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ABSTRACT

This paper presents an experimental study of Ensemble Deep Learning (DL) techniques for the analysis of time series
data on IoT devices. We have shown in our earlier work that DL demonstrates superior performance compared to
traditional machine learning techniques on fall detection applications due to the fact that important features in time
series data can be learned and need not be determined manually by the domain expert. However, DL networks
generally require large datasets for training. In the health care domain, such as the real-time smartwatch-based
fall detection, there are no publicly available large annotated datasets that can be used for training, due to the
nature of the problem (i.e. a fall is not a common event). Moreover, fall data is also inherently noisy since motions
generated by the wrist-worn smartwatch can be mistaken for a fall. This paper explores combing DL (Recurrent
Neural Network) with ensemble techniques (Stacking and AdaBoosting) using a fall detection application as a case
study. We conducted a series of experiments using two different datasets of simulated falls for training various
ensemble models. Our results show that an ensemble of deep learning models combined by the stacking ensemble
technique, outperforms a single deep learning model trained on the same data samples, and thus, may be better
suited for small-size datasets.

TYPE OF PAPER AND KEYWORDS

Regular research paper: ensemble methods, deep learning, recurrent neural network, fall detection, time series, IoT.

1 INTRODUCTION

Internet of Things (IoT) is a domain that represents the
next most exciting technological revolution since the
Internet. In the healthcare domain, IoT promises to
bring personalized health tracking and monitoring ever
closer to consumers. This phenomenon is evidenced in

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2019) in conjunction with the
VLDB 2019 conference in Los Angeles, USA. The proceedings of
VLIoT@VLDB 2019 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

Wall Street Journal articles entitled “Staying Connected
is Crucial to Staying Healthy” (WSJ, June 29, 2015 and
“Digital Cures For Senior Loneliness” (WSJ, Feb 23-
34, 2019). Modern smartphones and many wearable
devices now contain more sensors than ever before.
Data from those sensors can be collected more easily
and more accurately. In 2014, it is estimated that 46
million people are using IoT-based health and fitness
applications. Currently, the predominant IoT-based
health applications are in sports and fitness. However,
disease management or preventive care applications are
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becoming more prevalent. The urgency for investment
in health monitoring IoT technology is also echoed
by another Wall Street Journal article (July 21, 2018)
entitled “United States is Running Out of CareGivers”.
By 2020, there will be 56 million people aged 65 and
above as compared with 40 million in 2010. In [1],
a system called VitalRadio is reported to be able to
monitor health metrics such as breathing, heart rate,
walking patterns, gait, and emotional state of a person
from a distance.

Recently, there has been a surge in the number
of real-time preventive care applications such as
those detecting falls in elderly patients due to the
increasing aging population [23]. Wearable devices,
especially smartwatches that pair with smartphones are
increasingly a platform of choice for deploying digital
health applications. This is due to the fact that a
smartwatch has the benefit of being unobtrusive, as
it can be seen as the same as wearing a piece of
jewelry. The popularity of using a smartwatch paired
with a smartphone as a viable platform for deploying
digital health applications is further supported by the
recent release of Apple Series 4 smartwatch [2] which
has a built-in “hard fall” detection application as well
as an ECG monitoring App. Recently, an Android-
Wear based commercial fall detection application called
RightMinder [18] was released on Google Play. The
number of digital health applications using IoT devices
is going to continue to increase in the next few years.

Deep learning (DL) has demonstrated outstanding
performance in computer vision, speech recognition
and natural language processing applications. Our
earlier work compared traditional machine learning
(SVM, Naı̈ve Bayes) techniques with deep learning,
in particular the Recurrent Neural Network (RNN),
for fall detection [14] using only acceleration data
captured through a wrist-worn watch, and concluded
that DL shows superior fall detection performance. We
demonstrated the superiority of DL through extensive
experiments using three different fall datasets as well
as an online test with five subjects. Only a single deep
model was trained and the standard parameter estimation
and training procedures are being used in our earlier
work. Moreover, the accelerometer data, which is a form
of time-series data, was processed using a fixed-size
sliding window approach. As pointed out by [7], there
are a few inherent challenges in applying DL to wearable
devices. For example, the collected data could be noisy
due to faulty sensor readings. The way data are assigned
for training may be limiting as well. For example, if
the chosen window size is too small, important signals
might fall outside the range; having the window-size too
large risks having to process useless input data that is
not relevant to a fall. Most importantly, a large training

dataset for many wearable health related applications is
almost impossible to obtain, as in the case of fall dataset
since fall is not a common event.

The main focus of this paper is on the experimentation
and analysis of applying ensemble techniques on deep
learning such that it is possible to mitigate the scarcity
of data as well as improve the accuracy of prediction
via diverse set of learners. The SmartFall fall detection
application we reported previously, which was trained on
a small dataset of accelerometer data from a smartwatch,
achieved only 86% accuracy, based on our real-world
test with five subjects [14], due to the occurrence
of false positives which reduced the precision of the
detector. The medical field is often averse to a device
that only works “most of the time”. Therefore, there is
definitely room to further improve the precision of our
fall detection application without scarifying the recall for
the practical real-world deployment of the fall-detection
application.

In this work, we investigate the idea of combining
popular ensemble techniques such as Stacking and
Boosting [29] with RNN to create an ensemble of diverse
learners to mitigate small sample dataset. The rationale
of our approach is that training a set of smaller deep
learning models and then combining them using an
ensemble approach, may perform better than training
a single complex deep learning model which would
require large amounts of training data.

In section 3.3, we discuss our proposed ensemble
RNN scheme and present our findings. We validated the
generated ensemble models using two datasets. The first
dataset was collected in house using the Microsoft Band
2 smartwatch [5] from 14 subjects ranging from 20 to 60
years old. The second dataset is the open source UniMiB
database [15] that contains falls and Activities of Daily
Living (ADLs) collected using a smartphone from 30
different subjects with ages ranging from 18-60.

Our results show that an ensemble of RNN models
outperforms a single RNN model trained on the
experimental data. Furthermore, in some situations we
observe that training RNN models on subsets of data
e.g. particular types of falls, and then combining them
using an ensemble approach generates better accuracy
than training all RNN models on the whole dataset.

The main contributions of this paper are:
• An in-depth study of ensemble techniques paired

with deep learning for fall detection on two different
fall datasets.

• A demonstration that a stacked ensemble of deep
learning models trained on small size datasets
yields better classification accuracy than a model
trained using a single deep learning network.

• A set of experiments which explore the effect of
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data heterogeneity on classification performance
and the extent to which ensemble deep learners can
diversify to better capture that heterogeneity, thus
yielding higher classification accuracy compared to
a single deep learning model.

The remainder of this paper is organized as follows.
In section 2, we review the existing work on small
sample deep learning and emphasize on research works
that specifically address fall detection using wearable
devices. In section 3, we provide a detailed description
of our approach to ensemble deep learning. In
section 4, we present various metrics and the systematic
methodology we used for evaluating the quality of a
trained model. Then in section 5, we present our main
experimental results and detailed explanation of those
results. Finally, in section 6 we present our conclusion
and future work.

2 RELATED WORK

We review two categories of research work that are
relevant in this section. The first category is related to
small sample deep learning and the second category is
deep learning on streaming IoT data for fall detection or
human activities detection.

Deep Learning for Human Activity Recognition
(HAR) has shown superior results as it demonstrates
superior classification results on raw data, and eliminates
the need for human crafted features [26]. Deep
Long Short Term Memory (LSTM) networks face
practical performance limitations when employed in IoT
applications: imbalanced dataset, small samples and
data quality can significantly degrade the performance
of HAR classifier. Training a deep neural networks
requires a significant number of iterations before the
optimal values of millions of parameters are found. If
the network is trained using small dataset, large number
of epochs can result in network over-fitting to that
specific data sample. One way to overcome this real
life limitations is to combine sets of diverse LSTM
learners into an ensemble of classifiers as shown in
[8]. Their method assumes that certain portion of the
training data is “problematic”. This means there are
some low quality data that can negatively impact the
performance of the classifier. Since there is no way
to tell which section of the input data is problematic
in a-priori, a probabilistic selection of subset of data
that resembles Bagging is employed. Through repeated
random selection of training data, Bagging bootstrapped
replicates of good quality training samples. We drew
our inspiration from them and focusing on capturing the
diversity of data during training and on optimal way to

aggregate the different predictions to achieve a meta-
classifier with good generalization.

A recent approach to solve the small sample learning
problem in IoT is shown by the Cost-sensitive Deep
Active Learning proposed in [4]. Deep Active
Learning interactively requests a portion of the most
informative instances to be labelled during the classifier
training phase by engaging a human in the loop. The
most informative instances are those instances that the
classifier is least certain of. The system has a generic
double Deep Neural Networks (DNN) which can be
configured with any variant of deep models (CNN,
RNN-LSTM, RNN-GRU). The architecture consists of
the primary DNN and an assistant DNN. The role
of the primary DNN is to predict the result and the
assistant DNN is to predict the cost of misclassification
of each sample in the unlabelled data pool. Their’s
experimental results demonstrated that the proposed
scheme can reduce the amount of labelled samples by
33% to 80%. This system assumes that there is an
abundant of unlabelled data which is not true in many
IoT applications.

Another popular technique for overcoming
small sample dataset for deep learning is via data
augmentation. This technique is commonly used in the
field of computer vision. However, in digital health
domain, transformation of sensor data via rotation,
translation and scaling have not been widely adopted
[17] due to the fact that small distortion in medical
signals might imply a huge change in medical condition.
Recently, works on data augmentation for training more
accurate fall detection models on two datasets provided
in our earlier work was found in [19]. However, there
is no real-world validation on the generated fall models.
Other approaches for overcoming small dataset problem
includes attempt to combine the convolutional and
recurrent layers, where convolutional layers act as
feature extractors and provide abstract representations of
the input sensor data in feature maps, and the recurrent
layers model the temporal dynamics of the activation of
the feature maps[21, 27].

Application of deep learning to fall detection, in
particular the use of Recurrent Neural Networks (RNN’s)
to detect falls has been attempted by researchers;
however, to our knowledge, no such work uses solely
accelerometer data collected by a smartwatch to detect
falls. In [25], the authors describe an RNN architecture
in which accelerometer signal is fed into 2 Long Short-
Term Memory (LSTM) layers, and the output of these
layers is passed through 2 feed-forward neural networks.
The second of these networks produces a probability that
a fall has occurred. The model is trained and evaluated
on the URFD dataset [13], which contains accelerometer
data taken from a sensor placed on the pelvis, and
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produces a 95.71% accuracy. The authors also describe a
method to obtain additional training data by performing
random rotations on the acceleration signal; training a
model with this data gives an accuracy of 98.57%.

Another system based on RNN for fall detection using
accelerometer data is proposed in [16]. The core of their
neural network architecture consists of a fully connected
layer, which processes the raw data, followed by 2
LSTM layers, and ending with another fully connected
layer. They also have some normalization and dropout
layers in their architecture to optimize the training. The
authors train and test their model with the SisFall dataset
[22], which contains accelerometer data sampled at 200
Hz collected from a sensor attached to the belt buckle. In
order to deal with a large imbalance in training data, of
which ADL’s form the vast majority, the authors define
a weighted-cross entropy loss function, based on the
frequency of each class in the dataset, that they use
to train their model. In the end, their model attains
a 97.16% accuracy on falls and a 94.14% accuracy on
ADL’s.

Our work differs primarily from these two papers that
utilizes RNN in that we seek to optimize deep learning
model for time series data collected from a smartwatch.
Our fall detection model obtains accelerometer data
from an off the shelf smartwatch rather than specialized
equipment placed near the center of the body. This
presents several challenges not addressed in these
papers’ methodology. Because of its placement on the
wrist, a smartwatch will naturally show more fluctuation
in its measurements than a sensor placed on the pelvis
or belt buckle. Moreover, the accelerometer data
used is sampled at a 200 Hz frequency obtained by a
specialized equipment; this is a significantly higher than
the frequency used by our smartwatch, which samples
at 31.25 Hz. We also have the additional restriction
that the model we develop should not consume so many
computational resources that it cannot be run on a
smartphone. Thus, while there has been some work done
on deep learning for fall detection, we have additional
constraints that make these works not directly relevant
for our purposes.

In [20], a fall detection system architecture using
multiple sensors with four traditional machine learning
algorithms (SVM, Naive Bayes, Decision tree and KNN)
was studied. The paper is the first to propose using
ANOVA analysis to evaluate the statistical significant of
differences observed by varying the number of sensors
and the choice of a particular machine learning algorithm
for time series data. The main conclusion from this
paper is that sensors placed close to the gravity center
of the human body (i.e. chest and waist) are the
most effective. A similar paper in [28] also conducted
a study on the effect of the sensor location on the

accuracy of fall detection. They experimented with
six different traditional machine learning algorithms
including dynamic time warping and artificial neural
network. They showed that 99.96% sensitivity can be
achieved with a waist sensor location using the KNN
algorithm. Our work is focused on using a wrist-worn
watch as the only sensor and thus cannot leverage these
research results on other sensor locations to improve the
accuracy.

In summary, many different deep learning algorithms
have been applied to time series data collected from
wearable devices with some success. However, no in-
depth study has been conducted on how robust models
for time series data can be trained with deep networks
using small dataset collected from smartwatches with
low sampling frequency.

3 METHODOLOGY

3.1 Datasets
3.1.1 SmartFall Dataset

This section describes how the fall dataset1 that we used
for experiments was collected using a smartwatch. A
detailed description is available in our earlier publication
[14]. We reproduce some of the description here for ease
of reference and comprehension.

Our smartwatch-based fall dataset was collected from
fourteen volunteers each wearing a MS Band 2 watch2.
These fourteen subjects were all of good health and
were recruited to perform simulated falls and Activities
of Daily Living (ADL’s). Their ages ranged from 21-
60, height ranged from 5 ft to 6.5 ft. and the weight
from 100 lbs to 230 lbs. Each subject was told to
wear the smartwatch on his/her left hand and performed
a pre-determined set of ADL’s consisting of: jogging,
sitting down, throwing an object, and waving their hands.
This initial set of ADL’s were chosen based on the fact
there are common activities that involved movement of
the arms. These datasets were automatically labeled as
“ADL” which is in our case we consider as “NotFall”.
We then asked the same subject to perform four types
of falls onto a 12 inch high mattress on the floor; front,
back, left, and right falls. Each subject repeated each
type of fall 10 times. The sampling rate was set to 31.25
Hz.

We implemented a data collection service on the
smartphone (Nexus 5X, 1.8 GHz, Hexa-core processors
with 2G of RAM) that paired with the smartwatch to
have a button that, when pressed, labels data as “Fall”

1 This dataset is available from http://www.cs.txstate.edu/

˜hn12/data/SmartFallDataSet under the SmartFall folder.
2 Unfortunately, Microsoft announced stopping the support for this

product on May 31, 2019
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Figure 1: Simulated fall data collection experiment

and otherwise “NonFall”. Data was thus labelled in real-
time as it was collected by the researcher holding the
smartphone. Figure 1 shows the scene of a fall data
collection experiment.

However, the pressing of the button can introduce
errors such as the button is being pressed too late, too
early, or too long for a fall activity. To mitigate these
errors, we post-processed the collected data to ensure
that data points related to the critical phase of a fall were
labeled as “Fall”. This is done by implementing an R
script that will automatically check that for each fall data
file, the highest peak of acceleration, and data points
before and after that point, were always labeled as “Fall”.
After this post processing of the collected data, we have
a total of 528 fall data samples and 6573 samples of ADL
data.

3.1.2 UniMiB SHAR Dataset

The second dataset that we used is the UniMiB
SHAR [15]. This is an open source dataset that has
11,771 samples of accelerometer data collected from
smartphones (Samsung Galaxy Nexus 19250) for both
ADL’s and falls performed by 30 subjects of ages
ranging from 18 to 60 years. The subjects are mostly
female. The data was collected at a sampling rate of 50
Hz. The user put phones in the left and right pockets of
trousers and handclaps are used to signal the beginning
and ending of fall. The ADL’s data is divided into nine
different types and the falls are divided into eight types
resulting in a total of 17 different classes. There are
4192 falls and 7579 ADL’s in total in this dataset. We
processed this dataset and have all the nine type of ADLs
labeled as “NotFall”. We only retain the four fall types
that we used in our smartwatch fall dataset and omitted
other special fall types such as falls derived from hitting
an obstacle, syncope, falling with protection strategies,

and falling back while trying to sit on a chair. In order
to keep this dataset comparable with our smaller sample
SmartFall dataset, we omit some duplicate activities
performed by the same user. This reduces the size of the
dataset while maintaining its diversity. The final number
of fall samples is 710 and ADLs is 4863.

3.2 Deep Learning Model

One of the disadvantages of traditional machine learning
algorithms is the need for a priori feature extraction from
the data. Feature extraction and selection are tasks that
need to be performed before any learning can occur. The
types of features to be extracted have to be manually
specified and thus their effectiveness heavily depends on
the ingenuity of the researcher. In the time series domain,
each signal has different temporal and frequency domain
characteristics [3]. This makes feature extraction and
selection a complicated task, which can heavily affect
the performance of the machine learning model. For
example, in [10] the accuracy of the SVM algorithm
varies depending on the feature selection method used.
In feature-dependent methods, the main difficulty is to
extract the appropriate features. In certain types of
data, to extract high quality features we need human-like
understanding of the raw data.

Deep learning comes to solve this problem by
eliminating the need for separate feature extraction,
selection and model training phases. Deep learning
refers to the process of machine learning using deep
neural networks. Deep neural networks are biologically-
inspired variants of the Multiple Layer Perceptrons
(MLPs) [9]. Deep learning has shown significant
improvements in areas such as image classification and
object detection. In early object detection approaches,
people extracted features and fed these features to
learning algorithms (e.g. SVM) to successfully detect
objects of interest (e.g. pedestrians) in the image.
However, when these methods were used to detect
several classes other than pedestrians e.g. car, sign or
tracks, the accuracy of the model dropped [24].

The use of deep convolutional neural networks
showed a notable increase in the performance of
detecting objects using highly challenging datasets [12].
The two most common implementations of deep neural
networks are Convolutional Neural Networks (CNN)
[12] and Recurrent Neural Networks (RNN) [6]. CNN
is a type of feed-forward artificial neural network which
takes fixed size inputs and generates fixed-size outputs.
CNNs are ideal for images and video processing. RNNs,
unlike feed-forward neural networks, can use their

3 The post-processed UniMiB dataset is available from
http://www.cs.txstate.edu/˜hn12/data/
UniMiBProcessed.zip
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Figure 2: RNN model architecture

internal memory to process arbitrary sequences of inputs
and the ability to capture the temporal dynamics of the
input data. RNNs are thus ideal for the analysis of
the sequential nature of the data points collected from
accelerometers in our fall detection task.

A popular variant of the traditional RNN contains
units called long short-term memory (LSTM). This
architecture helps to capture fall motion related activities
over a period of time so that they can be better
distinguished from others. We believe it has an
advantage over threshold-based algorithms when making
a single classification. Many regular activities can briefly
trigger high acceleration values, and threshold-based
models often have a hard time telling these apart from
falls. Looking at many data points at once allows us to
make more robust distinctions between activities.

Figure 2 displays our model architecture: The model
contains an input layer, two hidden layers, and an output
layer. The input layer contains 3 nodes for the raw data;
the accelerometer x,y,z vectors. It then feeds through
our hidden layers: a recurrent layer of size 30 LSTM
nodes, and a fully connected dense layer of size 30
nodes. The output is a 2-node softmax layer which
outputs a predicted probability that a fall has occurred.
This model is lightweight relative to many deep learning
architectures, and makes inference computation much
more efficient for mobile devices. RNNs are traditionally
trained with backpropagation through time (BPTT), so
it is necessary to specify how many steps n in the past
the network should be trained on. This parameter is
important since our falls and activities occur over a
period of time. If we train the network on only a few
steps in the past, it will not capture the full scope of the

activity. However, if we train it over too many steps,
the network may take into account past accelerometer
data that is not relevant. We settled on using 35 steps for
this model. In our case, a “step” corresponds to a single
acceleration data point. With a sampling frequency of
31.25 Hz, this means on each prediction the model takes
into account ≈1.12 seconds of data. This is enough time
to capture the aspects of a fall without including too
much irrelevant data.

Model predictions (i.e. predictions produced by the
neural architecture) begin once the number of sensor data
points acquired is equal to the number of configured
steps. Every model prediction thereafter will only
require one additional data point, as the model will slide
one data point at a time, reusing all of the previous
data points except for the least recent. However, before
producing a final prediction, we generate a heuristic
value based on the probabilities produced by several
consecutive model predictions. In essence, we compute
the average value of 10 consecutive probabilities, and
compare this with a pre-defined threshold value. If
the average probability exceeds this threshold, then it
is considered a fall prediction. This helps to avoid
isolated positive model predictions from triggering a
false positive. Figure 3 outlines this schematic.

3.3 Ensemble Deep Learning

An ensemble is a system that consists of multiple smaller
models. The goal of an ensemble is to combine smaller
trained models to create a more accurate system [29].
In order to do this, algorithms have been designed that
deal with the way these smaller models contribute to the
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Figure 3: Prediction scheme for deep learning

final decision. One such algorithm is AdaBoost, which
optimizes the contribution of multiple weak classifiers
to generate a more accurate strong classifier. Another
popular ensemble technique, known as Bagging (short
for Bootstrap Aggregation) also utilizes a subset of
the data in each training iteration. A probabilistic
method is used to select a subset of the data so that the
ensemble of models are trained on different portions of
the training dataset. The resulting ensemble of models
provides a final prediction on the data by voting. Finally,
Stacking is a technique that resembles Bagging except an
additional meta-classifier is trained at the end to combine
predictions from the ensemble of classifiers without
having any knowledge or effect on the data subsets on
which the individual classifiers were trained.

The hypothesis that an ensemble of deep learning
models can produce higher accuracy on small datasets
than a single deep learning model stems from the fact
that deep neural network architectures usually require
large amounts of training data in order to produce
accurate models. The more complex (more neurons and
layers) a neural network is the more data is required to
train it. On the other hand, very shallow neural networks,
although more easily trained, they cannot capture the
full complexity of the problem (i.e. all possible signal
patterns generated by different types of falls.). However,
an ensemble of such shallow networks may be able to

perform better.

In this section, we discuss two ensemble deep learning
techniques called Boosting and Stacking. Bagging was
also considered, however, the combination of Bagging
with RNNs did not produce good results. That is due
to the fact that in Bagging, individual RNN models are
trained using random subsets of the training data. RNN
models trained in random subsets consistently displayed
lower performance compared to models trained on the
full training set.

Our goal with ensemble deep learning was to mitigate
the issue with false positives, while maintaining the
overall high recall we achieved with a single model
deep learning. We hypothesized that an ensemble of
deep models could perform better than a single deep
model. Our support for this comes from the lack of
improvement when making model adjustments for a
single deep model. One such adjustment we made was
dropout. Dropout is known to be useful for helping
deep networks generalize. It removes neurons from
the model at random during the training phase, which
helps prevent overfitting the training data. However, our
single deep model still suffered from sensitivity to false
positives. This indicates an underlying pattern in how the
models converge on the training data. Ensemble learning
was our approach to mitigate this convergence pattern.
By combining multiple deep models trained in different
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Figure 4: Assignment of training data to each LSTM
model with overlap in consecutive order

ways, each model had a chance to contribute something
slightly different than the others.

3.4 Boosting

Boosting is a well known ensemble technique used for
more than two decades. Boosting has traditionally been
used with simpler weak learners such as Decision Trees.
We followed the standard AdaBoost implementation
using LSTMs as weak learners. LSTM models are
trained iteratively on weighted samples of the data. Data
samples on which the models perform poorly on a given
iteration are assigned a higher weight in future iterations.
This process continues until a pre-determined number
of weak classifiers is selected or the training accuracy
does not improve anymore. As training proceeds, models
(weak classifiers) are weighted based on their training
error; higher weighted models contribute more to the
output of the overall ensemble during the classification
stage.

Since we are dealing with time series data, the samples
required for AdaBoost need to take into account the
sequential nature of the data. We thus segment the
data into fixed-sized intervals, and each interval will
be considered a sample marked as ‘Fall’ or ‘NonFall’.
The intervals are computed from the data as follows:
first, consecutive data points classified as ‘Fall’ are
coalesced into intervals (each has length 25). Then, the
remaining data (the ‘NonFall’ sections) are segmented
into intervals of length 25 and marked as ‘NonFall’.
‘NonFall’ intervals that have length < 25 are ignored.

These intervals are considered the samples supplied to
AdaBoost. It should also be noted that when AdaBoost
feeds samples into the LSTM sub-models, it provides
400 data points prior to the sample, so that the LSTM
has enough history to properly train on the sample.

3.5 Stacking

Our second ensemble method is a variant of Stacking
[29]. This is an approach that takes the predictions of
multiple models and trains an additional meta-classifier
that learns how to combine these predictions using an
Adam optimizer [11]. Our experiments with stacking
consisted of training multiple LSTMs, then training a
list of weights that dictate how much each model’s

Algorithm 1: Process for assigning data to models

INPUT: number of models, model overlap,
list of models, and dataset size
OUTPUT: subset of data assigned to different models

1: rows per model = rounded(dataset size / ((1 -
overlap) * (num models - 1) + 1)) {We calcuate how
many rows each model should have and assign the
first model.}

2: models[0].start row = 0
3: models[0].end row = rows per model
{We then calculate the data to assign to subsequent
models, except the last one.}

4: for i = 1 to num models - 1 do
5: models[i].start = floor(rows per model * (1-

overlap)) * i
6: model[i].end = models[i].start + rows per model
7: end for{Data is assigned to the last model}
8: models[n-1].start row = rounded(rows per model *

(1-overlap)) * (num models-1)
9: models[n-1].end row = dataset size

Algorithm 2: Algorithm for meta-classification

INPUT: Trained LSTM models.
OUTPUT: Model weights.

1: Obtain all prediction outputs for every model over
the entire training data.

2: Multiply the list of weights with the list of model
outputs, then aggregate the result to get a final
weighted output.

3: Compare this weighted output with the actual label
of the data.

4: Use gradient descent to adjust the weight list so that
the next time it is multiplied by the model outputs,
the result will be closer to the actual label.

5: Repeat until error is no longer being improved.

prediction contributes to the final prediction. The
LSTMs were trained either on a subset of the training
data, or on all the training data. Traditional ensemble
methods such as Bagging and Boosting take random
samples of the training data to assign to models. Instead,
we just take consecutive sections of the data of equal size
to assign to each model. This ensures every bit of the
training dataset is used. In the case of human activity
data, this has the advantage that the temporal nature of
the data is retained. Figure 4 shows a schematic diagram
of how data is assigned to each LSTM model. If there
are 1000 rows of data and 10 models of 10% overlap is
specified, each LSTM model will get 110 rows.
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The algorithm for assigning the data is detailed in
Algorithm 1. For our meta-algorithm, a list of weights
will be initialized with random values. One weight for
each model. These weights determine how important
each model’s prediction is. To determine a final value
for each model’s weight, we will adjust the weight list
by obtaining each model’s prediction over the entire
training data and determining which values of weights
can be multiplied by the model predictions to correctly
fit the training data labels. Algorithm 2 lists the steps
for calculating the final weights of each model. At
prediction time, the final output is calculated as a
weighted linear combination of all LSTM models.

4 EVALUATION METHODOLOGY

We aim to train a fall detection model with a high
Recall or Sensitivity. A missed fall is represented in
our evaluation experiments as a False Negative (FN).
We also do not want to have too many “false alarms”,
which in our evaluation is represented as False Positives
(FP), and thus, we want to achieve a high Precision and
Specificity. Table 1 shows the various metrics we used
for evaluation and how they are computed.

Note that True Positives (TP) is the number of
correctly detected falls. The number of True Negatives
(TN) is not of particular interest to this application as
negative instances represent non-falls and, in practice,
they greatly outnumber the number of positive instances.

Since we are dealing with time series data, evaluation
of the model needs to account for the continuous nature
of the data. Evaluation should also be independent
of the prediction method, which allows models using
different algorithms to be compared in a consistent way.
Thus, the evaluation method we describe does not make
assumptions about the prediction model, other than that
it predicts ‘Fall’ and ‘NonFall’ at arbitrary time points.
Our evaluation method is described in details in the
following paragraph.

The data is segmented into ‘Fall’ and ‘NonFall’
segments of equal size, as described in the Boosting
section 3.4 above. Each of these segments will be
considered a data sample (instance) when calculating
the error metrics above (i.e. each segment will be
classified as a TP, FP, FN, or TN). An arbitrary data
points predicted as ‘Fall’ and ‘NonFall’ at various time
indices need to map to these segment intervals. When a
model makes a ‘Fall’ prediction at time ti, the segment
containing ti is marked as a predicted ‘Fall’. A segment
is considered to be predicted as ‘NonFall’ when all data
points within that segment are classified as ‘NonFall’.

Table 1: Evaluation metrics

Measure Calculation Formula
Recall/Sensit. TP/(TP + FN)
Precision TP/(TP + FP )
Specificity TN/(TN + FP )
Accuracy (TP + TN)/(TP + TN + FP + FN)

5 OFFLINE EXPERIMENTS

We now present our experiments investigating the
effectiveness of ensemble deep learning for fall
detection. In the following, we first describe our
experimental setting and then present and discuss the
experimental results.

The experiments were conducted over two datasets
(SmartFall, UniMiB), described in section 3.1. The fall
and ADL data in these two dataset are simulated from
subjects of varying ages, heights and weights.

Experiment Setting: All of our experiments were
conducted on a Dell Precision 7820 Tower, 256 GB
RAM and one GPU (GeForce GTX 1080). Our
evaluation metrics and method were described in
section 4. Both recall and precision values are in
the range between 0 and 1. The higher value of the
measure indicates the more effective model. We also
presented the PR (Precision vs. Recall) curve for each
experiment. We opted for a PR curve instead of the
most common ROC curve (True Positive Rate (TPR) vs.
False Positive Rate (FPR)) due to the fact that FPR =
FP/(FP+TN) is affected by the number of True Negative
(TN) predictions. In a fall detection application the
number of negative samples (‘NonFalls’) is much larger
than the number of positive samples (‘Falls’), thus FPR
will always be small even in the presence of a high
number of false positives.

Furthermore, we include a weighted F1-score (Fβ),
using the equation below, in order to combine precision
and recall performance into one number.

Fβ = (1 + β2) ∗ recall ∗ precision
(recall + β2 ∗ precision)

(1)

We set β to 3 for our calculations as this accurately
reflects the higher emphasis we put on recall.

We grouped the experiments into four types. The
first type of experiments is related to a single deep
model and various optimization/adjustments performed
on that. The second type is ensemble deep learning
using AdaBoost. The third type of experiments is
related to using Stacking as the ensemble technique and
demonstrated that Stacking using all available dataset
can outperform the best single deep model. The
last group of experiment is the validation of the best
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Table 2: Single LSTM models on SmartFall dataset

LSTM LSTM LSTM LSTM
20N 30N 50N 80N

Precision 0.58 0.58 0.61 0.65
Recall 0.97 0.98 0.96 0.95
Weighted F1 0.907 0.915 0.909 0.911

performing ensemble stacking model using the UniMiB
dataset.

5.1 Single Deep Learning Model

In this section, we show the results of various single
LSTM network models on our SmartFall dataset. Each
model was altered by either the number of neurons per
layer, or the number of LSTM layers. The results for
this experiment are important since they indicate if basic
network adjustments are all that is required to improve
small sample learning in IoT. applications. To better
understand the effects of these alterations, we divide this
experiment into two parts. The first part examines the
result of changing just the number of neurons per layer.
This will show how much performance gain, if any, is
obtained from additional neurons. The second part is
concerned with the effects of an additional LSTM layer.
Models used in this part of the experiment still differ in
neurons, but they have an additional recurrent layer. The
model that produces the best results in this section we
will use as our baseline model; the model to which all
ensemble approaches will be compared to.

We first look at 4 LSTM models of various sizes. Each
model consists of 20, 30, 50, or 80 neurons per layer. For
selecting these values, we first look for a lower neuron
count that could still produce a sophisticated model. Our
previous work on fall detection [14] indicates that a 20-
neuron model is sufficient, and therefore a good choice
for the smallest model. We start with 20 neurons and
increase this number progressively; up to four times as
many neurons. This provides a large enough range to
help model the relationship between performance and
neurons per layer. Each model was trained and tested
on the SmartFall dataset 3 times. The average recall and
precision over the 3 runs were recorded. Figure 5 shows
the PR curve for this experiment and Table 2 shows the
best results achieved by each model.

The recall for each model is close until they reach
a precision of ≈0.8. The results favor the 30-neuron
model after this point. These performances are still
comparable enough that random factors such as dropout
and weight initialization may explain the difference in
results. Regardless of the impact of those factors, we can
be confident that the performance does not improve with
additional neurons.
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Figure 5: PR curve of single deep model by varying
the number of neurons
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Figure 6: PR curve of single deep model with deep
layers and varying number of neurons

We then look at 4 LSTM models of various sizes,
and an additional recurrent layer. This layer is inserted
directly after the first LSTM layer. We still use model
sizes of 20, 30, 50, and 80 neurons for this experiment.
Models are again trained and tested on the SmartFall
dataset 3 times, and the average recall and precision
were recorded. Figure 6 shows the PR curve for this
experiment and Table 3 shows the best results achieved
by each model.

The results show that additional neurons or layers do
no offer any obvious improvements in performance. In
fact in most cases, creating a more complex network
hurts the performance, possibly due to over-fitting
issues. Given that the 30-neuron model requires less
computation to train its parameters, we will use it as our
baseline model for future comparisons.
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Table 3: Single LSTM models on SmartFall dataset:
additional recurrent layer

LSTM LSTM LSTM LSTM LSTM
30N 20N,2L 30N,2L 50N,2L 80N,2L

Precision 0.58 0.61 0.60 0.56 0.57
Recall 0.98 0.97 0.96 0.97 0.95
Weighted F1 0.915 0.915 0.908 0.902 0.890

Table 4: Boosted LSTM models on SmartFall dataset
Precision Recall F1

Baseline 0.5768 0.9784 0.9147
10 Model, 15 Neuron 0.6049 0.9751 0.9189
10 Model, 30 Neuron 0.5621 0.9453 0.8850
15 Model, 10 Neuron 0.5882 0.9453 0.8912
50 Model, 6 Neuron 0.5585 0.9502 0.8880
50 Model, 30 Neuron 0.6234 0.9552 0.9069

5.2 Ensemble Deep Model with Boosting

Next, we consider the potential performance gain from
an ensemble of deep models learning optimized using
AdaBoost, as described in section 3.4 above. Each model
in the ensemble is a one-layer LSTM with the same
number of neurons. We will investigate how an ensemble
of LSTM’s compares to a single LSTM, as well as how
the number of models in the ensemble and the number
of neurons in each model affects the performance of the
overall classifier.

We choose as our baseline the best model from the
previous section – that is, a single LSTM model with
30 neurons. We then run 5 boosted ensembles of
LSTM’s with various numbers of models and numbers
of neurons. Each ensemble uses 200 samples per sub-
model, selected according to the AdaBoost algorithm.
Because our previous experiments suggest that 30
neurons is sufficient, we focus on LSTM’s with at most
30 neurons. We use between 10 and 50 models in the
ensemble to get an idea of the effects of using different
numbers of models. The results are shown in Table 4.

We see that the results between the different
ensembles are very similar: all models have a precision
around 0.6 and a recall around 0.95. Interestingly, the
baseline model has the best recall, suggesting that the
boosted models overfit the data. The F1 scores are all
very close; the ensemble containing 10 models and 15
neurons per LSTM barely beats the baseline at a score
just under 0.92. We also plotted the PR curves which are
shown in in Figure 7.

We see in Figure 7 that for almost every value of
precision and recall, our baseline model performs best;
however, there are 2 sections (recall around 0.94 and
0.97) where the precision of the 10-model ensemble
with 15 neurons is slightly higher than the baseline.
The precision of the two 50-model ensembles is very
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Figure 7: PR curve of boosted LSTM models

close up until a recall of 0.925, at which point the 30
neuron model considerably outperforms the 6-neuron
model. An opposite trend is seen with the two 10-
model ensembles, in which case the 15-neuron ensemble
outperforms the 30-model ensemble at values of recall
> 0.925. This suggests that no conclusion can be
made from these experiments about how the number of
neurons in the LSTM’s affects the result of the overall
classifier. We also see that when we keep the number
of neurons in each LSTM constant at 30, the 50-model
ensemble has significantly higher precision for all values
of recall than the 10-model ensemble. This suggests
that larger ensembles can yield better results; however,
this conclusion is marred by the fact that the baseline
model, with only one LSTM, considerably outperforms
both these models. In summary, we do not see any
performance gains over the baseline model by using
boosting.

We believe that boosting fails to work on our dataset
because it is overfitting to the training data. Given that
AdaBoost assigns samples randomly with replacement
and readjusts the assignment probabilities with every
iteration, it is very possible that some fall samples are
not seen at all during training. This can be especially
devastating since falls are rare in comparison to ADL’s,
meaning that the models have a much higher chance of
seeing ADL’s.

Finally, it may be that the phenomenon we are trying
to model (falling) is too complex to be broken into small
models that see only a small fraction of the data. Given
that each component model only sees 200 disparate data
samples, it is possible that each model in the ensemble
does not have enough predictive power to properly
identify falls. This could explain why the ensemble
performs worse than the single LSTM model, which has
the opportunity to learn complex patterns in the training
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data by seeing a large stream of continuous data. Thus,
we conclude that boosting is not a successful method for
fall prediction.

5.3 Ensemble Deep Model with Stacking

This section explores the results of stacking LSTM
models on the SmartFall dataset. Each stacked ensemble
was altered by the number of models, and the number
of neurons per model. We also divide these experiments
based on how the training data is assigned to each model.
The first part looks at 2 methods of assigning training
data. For the first method, consecutive subsets of the
training data are assigned to each model, as described
in the Stacking section 3.5. For the second method, we
assign all the training data to every model. Comparing
these methods shows if training the models on subsets
of the data, as opposed to the whole training set, creates
the most diverse and effective ensembles. The second
experiment involves training each model on a specific
type of fall data. For example, an ensemble may include
a model trained on left falls, a model trained on back
falls, and a model trained on a combination of these falls.
ADL data is evenly distributed across such models. This
method is isolated into its own experiment so we can
compare the effects of training on different combinations
of fall types.

In summary, the different types of experiments we
performed are noted as follows:

• Baseline: Single LSTM model with 30 neurons per
layer.

• # Neurons | Added Layer: Single LSTM model
with specified number of neurons and additional
LSTM layer.

• # Model | # Neuron: Stacked LSTM models with
specified number of models and neurons. Each
model trained on subsets of the data.

• # Model | # Neuron (all data): Stacked LSTM
models with specified number of models and
neurons. Each model trained on all the data.

• # Model | Independent: Stacked LSTM models
of specified number of models and neurons. Each
model trained with one unique type of fall.

• # Model | Contrasting: Stacked LSTM models
of specified number of models and neurons. Each
model trained with a combination of two different
types of falls.

We present our first experiment of ensembles trained
on either ordered subsets of data, or the entire training
set. The ensembles are structured as follows: A 10-
model, 15-neuron per model ensemble with each model
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Figure 8: PR curve of stacked LSTM models trained
on data subsets

Table 5: Stacking results on SmartFall dataset
(Abbreviations: BL = Baseline, ST = Stacking, M = #
of models, N = # of Neurons)

BL ST ST ST
4M,30N 80M,6N 10M,15N

Precision 0.58 0.58 0.57 0.53
Recall 0.98 0.99 0.94 0.94
Weighted F1 0.915 0.922 0.884 0.871

trained on subsets. An 80-model, 6-neuron ensemble
with each model trained on subsets. A 4-model, 30-
neuron ensemble with each model trained on the whole
training set. We believe using these ensembles will help
us understand different parts of the spectrum; from a
high number of models with low neuron count, to a
low number of models with high neuron count. The
experimental results of single deep models suggest there
is no reason to go above 30 neurons. The PR curve for
this experiment is shown in Figure 8, and Table 5 shows
the best results achieved by each model.

A large performance gap can be seen between the
ensembles trained on subsections, and the ensembles
trained on all training data. The subsection ensembles,
the 10-model, 15-neuron and 80-model, 6-neuron
ensembles, are likely suffering from similar issues that
boosting experienced. Although the stacking meta-
algorithm may help prevent overfit models from being
weighted too high, the datasets’ class imbalance may
cause models overfit to ADL data to receive high weight.
The 4-model, 30-neuron ensemble results show the
benefit of each model having a good understanding of
the data. Training each model with the whole training set
helps assure that each model can correctly deal with the
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Figure 9: PR curve of stacked LSTM models trained
on specific fall types

class imbalance and be properly weighted by the meta-
algorithm.

Next, we look at models trained on specific fall types.
Each ensemble consists of a low number of models, and
30 neurons. We structure the ensembles this way so that
we can expand upon the good results obtained previously
by the 4-model, 30-neuron ensemble. While training
models on subsets of the data may not produce better
results than training on all of the data, it is possible that
training models on specific fall types will. Three types of
ensembles were selected for this purpose. The first one
consists of 4 models, where each is trained on one unique
fall type. We hypothesize that models specialized in one
fall type may not have to suffer performance tradeoffs
by being forced to converge on all fall types. The
next ensemble also consists of 4 models. Each model
is trained on two contrasting fall types. Contrasting
types refer to the difference between back/front falls and
left/right falls. In total, one model is trained on left
and back falls, one is trained on left and front falls,
one is trained on right and back falls, and the last is
trained on right and front falls. This can potentially
help keep the models diverse and generalized. The last
ensemble is an extension of the previous. It consists of
8 models, where the models in the previous ensemble
are simply repeated twice. We do this because dropout
and weight initialization provide more opportunities for
these models to be more diverse, thus creating more
models that can each contribute a useful output. The
PR curve for this experiment is shown in Figure 9, and
Table 6 shows the best results achieved by each model.
We also include the the 4-model, 30-neuron ensemble so
we can compare with the best result from the previous
experiment.

Table 6: Stacking results on SmartFall dataset
subsets (Abbreviations: BL = Baseline, ST = Stacking,
M = # of models, N = # of Neurons, Ind = Independent,
Cont. = Contrasting)

BL ST ST ST ST
4M,30N 4M, Ind. 4M, Cont. 8M, Cont.

Precision 0.58 0.58 0.62 0.54 0.52
Recall 0.98 0.99 0.97 0.98 0.97
Weight F1 0.915 0.922 0.919 0.905 0.892

The performance between these ensembles is closer
than the previous experiment. However, the 4 model, 30
neuron ensemble still gives the best results overall. This
suggests that simply training each model on all the data
creates the most powerful ensemble. Comparing only
ensembles trained on specific fall types, training one
fall type per model provided the best results by a small
margin. An indication that having each model target one
fall type produces more useful models.

Across the experiments in this section, the 4-model,
30-neuron stacked ensemble produced the best results
and outperformed the baseline. Models in this ensemble
were each trained on the whole training set. It is likely
that its results over baseline can be explained by the
fact that each of the 4 models were as strong as a
baseline model, but converged slightly differently than
the rest. The meta-algorithm was able to combine these
differences in a useful way.

5.4 Ensemble Deep Model with Stacking on
UniMiB

This section takes the best performing models on our
SmartFall dataset, and tests them on the UniMiB dataset.
UniMiB is larger than the SmartFall dataset and has
a more balanced ratio of falls to ADLs. Also, the
acceleration data in the UniMiB dataset were collected
through smartphones attached to body of the participants
as opposed to smartwatch attached to the wrist, thus
making it an “easier” dataset for fall detection.

Given the differences in the datasets, it is reasonable
to believe there will be differences in how the models
perform on them. We will be examining the results of
the models on this dataset in a relative fashion to the
SmartFall dataset. As it would not make sense to directly
compare metrics such as recall and precision across these
two unique datasets, we are more concerned with how
the models do against each other. For this experiment,
we use the same set of ensembles used in the previous
experiment with stacking. Our baseline, a 4 model, 30
neuron ensemble trained with the whole training set, and
the ensembles trained with specific fall types. These
models were selected for this experiment based on their
ability to reach high precision while maintaining high
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Figure 10: PR curve of stacked LSTM models on
UniMiB

recall, as well as their weighted F1-score. Our main goal
for this experiment is to either reinforce the results we
obtained on our SmartFall dataset, or reveal that some
models work better with different datasets. We present
our final experiment. Figure 10 shows the PR curve for
each model, and Table 7 shows the best results produced
by each model.

There are clear differences between how the models
perform on the two datasets. While the baseline had
previously performed the second best on the SmartFall
dataset, it is now at the bottom of the pack. We
also see that the relative performance of the models
trained with specific fall types has changed. Whereas
the independent model performed the best of the three
on the SmartFall dataset, it performed the worst of the
three on UniMiB. The 8-model ensemble of contrasting
fall types has one of the best performances, comparable
with only the 4-model, 30-neuron ensemble. Again, we
see the 4-model, 30-neuron ensemble with one of the
best performances of the group. This reinforces our
confidence in stacked ensembles where each model is
trained with the whole training set. It appears that this is
only type of ensemble that is not sensitive to the datasets.
While the models trained on specific fall types performed
better than baseline, due to the better performance by
baseline on the SmartFall dataset, we cannot confidently
claim that this is due to the training method and not just
the increase in models. Overall, we can be confident that
the methods surrounding the stacked 4-model, 30-neuron
ensemble produce the best results.

5.5 Discussion on Experimental Results

We carried out four groups of experimental studies.
Our experiments show that a stacked ensemble of

Table 7: Stacking results on UniMiB dataset
(Abbreviations: BL = Baseline, ST = Stacking, M = #
of models, N = # of Neurons, Ind. = Independent, Cont.
= Contrasting)

BL ST ST ST ST
4M,30N 4M, Ind. 4M, Cont. 8M, Cont.

Precision 0.77 0.85 0.78 0.82 0.86
Recall 0.99 0.99 0.99 1.0 0.99
Weight F1 0.967 0.980 0.971 0.979 0.980

Table 8: Results of the five best models on SmartFall
and UniMiB datasets (Abbreviations: BL = Baseline,
ST = Stacking, M = # of models, N = # of Neurons, Ind.
= Independent, Cont. = Contrasting)

BL ST ST ST ST
4M,30N 4M, Ind. 4M, Cont. 8M, Cont.

SmartFall
Precision 0.58 0.58 0.62 0.54 0.52
Recall 0.98 0.99 0.97 0.98 0.97
Weight F1 0.915 0.922 0.919 0.905 0.892

UniMiB Precision 0.77 0.85 0.78 0.82 0.86
Recall 0.99 0.99 0.99 1.0 0.99
Weight F1 0.967 0.980 0.971 0.979 0.980

deep models can perform better than a single LSTM
model. Using a combination of model outputs appears
to improve the subtle learning gaps of a single deep
learning model on small training datasets. Attempts
to diversify the learning of our ensemble were made
by altering the structure and training data of each
model. In regards to the ensembles that did not perform
better than baseline, we believe that there were key
fallbacks to some of the approaches that limited the
ensembles’ performances. For our boosting approach,
one fallback was the potential for a boosted LSTM
to overfit the samples it trains on. Since the weight
of a model is determined by its training error, overfit
models exhibit small training errors and thus provided
a large contribution to the ensemble. These high-
weighted models were often not suited to generalize well
on new data. Our stacking approach also experienced
overfitting. However, the issue boosting experienced
with its weighted models was mitigated in our stacking
approach by the meta-algorithm. The meta algorithm,
a list of linear weights for the models, was often able
to make sense of the models’ outputs well enough to
generalize to the testing data. This list of weights is
trained only after the ensemble has completed training
for all models. Doing it this way can allow more
generalized models to be rewarded with a higher weight,
as opposed to a boosted model, whose weight is purely
based off a select number of samples. Overall, we have
shown that a stacked ensemble produces better results
than any single LSTM or other ensemble approach we
tested. Table 8 provides a summary of the best results
achieved by each approach.
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6 CONCLUSION AND FUTURE WORK

Deep neural networks have shown superior performance
for fall detection as they eliminate the need for hand
crafted features, as shown in our earlier work [14].
However, deep neural networks face practical challenges
when used for IoT applications, which in general tend to
have limited training samples and imbalanced datasets.
Training a deep neural network with a small dataset
tends to produce overfit models. Getting a large
amount of labeled data is costly or even impossible
in many IoT applications. In this paper, we aim
to mitigate the scarcity of training samples in fall
detection IoT application by combining RNN with
ensemble techniques such as boosting and stacking.
We conducted an extensive set of experiments on two
different fall datasets and concluded that the stacking
ensemble technique combined with RNN can outperform
the single deep RNN model. Boosted LSTM models
does not provide any performance gain over the single
deep model using our training dataset. We attribute
that to the random assignment of subset of data to
each boosted LSTM model and the higher chance for
the boosted LSTM model to overfit the small samples
selected for the training.

Our immediate future work is to deploy the best
performing stacking ensemble deep model (4 Models, 30
Neurons trained on all dataset) on our Fall Detection App
and recruit some volunteers to test the performance of the
model in real-time. Each volunteer will be asked to wear
the watch for a number of days and to perform a series
of different type of falls and ADLs each day. Testing
in this way lets us evaluate the model’s capabilities in a
true online situation as well as seeing how the ensemble
model performs on specific kinds of falls and ADL’s.

Other future work includes the investigation of other
small sample learning strategies. This includes data
augmentation or personalization. For example, the initial
ensemble model can be coupled with a personalized
model as more data is collected from a specific person
via user feedback from the Fall Detection App. A
personalized fall detection model can put more weight on
training on specific types of ADLs that can be mistaken
for falls, tailored to a particular person.
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