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ABSTRACT

So far, most of research and development for the Internet of Things has been focused at systems where the smart
objects, WPAN beacons, sensors, and actuators are mainly stationary and associated with a fixed location (such as
appliances in a home or office, an energy meter for a building), and are not capable of handling unrestricted/arbitrary
forms of mobility. However, our current lifestyle and economy are increasingly mobile, as people, vehicles, and
goods move independently in public and private areas (e.g., automated logistics, retail). Therefore, we are witnessing
an increasing need to support Machine to Machine (M2M) communication, data collection, and processing and
actuation control for mobile smart things, establishing what is called the Internet of Mobile Things (IoMT). Examples
of mobile smart things that fit in the definition of loMT include Unmanned Aerial Vehicles (UAVs), all sorts of
human-crewed vehicles (e.g., cars, buses), and even people with wearable devices such as smart watches or fitness
and health monitoring devices. Among these mobile loT applications, there are several that only require occasional
data probes from a mobile sensor, or need to control a smart device only in some specific conditions, or context,
such as only when any user is in the ambient. While IoT systems still lack some general programming concepts
and abstractions, this is even more so for loMT. This paper discusses the definition and implementation of suitable
programming concepts for mobile smart things - given several examples and scenarios of mobility-specific sensoring
and actuation control, both regarding smart things individually, or in terms of collective smart things behaviors.
We then show a proposal of programming constructs and language, and show how we will implement an loMT
application programming model, namely OBSACT, on the top of our current middleware ContextNet.
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1 INTRODUCTION application developers [4]. In this sense, IoT scenarios
have evolved from simple sensor readings (e.g., measure
the temperature of a room) or sending single actuating
commands (e.g., unlock a door), to the establishment of
complex applications that combine multiple services of

sensors and actuators. We will refer to these sensors and

Recent development and advances in the Internet of
Things (IoT) have introduced several challenges for

This paper is accepted at the International Workshop on Very

Large Internet of Things (VLIoT 2019) in conjunction with the
VLDB 2019 conference in Los Angeles, USA. The proceedings of
VLIoT@VLDB 2019 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

actuators as smart things (or smart objects) throughout
this paper. The development of IoT applications requires
a series of non-trivial steps that include: the deployment
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of smart objects, the discovery of services, configuration,
subscription to services, and the effective use of these
services to build meaningful applications.

Cloud and Fog computing are critical enablers
for large-scale IoT applications, as they offer the
necessary infrastructure to support scalability in terms of
device virtualization, provisioning of virtual sensors and
actuators, and providing proper execution infrastructure
for complex IoT applications. We envision some
IoT applications where smart objects are distributed
throughout the environment (such as along streets,
inside buildings, houses, yards, rural areas), and can
be stationary or mobile. To connect these smart
objects to the Internet in an opportunistic way, we need
intermediary devices called hubs, which can also be
mobile. This approach is termed opportunistic because
of the spontaneous and dynamic nature of encounters
between smart objects and hubs, which are possibly short-
lived, given mobility aspects. These mobile hubs (M-Hub)
[10] can scan for smart things using a Wireless Personal
Area Network (WPAN) technology, such as Bluetooth
Low Energy (BLE), and expose them to the Internet.

Moreover, these M-Hubs are devices that may offer
processing capacities (e.g., Smartphones, Raspberry Pi)
and can be programmed to not only act as dispatchers of
raw data to the cloud but also perform some operations
within the data (e.g., aggregation, filtration). As an
example, let us suppose a user carrying her smartphone
with an instance of this mobile hub executing. As she
passes by some places, her smartphone opportunistically
detects and exposes the services of discovered smart
objects so that developers can use them to create
applications.

A subset of IoT applications where devices can be
mobile (the M-Hubs, as well as the smart objects
themselves) is called the Internet of Mobile Things
(IoMT). This concept poses several challenges for
application developers as well as for middleware systems
because of mobility’s dynamic nature. For example,
devices can connect and disconnect unpredictably from
the infrastructure. Given this fact, middleware solutions
need to deal with this dynamism, and since this is not
directly related to the domain of the application, it is
necessary to hide some aspects from developers like
discovery and configuration.

In this sense, high-level programming models that
abstract the mobility of devices and network dynamism
are needed to tackle the challenge of developing IoMT
applications. IoT developers might be experts in a
specific application domain but less experienced as
software developers. Therefore, they need tools that
allow them to express concepts of the real world into
coding languages easily. In this work, we are interested
in the subset of IoT applications that can be implemented

using rules that have observation inputs (e.g., sensor
readings) and actuation outputs (e.g., actuation commands
and notifications). IoT sensors readings may comprise
a stream of events that can be processed to create
meaningful applications. Rule-based and Stream-based
engines are potent tools for IoT application development
as they offer the support to automated, timely reactions
of smart objects to situations of interest occurring in the
physical world [7]. The reaction is done by continuously
analyzing and integrating low-level sensor readings, to
subsequently fire an actuation command or a notification
event.

A developer would like to be able to write application
rules into machine code to further implement an
application. Therefore, we need to observe some details:
(i) How to discover and connect to these sensors and
actuators? (i) How to configure these objects? (iii)
How to collect data from sensors or send commands to
the actuators? (iv) How to collect and dispatch data to
consumers? (v) How to specify data access control? (vi)
How to implement QoS parameters? (vii) Where is data
pre-processed and processed (at the edge or the cloud)
and how to deploy the code to fulfill these tasks? A high-
level programming model would help the developer to
build an application without concerning about the details
mentioned above.

In this paper, we present our approach for high-level
IoMT application programming, namely OBSERVATION-
ACTUATION LOOP (OBSACT). Our solution is based on
the extraction of concepts that rule [oMT. The remainder
of this paper is structured as follows. In Section 2,
we present some common scenarios in JoMT. Section
3 presents some challenges of IoMT programming. We
proceed to Section 4, where we discuss our approach,
namely OBSACT. In Section 5, we present ContextNet
middleware and IoTrade service, used to implement this
work. In Section 6, we present a proof of concept
evaluation of the programming model. In Section 7, we
show some related work and finally, in Section 8, we
present the conclusions and next steps of our work.

2 SCENARIOS

In this section, we present some scenarios of IoMT
applications. By investigating these scenarios, we will
be able to present and discuss the main concepts that
underlie most IoMT interactions. We can summarize an
IoMT application as a composition of places and elements
- either stationary or mobile - that interact within the
desired domain. An IoMT developer will have to specify
the relevant relations and interactions that make up the
desired functionality. These IoMT elements are listed
below:
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e Environment: It is the physical location (i.e., a
place in the world, such as a room, a corridor, a
street) in which sensors, actuators, and other entities
are located at a given time 7. Also, an environment
is a place where dynamic IoMT interactions may
occur. The interactions are considered to be dynamic
because the entities that are inside an environment
are possibly mobile and are temporarily associated
with that specific place. Nevertheless, the smart
objects and entities can also be fixed (i.e., not
mobile) at that place.

e Entity: An entity can be a human being that carries
a smartphone, which may also function as a mobile
hub (see below). It may also be an object, such as
electronic devices (e.g., air conditioner, television),
mobile robots, drones. Entities can move around
environments and can interact with sensors and
actuators.

e Smart Object: Also called Smart Thing. It is an
object that contains one or more sensors and/or
actuators (see below). Smart objects are the key
enablers of IoT applications, as they are autonomous
physical/digital objects augmented with sensing,
processing, and network capabilities [5]. Also,
they make it possible to interpret what is occurring
within themselves, the environment and the entities,
intercommunicate with each other, and exchange
information with people.

e Sensor: Part of a smart object capable of measuring
physical variables, like temperature, humidity,
luminosity. IoT applications use data gathered by

them.
e Actuator: Part of a smart object that receives
commands. These commands trigger actions in

entities, like locking a door, adjusting a thermostat,
making a robot move forward. Actuators are
the targets of IoT applications, thus receiving the
outputs of processing to do some action within an
environment or an entity.

e Beacon: Element that emits short-range (few
meters) radio frequency announcements. It can be
used to detect proximity or co-localization (e.g., a
person with a smartphone is in the range of a specific
room, that is, inside of the room). Beacons use
technologies such as Bluetooth Low Energy (BLE),
Near Field Communication (NFC), Radio Frequency
Identification (RFID). In our proposed modeling,
beacons are used to identify environments or entities
(e.g., the beacon of a room, or the beacon of a
person).

e Mobile Hub: An element that can scan for smart
objects and beacons in short-range and expose their
capabilities and data by being connected to the
Internet. To do so, Mobile Hub must be equipped
with short-range wireless technologies, such as
Bluetooth, and Internet connectivity, such as Wi-
Fi and 4G LTE. In some cases, it is also capable of
processing data locally, transmitting more complex
information, and not only raw data. A mobile hub
can be a smartphone, or microcomputers such as
Raspberry Pi, BeagleBone, Dragonboard.

By analyzing these elements, we can implement [oMT
applications using mechanisms that execute actuation
commands, according to a specific observation within
some context. Context is a research field that can
be defined as a set of relevant information about an
environment or an entity [2]. The most common form
of context information is the location (either symbolic or
geographical). Symbolic location is relative information
about a place (e.g., Room 101 at the Informatics
Department of PUC-Rio), while geographical location is
defined by Latitude and Longitude coordinates acquired
from a GPS sensor. Also, the context can be time-related,
which can be a date and time interval (from 13:00 to
14:00 at March 13" of 2019), a fixed timestamp (13:00
at March 13*" of 2019), or even a relative date and time
(3 minutes after an event occurs). Context does not only
involve time or location awareness. Other examples: The
quality of sensor measurements and relevant metadata
about the service; The logical relation between objects,
like the proximity, or even the absence of one kind of
object in some place.

For a reactive system, it is natural to implement some
rule that reacts to events, thus creating an observe-
and-actuate paradigm. Events are atomic occurrences
of physical observations made by sensors, plus the
context information associated with them. We can define
reactive rules that trigger output actuation commands,
with observation events coming from sensors contained in
entities or environments acting as inputs. In the following,
we will describe some IoMT remote monitoring and
control scenarios.

Adjusting a room’s air conditioner thermostat: Let
us suppose one is interested in monitoring the temperature
(environmental variable) in a certain room (location
context) so that an application can adjust the thermostat
(actuation command) of the air conditioner of that room.
In this case, the temperature sensor readings comprise a
stream of input events, and the actuation command would
be the output event.

The process, shown in Figure 1, proceeds as follows:
(1) Someone enters the environment and her Mobile Hub
detects the beacon associated with that room; (2) The
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Figure 1: Scenario of a temperature sensor and a
thermostat that regulate an air conditioner

mobile hub receives the temperature readings from a
sensor in that environment; (3) When the temperature
reading is above a threshold (e.g., 28°C), a detection rule
is triggered; (4) A Mobile Hub, that can be the same that
received the sensor’s readings or a completely different
one, sends an actuation command to the thermostat, to
set the temperature to 22°C, for example. It is a simple
reactive rule that measures an environmental variable and
actuates in a device, so that a new environment state is
achieved, in this case, to lower the temperature.

The scenario presented above consists of a single
observation and a single actuation command. However,
these observe-and-actuate rules can be more complex. Let
us consider other scenarios.

Logistics Monitoring: IoMT applications also lend
themselves to monitor and check the co-localization

and/or co-movement of mobile entities (e.g., people, cars).

Let us visualize the following scenario. A truck of a

logistics company is carrying some parcels for delivery.

A beacon identifies each parcel, and all of them must be
transported together, as shown in Figure 2. If it would
happen that the truck is opened and some of the parcels
are removed, the IoMT application could trigger an alert
for the postmen or the insurance company. In this case,
the trigger fires when one or more parcels are not in the
predefined group.

Tourists Guided Tour: As another example, consider
a group of tourists and one tourist guide, all visiting a
city. Now assume that due to some reason it is essential

Figure 2: Scenario of a truck being loaded and
unloaded with parcels (which should be transported
together

Ups! Lost tourist
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guide

tourist

obile-Hub

t-::-u rist
v

.
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Figure 3: Scenario of a tourist guide and some
tourists that should stay near the guide

that all tourists always stay within a few meters from
the guide (e.g., the security of the tourists that do not
speak the native language, or simply to keep the schedule
of the planned visits). In order to continuously check
such collective “movement restriction”, tourists may carry
beacons that announce their proximity to the guide’s
smartphone. In a case that some of the tourists happen
to drift away, this could be immediately notified at the
guide’s smartphone with, tourist name, the time and the
exact place (context) in which this separation happened.
This scenario is illustrated in Figure 3

Formation Flight of UAV Swarms: Unmanned
Aerial Vehicles (UAVs) may be deployed in swarms,
flying in specific formation patterns (e.g., line, square,
finger-four). This is useful for applications that, for
example, have to video scan a forest area or collect
data from wireless sensors on the ground. To keep a
formation pattern, there must be a leader, and each other
UAV should stay within a defined range in relation to
the leader. We assume that the UAVs have means to
measure the distance in relation to each other, by using
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sonar sensors or video processing techniques, for example.
The actuation commands in this example are adjustments
for maintaining the pattern, or even changing it.

All of the above scenarios introduce some challenges
of IoT with mobility that will be discussed in Section 3

3 CHALLENGES OF IOMT APPLICATION
PROGRAMMING

By using a rule-based approach for IoMT programming,
some monitoring control rules have to be generic for many
types of environments, i.e., without the need to indicate
specific identifiers (ID numbers) for smart objects and
beacons. Application developers would like to focus on

domain-specific problems for their IoMT applications.

For so, they could delegate the discovery, selection, and

configuration of smart objects to a middleware solution.

With all of these steps being settled by the middleware,
they could use a high-level programming model to express
the functionalities they need.

Any internet connectivity of sensors, beacons, and
actuators depends on the presence of a nearby smartphone
running the Mobile Hub. Also, any location information
is provided by a Mobile Hub. In the thermostat scenario
presented in Section 2, a Mobile Hub is needed to enable
the environment control at an actuator according to the
data received from the corresponding sensor. This means
that the Mobile Hub must be able to detect its location and
inject this information into sensors and actuators events
that are sent to the cloud.

Due to the large number of environment variables
and entities to be controlled, and the uncertainty about
which Mobile Hub will be the enabler of the control,
corresponding drivers for communication with sensors
and actuators have to be fetched on demand from the
cloud service. After a Mobile Hub is selected by the
middleware to deal with an observation or an actuation
rule, drivers are fetched dynamically so that it can
communicate appropriately with smart objects. For
scalability reasons, they cannot store all drivers locally
for all types of devices. Therefore, a cloud service that
stores drivers is needed to solve this problem.

The unrestricted mobility paradigm, where every smart
object and Mobile Hub are possibly mobile, poses some
challenges for the development of applications. As
there is no guarantee that an object is at a specific
place, middleware solutions have to continuously and
opportunistically check the environment for new sensors,
beacons, and actuators. The conditions programmed by
a developer must specify how much time a command
should wait for the arrival of smart objects and beacons.

In the example of the group of tourists that should
stay together, presented in Section 2, the programming
of the application should allow the specification of a

dynamic set of beacons representing the tourists. Also, it
should guarantee that the proximity of all the registered
beacons is continuously verified. The actuation command
or notification should be only about the beacon that drifted
away, but it should happen as soon as possible to the
guide. Also, in this application, there must be some
way to enable and disable the monitoring of the group
vicinity, due to the common habit of introducing some
group dispersal intervals.

4 OBSERVATION AND ACTUATION

APPROACH (OBSACT)

To facilitate IoMT programming, underlying details
should be transparent to developers.  For some
applications, developers are interested in solving a
specific domain problem, and they are prone to worry less
about which specific sensor they are using, i.e., which
identifiers (IDs) belong to that sensor. Also, for these
applications, developers are not interested in how the
middleware will deal with selection and communication
with smart objects. In the thermostat regulator scenario,
presented in Section 2, application developers would
like to be able to express their requirements as close
as possible to their natural language. An English
formulation could be: “I want to adjust the temperature
of the air conditioner to 22°C when the temperature
rises above 28°C” We emphasize here that Natural
Language Processing (NLP) is not the scope of this work.
Instead, we would like to have programming constructs
that will allow developers to express their application
requirements.

To deal with application requirements, in this
Section, we present our programming model, namely
OBSERVATION-ACTUATION LOOP (OBSACT). As the
name infers, this model allows to declaratively express the
focus of application demands, in terms of observation and
actuation rules. The proper selection of smart objects with
the given context is made by the Observation mechanism
of OBSACT, as well as the reaction chained by these
observations, thus creating an Actuation command. We
present the abstractions used for the proper selection of
sensors and actuators, given some context parameters, so
as the mechanisms for reaction to these events.

The nature of [oMT applications is essentially a stream
of events. An application consists of a set of rules that
focus on an event stream. Actuation commands are
output events generated from the comparison of attribute
values within a designated time window. This model is
essentially Complex Event Processing (CEP), as a stream
of single events can be composed to generate complex
events. CEP is a programming paradigm that allows
reactions to a stream of event data in real time [6] by
using continuous queries and inserting data through them.
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Figure 4: ObsAct architecture

We use EPL! (Event Processing Language) notation in
this work, but this same model could be written in another
CEP language.

OBSACT architecture is shown in Figure 4. The
developer implements her application using EPL rules
that are the inputs of OBSACT. Then, the OBS-select
component maps the selections of beacons and sensors
that the developer coded for use in the application. The
ACT-select component does the equivalent of the OBS-
select, but for actuators that matched the selection.

Listing 1 shows the basic object types that are present
in OBSACT. Essentially, we have sensors, beacons,
environments, and actuators events that are generated
and inserted into the engine of OBSACT. Beacons are
associated to Environments by their placed_at attribute,
that refers to a valid env_id. Sensors and Actuators
are associated to Environments by the at_environment
attribute, that refers to a valid env_id.

The Observation and Actuation events are generated
by the developer, where they express their application
requirements.  Listing 2 presents an example of
observation rule, written in EPL, that inserts an
Observation event into the CEP engine. In this example,
the rule is looking for temperature sensors that are
measuring above 30°C in an environment named “LAC”.
This rule uses a time window of 60 seconds and outputs
the first occurrence inside this window. Listing 3 shows

VEPL is the language used in Esper CEP Engine - http://www.

espertech.com/esper/

-

Sensor (sensor_id string, sensor_name string
, sensor_value float, at_environment
string, timestamp java.util.Date);

Beacon (beacon_id string,
placed_at string, timestamp java.util.
Date);

3 Environment (env_id string,

env_name string);

4 Actuator (act_id string,
at_environment string,
string);

Observation (env_id string, sensor_id string
, beacon_id string, value float,
sensor_name string);

Actuation (target string,
arguments string);

Listing 1: ObsAct schema

(5]

rssi int,

type string,

act_name string,
act_command

wn

=)

command string,

-

@Name (' Detect’) insert into

Observation (env_id,
value, sensor_name)

3 select e.env_id, s.sensor_id, b.
beacon_id, s.sensor_value, s.
sensor_name

from Sensor#time (60 seconds)

Beacon#time (60 seconds) as b,

Environment#time (60 seconds)

where b.placed_at=e.env_id

and s.at_environment=e.env_id
and s.sensor_value>30

10 and s.sensor_name=’temperature’

11 and e.env_name='LAC’

12 output first every 60 seconds;

[ 5]

sensor_id, beacon_id,

as s,

as e

NI B NV I N

Listing 2: Rule that detects temperatures above
30°C inside a specific environment

the Actuation event, that is inserted into the CEP engine
to set the value of the thermostat to 22. This Actuation
is triggered when an Observation event is detected inside
the time window of 60 seconds.

We can notice at examples in Listings 2 and 3 that no
specific identifier of a smart object had to be hard-coded
into the rules. The developer of these rules had to only
concern about which kind of smart objects they wanted,
which environments, and what were the values for the
observation and actuation commands.

Listing 4 presents a rule that continuously checks for
beacons signals. This is the case of the Tourists Guided
Tour presented in Section 2. Mostly this rule checks,
for each beacon event occurrence, if the same beacon is
not seen at least one time in the next 10 seconds. Also,
there is a check if that beacon belongs to that particular
application, i.e., if it is into the BeaconsList window. The
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@Name (' Trigger’) insert into

Actuation (target, command, arguments)

select act_id, act_command, 22’

from pattern [every obs=Observation (
sensor_name='temperature’) where timer:
within (60 seconds) ] #time (60) as pat,

Actuator#time (60) as act

where pat.obs.env_id=act.at_environment

and act.act_name=’thermostat’

and act.act_command=’set_value’

E S S

[ B Y]

Listing 3: Rule that triggers an actuation command
to set thermostat value to 22

@Name (' Detect’)
from pattern
[every bl=Beacon —>

(timer:interval (10 sec)

and not b2=Beacon (bl.id=b2.id)) ]#time (10),
BeaconsList#keepall() as bl

where bl.id=bl.id;

select bl.x

N R W -

Listing 4: Rule that triggers when a beacon of a
defined group is not seen in the past 10 seconds

output actuation event for this rule could be to send a
notification to the guide’s smartphone.

As any objects can be mobile in an IoMT paradigm,
these rules are ready to be deployed in scenarios of
unrestricted mobility. The event stream processing model
works with the concept of windows, that can be related to
time or the number of events. When a developer deploys a
CERP rule, it is instantiated in the engine. The engine then

continuously checks for events that satisfy the conditions.

As this checking is continuous, it fits mobility scenarios
naturally, because new sensors and actuators may be
discovered opportunistically [1] by mobile hubs and thus
satisfying the rules at some point.

5 IMPLEMENTATION ARCHITECTURE

Our solution was developed on top of a middleware
called ContextNet. OBSACT is an abstraction layer
that maps the ObsAct rules into more basic criteria for
entity selections, wireless communications, and stream
processing at the middleware layer. In this Section, we
will focus on describing the ContextNet middleware, so
as the IoTrade service. Both were used as the basis for
our implementation.

5.1 ContextNet Middleware

ContextNet [3] is a scalable mobile-cloud middleware
for the Internet of Things. Its unique characteristic is
that it employs Mobile hubs (M-Hub) executing on
smartphones, as the means of discovering smart objects
with Bluetooth Smart radio and let them communicate
with backstage IoT services hosted in a cloud/cluster, and
among themselves, all through the cloud. Of course, the
Mobile Hub can also execute on stationary SoC boards
such as Raspberry Pi or ESP32, in which case they assume
the role as conventional, stationary hubs for Bluetooth
devices.

However, the M-Hub’s potential mobility opens room
for remote monitoring, remote control and data analytics
of any such smart thing with sensors, beacons or
actuators, be them stationary or in motion, through
popular smartphones, thus enabling the sort of [oMT
applications described in Section 2.

Bluetooth Low Energy (BLE) is emerging as
a promising short-range, low-power connectivity
technology (WPAN) for IoT. The reason is that it is
embedded in almost all models of smartphones, and
also being integrated into a growing assortment of smart
devices, like bulbs, locks, smartwatches, fitness and
activity monitors, and tiny beacon tags and sensor devices.

By using ContextNet, it is possible to associate any
reachable mobile objects (M-OBJ) with a geographic
position that will be provided by the connected M-
Hub, either by its GPS sensor - if outdoors, or by a
previous encounter with a BLE beacon, if indoor. On the
other hand, the various communication modes among M-
Hubs, mediated through Scalable Data Distribution Layer
(SDDL) core services, will enable rich forms of M-OBJ
search, sensor data subscription and remote monitoring
and control of actuators embedded into smart things.

Through the dynamic discovery and connections
with Bluetooth Low Energy (BLE)-enabled devices and
support for stream processing using Complex Event
Processing (CEP) technology at the mobile hubs (i.e.
smartphones), as well as in the cloud, ContextNet
supports IoMT applications that embrace mobility and
intermittent connectivity in the edge networks, i.e. of the
hubs, of sensors, actuators, and beacons. By providing
CEP edge computing, ContextNet also allows much
reduction of the Internet traffic of raw data to/from the
cloud-hosted services.

There are three types of IoMT applications that best
served by the ContextNet middleware:

1. Localized IoT applications, where the user’s
smartphone connects to and interacts directly with
BLE Sensors, beacons or actuators in its vicinity, for
example, at home or in his/her office (cf. Figure 1);
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2. Farticipatory IoT applications, where regular
smartphone users may get incentives — or even
monetary benefits - for donating their 3G/4G
connectivity and a portion of their device’s
energy budget for hauling sensor data, beacon-
IDs or actuation commands to/from the cloud.
Since ContextNet’s mobile hub software runs in
background, it is independent of the active mobile
apps, and it has shown to drain only a little the
smartphone’s energy budget [10].

3. Embedded mobile IoT applications where the
Mobile Hub runs on small SoC boards ( RaspberryPI,
ESP32 or a Qualcomm Dragonboard) which may be
within a vehicle, a mobile robot or a drone, and is
able to monitor/control smart things both inside the
vehicle (e.g. temperature sensor) or close to where
the robot/drone is (e.g., humidity sensors in precision
agriculture).

There exists a large number of other middlewares for
IoT, but none of them utilizes regular Android-based
devices as communication hubs, offering also stream
processing capabilities for [oMT through the powerful
Complex Event Processing technology. Moreover,
this hub-based stream processing capabilities are fully
integrated with the data stream processing and IoMT
control services running in the cloud. Examples of such
cloud-hosted services of ContextNet include a NoSQL
distributed persistency service and a location-aware group
communication service.

The middleware ContextNet has a micro-service
architecture, both for the backstage services in the cloud,
as well as in the mobile hub component, making all its
functions modular, exchangeable, and highly scalable in
respect to the communication among the smart things and
the data processing of their sensor or state data.

5.2 IoTrade Service

One of the central ContextNet components used by
OBSACT is a distributed bidding and matchmaking
service named IoTrade [9]. This service allows IoMT
application components to select Mobile hubs and smart
(mobile) devices dynamically, e.g., their sensors and
actuators, or else, data stream processing elements along
with the entire network of all ContextNet-connected
devices, according to loTrade customer demands. These
customers demands mostly are: “target zones” (i.e.,
geographic regions), data transmission quality parameters,
sensor data, and actuation quality (QoS) and cost
parameters.

IoTrade was originally conceived as a multi-sided
platform for trading IoT sensor data and control of smart
devices between their owners and clients interested in

paying for an IoT monitoring and control service spanning
a specific geographic region.

For example, some [oT customer - a person or company
- needs to check the current weather conditions (e.g., if
there is black ice on a section of a road), because it has
to dispatch an urgent delivery of goods. So, s/he marks
this place as a “target zone” in IoTrade, indicating the
need to get temperature, humidity and precipitation data
with high precision and accuracy. This request is then
advertised to all data and connectivity providers (e.g.,
smartphone owners with the M-Hub) and providers of
corresponding roadside sensors in the target zone so that
these can give their bid. All the delivered bids are then
sent to the loTrade server, which will do the matchmaking
and composition of providers that best fit the parameters
that the client has specified. These attributes and the target
zone determine that such a request is delivered only to
providers that have appropriate sensors or actuators in the
specified geographic zone. Moreover, only the devices
are selected whose wireless connectivity quality (i.e., in
terms of latency, reliability, throughput), and sensor data
accuracy, actuator quality, or data analysis matches the
quality requirements specified in the customer request.

Following the same process, OBSACT will act
as the IoMT customer, will determine the “target
zone” (e.g., room LAC) and set the required quality
parameters for sensors and actuators (e.g., temp-sensor
has accuracy level 8), and IoTrade will deliver the
UUIDs of the selected devices back to OBSACT. With
these identifications, the system can then establish
the connections to the sensors and actuators and start
receiving the stream of sensor data and/or sending
corresponding actuation commands to the devices to
control.

5.3 OBSACT Implementation

Observation and Actuation Rules are deployed at the
OBSACT CEP engine, as shown in Figure 5. For each
deployed rule, a corresponding listener is instantiated,
which allows a reactive execution. Each rule contains
a desired logical condition between observation inputs
along with location, time, and other context information.
The location context is used by the Reference Selection
component to build a list of candidate Mobile Hubs
that could be used for the application. The Mobile
Hub Registry is a component that catalogs all registered
Mobile Hubs. As an example, if an application is defined
to run at a specific university, only the Mobile Hubs that
are geographically inside that region can be selected.

At the bottom of the architecture, sensors (e.g., S1
and S2), actuators (e.g., Al and A2), and beacons (e.g.,
B1 and B2) are discovered by selected Mobile Hubs
opportunistically. After the discovery of smart objects,
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Figure 5: ObsAct implementation architecture

their data are made available as a stream of events to
the OBSACT Engine. Each sensor event is an atomic
occurrence of a sensor reading. Similarly, each actuator
event is one of the possible functionalities that the actuator
can perform. Also, each beacon event is the detection of
a beacon that can represent a location or an entity. All of
the mentioned events have a timestamp of occurrence.

As the stream of events passes by the CEP engine,
it checks if the deployed rules are satisfied. When an
observation rule is triggered, this subsequently triggers a
referenced actuation rule. The callback of the actuation
rule is to effectively send the command to an actuator or
a notification to some defined target.

Each smart object that has actuators uses an open or
proprietary protocol for actuation and control. For this,

drivers implement these controls for each different device.

To deal with this communication, we used M-ACT [11], a
middleware that supports generic actuation commands for
IoT devices. M-ACT allows to fetch drivers on demand
from the cloud and install them on the Mobile Hubs that
will send the actuation commands. These commands are
generic (e.g., turn on, turn off, set temperature, increase
the level.) and are converted to specific instructions for
each device.

6 EVALUATION

The evaluation of OBSACT for this work consisted of a
proof of concept implementation. For this, we generated

a set of events and simulated their arrival in a timeline.

We used Esper Online Notebook?, that is a tool for

Zhttps://notebook.esperonline.net/

prototyping CEP rules and run a stream of events with
functions to simulate time advancement.

We used the scenario presented in Listings 2 and 3
from Section 4, where the application needs to observe
temperature sensors that measure above 30°C' in an
environment named “LAC”, and when this triggers, an
actuation command is fired to set the thermostat to
22°C. Listing 5 presents the list of events used for this
simulation. For the sake of readability, some attributes
were omitted. This simulation starts with two beacons,
two identifiers of environments, two sensors, and one
actuator. This set of events generate one Observation
event, shown in Listing 6, which triggers at the Sensor
event in line 6, where the temperature value is 40°C. This
Observation event triggers one Actuation Event that sets
the thermostat value to 22°C'. After 600 seconds, a new
Observation is triggered, this time with a temperature of
35°C, which generates another Actuation event.

EPL rules represent a high-level abstraction for
developers, as they allow to express situations of interest
in terms of sensor and actuator selection, along with
context information. After the step of Observation
and Actuation, shown in the simulation of this Section,
OBSACT will use these events to dispatch the commands
for the ContextNet middleware to execute the actuation
effectively. This step of execution of actuation commands
is out of scope for this paper.

7 RELATED WORK

In this Section, we show some related works that
also propose programming models for IoT, and have
similarities to ObsAct Approach. Each of these works
addresses some aspect towards an IoT programming
model.

Nastic et al. (2013) [8] implemented a framework
named PatRICIA (PRogramming Intent-based Cloud-
scale IoT Applications). According to the authors,
PatRICIA aims to provide an ecosystem for development
and provisioning of cloud-scale IoT applications. The
framework is based on two primitives: (1) Intent, that
is used to represent tasks that will be executed in an
environment (e.g., to collect sensor data or execute an
actuation command); (2) IntentScope, that represents a
group of entities, which share some common properties
(context). The framework then associates Intents and
IntentScopes to create applications.

Khaled et al. (2018) [4] introduce an IoT device
description language (IoT-DDL), for their project named
Atlas Thing Architecture, that presents three primitives:
(1) Thing Service, as an abstraction on the function
offered by a “thing”; (2) Thing Relationship, as an
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1t ="'2019-03-31 08:00:00.000"

Beacon={beacon_id="bid01’, placed_at=’'

room0Q01’ }

Beacon={beacon_id="bid02’, placed_at=’'

room02’ }

Environment={env_id='room01’,

"}

Environment={env_id=’room02’,

Telemidia’}
Sensor={sensor_id=’'sid01’, sensor_name=’

temperature’, sensor_value=40.0,

at_environment=’'room01l’}

Sensor={sensor_id=’'sid02’, sensor_name=’

humidity’, sensor_value=90.0,
at_environment=’'room01’}

Actuator={act_id=’aid01’, act_name='

thermostat’, at_environment=’room01l’,
act_command='"set_value’}

9 t=t.plus (600 seconds)

10 Beacon={beacon_id='bid01’, placed_at=’'
roomQ01’ }

11 Environment={env_id='room01’,
"}

12 Sensor={sensor_id=’'sid01’, sensor_name=’
temperature’, sensor_value=35.0,
at_environment=’'roomO1l’}

13 Actuator={act_id=’"aid01’, act_name=’'
thermostat’, at_environment=’room01l’,
act_command=’"set_value’}

[ 5]

(%)

£

env_name="LAC

W

env_name="

=)

N

=]

env_name="LAC

Listing 5: Timeline of simulated events

—

Observation={env_id='room01l’, sensor_id=’
s1d01’, beacon_id="bid01’, wvalue=40.0,
sensor_name='temperature’ }

Actuation={target="aid01’, command=’
set_value’, arguments=’22’}

(]

Listing 6: Triggered Observation and Actuation
events

abstraction on how different thing services are linked
together; and (3) Recipe, as an abstraction on how
different services and relationships build up a segment of
an application. According to the authors, the [oT-DDL
is a schema used to describe, through a set of attributes
and parameters, the thing in a smart space in terms of the
set of resources, inner entities, cloud-based attachments,
and interactions that engage the thing with other things
and cloud platforms. Their work focus on the capability
of vendors to describe services and relationships of a
thing, using IoT-DDL,; the capability of the framework
to connect different primitives and operators to build an
IoT application; and the capability of a thing to generate
services and formulate appropriate APIs.

Although these works present a programming model
for IoT, they do not handle the mobility aspects of smart

objects and edge devices (hubs) nor offer explicit support
for this paradigm. One aspect of ObsAct approach
when compared to the works presented above is that
everything can be mobile. So, smart objects and mobile
hubs can be associated with environments temporarily,
and they can unpredictably change their context (e.g.,
move from one place to another). Also, our programming
model is based on the well known CEP paradigm, which
offers a structured language for querying streams of
events. Developers write CEP rules to express the
desired behavior for their applications. They do this by
coding attributes and describing the relationship between
observation and actuation events, thus associating a
selection of smart objects with desired context. In this
sense, mobility results in a dynamic and non-deterministic
scenario, as the desired matching depends on the context
at a given time.

8 CONCLUSION AND NEXT STEPS

In this paper, we propose OBSACT, an event-based
approach for programming the continuous monitoring
of - and actuation commands on - smart objects, with
sensors, beacons, and actuators, that can be mobile or
not. The framework is intended for, and heavily relies,
upon the ContextNet middleware as it uses the concept of
Mobile Hub and the IoTrade service.

The OBSACT approach allows the description of
observation and automated reaction both over changes in
fixed environments (e.g., in a smart building), as well as
in collective location and mobility patterns, paving the
way to radically new IoMT applications.

The OBSACT essentially borrows some concepts and
the declarative rule-based paradigm of Context Event
Processing [6]. Moreover, in particular, EsperTech’s
Event Processing Language for expressing the element’s
properties and the observation (OBS) and the actuation
(ACT) rules. The closeness with the CEP language EPL
was on purpose: it primarily facilitates to map (adapt
and split) the OBSACT schema declarations and rules
to the mobile and cloud CEP processing elements of a
ContextNet deployment.

This mapping is not yet finished. In the current stage,
we are still in the process of developing the software
modules for this translation, splitting, and decentralized
deployment.

As future lines of research, we envisage the possibility
to define some language primitives that would describe
relationships between elements that are commonly used,
and that would thus simplify even more the OBSACT
IoMT reaction logic.

Moreover, we think that IoTrade’s QoS parameters -
that allow defining the smart objects better to be selected
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- has yet to be better explored, to give the OBSACT
programmer a higher degree of control when many
sensors or actuators are available.
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