architecture, it is used to move the 

data stored in the temporary database from the EFC Core 

Data to the Context Broker at the Cloud tier. 

Finally, the EFC Scheduling is a component that can 

be used to schedule invocation of a URL. It includes the 

Scrubber microservice which cleans up the event and 

reading data that has already been exported to the 

Context Broker. Optionally, the Scrubber can also be 

configured to remove the stale event/reading data not 

exported. 

 

5 RELATED WORK 
 

Two recent works brought significant advances to the 

field of light virtualization models for sensors/IoT 

devices.  Madria et al. [16] proposed a centralized 

virtualization model for Clouds of Sensors (Cos), which 

encompasses Virtual Sensors and provides sensing as a 

service for the users. Unlike Madria et al. [16], we 

implement a decentralized virtualization model tailored 

to meet requirements of emergent IoT applications such 

as low latency and location-awareness. In Santos et al. 

[25], the authors proposed Olympus, a decentralized and 

information fusion-based virtualization model for CoS. 

Olympus uses information fusion to ensure that the 

system will provide data at the abstraction level desired 

by each application (either raw or aggregated according 

to different levels from the feature to the decision level).  

In Santos [26], the authors extended the original design 

of Olympus to create a three-tier CoS infrastructure to 

provision Virtual Nodes (VN) at the edge of the 

network. Our proposal differs from Olympus and its 

extension in two essential aspects. First, we provide a 

process of collaboration between the VNs to actively 

share fresh data with neighboring VNs. Thus, we avoid 

re-reading the sensors to get the same data, thereby 

improving response time, bandwidth consumption, and 

sensor lifespan. Second, Olympus defines the VN as a 

program able to perform a set of information fusion 

techniques based on application requirements. Unlike 

Olympus, our model is more generic and provides 

predefined types of VNs representing each data type 

provided to serve the application requests. 

Shi et al. [29] provide a flat view of Fog Computing 

that connects the cloud of sensors and smart devices via 

mobile devices. Their proposed infrastructure offers and 

consumes resources and services of mobile devices 

through the REST pattern using the CoAP protocol, 

thereby promoting the dissemination of data between 

users in a decentralized way. Unlike such work, we 

designed a new virtualization model capable of running 

VNs for providing sensing data or performing actuation 

in response to the application requests directly at the 

edge of the network. Moreover, we implemented a 

process of collaboration to allow VNs to share data with 

their neighboring nodes without the user mediation, 

thereby improving the request response time and saving 

bandwidth. 

Concerning the collaboration between edge nodes, 

Taleb et al. [33] introduced the "Follow Me Edge". It is 

a concept based on Mobile Edge Computing (MEC) 

providing a two-tiered architecture to enable the 

migration of containers across edge nodes according to 

the localization of their mobile users. Although the 

container migration emerges as a feasible solution for 

the mobility requirement, the authors claim that the 

selection of the proper technique to perform the 

migration is a challenge to avoid both communication 

latency and data synchronism issues. Our proposal 

differs from Taleb et al. [33] by providing a 

collaboration process to share only the sensing data 

between edge nodes. Thus, we avoid transferring huge 

container images through the network, since each edge 

node already provides its services as VN containers 

thereby saving bandwidth and decreasing latency. 

Wang et al. [35] present the Edge Node Resource 

Management (ENORM), a framework for handling the 

application requests and performing the workload 

offloading from the Cloud to running at the Edge 

network. ENORM addresses the resource management 

problem through a provisioning and deployment 

mechanism to integrate an edge node with a cloud 

server, and an auto-scaling tool to dynamically manage 

edge resources. Although our work was inspired by 

ENORM, our proposal is fully decentralized at the edge 

network. Such feature enables the edge nodes to find or 

provision the best VNs for providing either raw or 

aggregated sensing data, or performing actuation in 

response to the user application requests arriving from 

the cloud or the edge of the network. 

Sahni et al. [24] present a novel computing approach 

named Edge Mesh integrating the best characteristics of 

the Cloud Computing, Edge Computing, and 

Cooperative Computing into a mesh network of edge 

devices to decentralize decision-making tasks. It enables 

collaboration between edge devices for data sharing and 

computation tasks. However, the authors present several 

open issues for implementing the communication 

between different types of devices. Some open issues 

concern how and which data should be shared between 

edge devices, and the appropriate local to execute the 
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intelligence of the application at the edge of the network. 

Our proposal leverages the advances promoted by the 

Edge mesh approach and addresses the related open 

issues by proposing all the steps for a collaboration 

process at the edge tier for enabling the data sharing 

between VNs.  

 

6 FINAL REMARKS AND ONGOING WORK 
 

The edge-cloud computing systems require a 

lightweight virtualization approach, to deal with the 

resource constraints of edge devices. Our proposal is 

adopting a virtualization approach based on containers 

and microservices, thus providing a virtualization model 

with low overhead. Moreover, we propose a data-centric 

approach, in which the virtual nodes are defined based 

on the data (either raw or processed), instead of on 

virtual machines or processing cores. Therefore, 

resources offered by the edge-cloud infrastructure, as 

well as application requests issued by end users, are 

described based on the data to be provided/consumed. 

Our data-centric virtualization model leverages data 

reutilization among different application with similar 

requirements in terms of data sources, thus promoting 

higher return-of-investments for infrastructure 

providers. Our virtualization model provides several 

built-in types of virtual nodes that support the definition 

of different types of data-driven resources that are 

managed by the edge-cloud infrastructure. The 

definition of data-centric virtual nodes allows for 

various types of granularity in the content of a node, in 

order to promote either the reuse (sharing) of resources 

either the fulfillment of application-specific 

requirements. A virtual node can be specified to be 

tailored to the requirements of a single specific 

application, an application domain, or represent a 

generic function of data fusion or event detection. This 

feature helps dealing with the high heterogeneity of 

application requirements in edge-cloud systems. 

The proposed software framework was specially 

designed to address the inherent challenges of resource 

management in edge-cloud ecosystems. The specified 

software components and description of their behavior 

will provide the underpinning and well-formed 

guidelines for building concrete resource management 

systems for these systems. Adopting a distributed, 

hierarchical approach to the framework and supporting 

collaboration between edge nodes enable addressing the 

challenges of large-scale, device heterogeneity, resource 

constraints, and also helps meeting application privacy 

requirements. Hierarchical approaches are well known 

for minimizing coordination overhead in large-scale 

systems, since master nodes are responsible for 

controlling their slave nodes, and message exchange is 

restricted to a smaller region, rather than requiring 

dissemination through all the nodes of the system. One 

can also take advantage of the heterogeneity of nodes, in 

order to assign the role of masters only to nodes with 

greater capacity of resources. 

Regarding security requirements, the high 

availability of data produced by end users IoT devices 

raises privacy issues. For example, analyzing photos and 

videos generated by a smartphone can help identifying 

terrorist attacks or other public safety situations. Being 

able to have such data to be consumed by data analytics 

applications in the cloud can bring countless benefits not 

only to the device owner but to the community as a 

whole. Therefore, on the one hand, it would be important 

to share this data, but on the other hand, such 

information is often private/ confidential and cannot be 

disseminated blindly. The main challenge is to maintain 

user privacy while provisioning such analysis services. 

The proposed hierarchical approach can be extended to 

address this challenge. Each user can register her/his 

devices on an edge node in the vicinity, which would be 

considered her/his private edge node, and provide 

computing and storage capabilities. The raw data 

generated by the user would be associated with VMs 

instantiated on the private edge node, which could filter, 

preprocess and anonymize the relevant data before 

passing it to higher levels of the hierarchy for further 

analysis. 

Our research team has concretized the concepts 

described in this paper into a functional prototype that is 

being currently tested within the scope of a Dell-funded 

R&D project. However, for confidentiality reasons, we 

cannot release the link for access to our prototype at this 

stage. We can say, in advance, that our functional 

prototype was implemented using the open source 

platform EdgeX Foundry [12]. 
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