(© 2021 by the authors; licensee RonPub, Liibeck, Germany. This article is an open access article distributed under the terms and conditions of

the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Open Access

Open Journal of Internet of Things (OJIOT)
Volume 7, Issue 1, 2021

http://www.ronpub.com/ojiot
ISSN 2364-7108

online
Publishing

www.ronpub.coim

Hierarchical Data Integrity for IoT Devices in
Connected Health Applications

Maryam Karimi, Prashant Krishnamurthy

Department of Informatics and Networked Systems, School of Computing and Information
University of Pittsburgh, 135 N Bellefield Ave, Pittsburgh 15213, PA, USA, {maryam.karimi, prashk} @pitt.edu

ABSTRACT

Internet of things devices are increasingly replacing expensive monitoring devices in many environments such as
healthcare. People can eventually own their data, collected from smart personal devices, store them in a variety
of cloud services, and make them available to service providers of their choice. In such cases, whenever service
providers use these data to provide appropriate services, the data owner may become responsible for ensuring
the integrity of data retrieved from multiple points. We present a Hierarchical Data Integrity (HDI) approach to
verify if the data, sent by monitoring devices to the cloud, remain unchanged. It is hierarchical as follows: there
is a quick verification of the integrity of recent health data (in less than 1 ms), followed if necessary by a low
overhead secure option for verifying the integrity of both recent and historical data (still only in 6.1 ms). Further,
the hierarchy allows granular identification of data units that fail integrity checks, without requiring any key sharing.
It is possible for a data owner to periodically (randomly) use a more secure process to verify the integrity of data.
This reduces the computation, storage, and time of integrity verification as shown by analysis, simulation, and
hardware implementation.

TYPE OF PAPER AND KEYWORDS

Regular research paper: data verification, data integrity, data ownership, Internet of Things, loT security

1 INTRODUCTION include blood pressure monitoring', electrocardiogram
sensors?, ultrasound probes® and even inexpensive DNA
sequencing chips* that can identify inherited genes and
chromosomes (that may impact a patient’s well being
through drugs that are effective or alert them to those that
are dangerous to particular classes of patients). Although

ensuring the self-integrity’ of data being transmitted

Internet of Things (IoT) devices are increasingly being
used to supplement or replace expensive monitoring
devices. In the near future, the environment around us
is likely to see a profound transformation that can lead

to a better quality of life, higher efficiencies through
less waste, and reduced costs. This transformation
(described in [58] for healthcare and paraphrased here)
will involve user ownership of data that is generated
(mostly) on their premises by a variety of wearable
devices (’things” in [oT) and sophisticated, yet not very
expensive connected health devices. In examples of
healthcare scenarios, the connected health devices could

! https://health.nokia.com/us/en/blood-pressur
e-monitor

https://www.alivecor.com

see https://www.lumify.philips.com/web/
http://www.thermofisher.com

The data are correct and there are no flaws in generating or
measuring data at any time so that the knowledge that is gained from
different parts of the data (measurements of different variables or
different times of the same variable) make sense.

woR W

125

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot
https://health.nokia.com/us/en/blood-pressure-monitor
https://health.nokia.com/us/en/blood-pressure-monitor
https://www.alivecor.com
https://www.lumify.philips.com/web/
http://www.thermofisher.com

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

from the health monitoring devices is not within the
scope of this paper, recent advances show that there is no
significant performance degradation between wearable
devices and expensive medical tracking devices [60];
therefore, the information coming from an IoT device
may be equivalent in merit to the information generated
by dedicated expensive medical devices. Much of these
data, while they may eventually be owned by a patient
in an unforgeable blockchain, are today maintained in
separate (perhaps multiple) cloud services that are owned
by the vendors of the smart devices. The vendors
may themselves be leasing storage, computation, and
algorithms from various cloud services like Amazon’s
AWS or Microsoft’s Azure or even lesser-known
companies®.

Data may have been corrupted in one or more of
the cloud services either accidentally or intentionally
(attacks). In either case, assessing the integrity of
owner-provided data, which resides in a variety of
manufacturer or vendor-owned cloud servers is an
important challenge. 1In [58], one of the envisaged
scenarios includes the data owner’s (e.g., patient) ability
to go to different providers at will, since they own the
data and are able to easily provide it to any service
provider (e.g., healthcare provider) of choice. While
each healthcare provider may set up relationships with
some of the device manufacturers, it is easier if the data
owner, who is at liberty to pick the manufacturer or
provider, can provide an assessment of the integrity of
the data retrieved from the cloud.

We present a fresh approach to verify if the data, sent
by monitoring devices to the cloud, remain unchanged
which we call Hierarchical Data Integrity or HDI.
An obvious way to verify the integrity of data from
a single source, stored in a single cloud, is to use
digital signatures on digests or integrity checks on
each data unit [56]. However, this method is not
efficient when the data may change rapidly over time.
Simple IoT devices may not be able to do the extensive
computation, store all data, or participate in sophisticated
cryptographic protocols including the key establishment
or certification verification. Furthermore, devices from
different vendors may send the data to the cloud service
associated with those providers — and so any integrity
verification method should be able to verify data from
multiple sources, stored in multiple cloud servers. As
described later, we assume an architecture where the
personal devices connect to a trusted owner gateway
(OGW) that forwards the data to the cloud/server. The
integrity of data, retrieved by a service provider through
a user gateway (UGW) can be verified at the owner’s

6 It has been reported that increasingly companies are relying on
multiple cloud providers (on average 8) for services [39].

gateway in a hierarchical manner. We interchangeably
call this service provider as trusted caregiver or third
party service provider below.

The data are maintained at different levels. Briefly,
the data are split into blocks, all blocks are inserted
into a concatenated Bloom Filter (explained later) and
further, a tree is created using the hash values of the
blocks. The Bloom Filter is stored in the owner’s
gateway and has a small footprint. The leaves of the
tree are omitted to save on storage, but a copy of
the rest of the tree (which includes keyed-hash values
(HMAQ)) is stored in the cloud. To check if the data
remain unchanged, the owner’s gateway first checks
whether retrieved blocks “belong” using the Bloom
Filter. If so, data integrity is assumed (there will
be a very small false-positive rate). If the data are
found not to belong (due to the concatenated Bloom
Filter features/limitations or because the data have been
modified accidentally or otherwise), or need to be
checked further periodically even if they belong, part
of the tree associated with the retrieved blocks will be
rebuilt and checked against the stored tree. This method
can efficiently distinguish the source of mismatch even
with dynamic data. Considering the fact that the hash key
remains only in the owner’s gateway, this method does
not require any key establishment between any parties.
This hierarchical scheme of the tree and Bloom Filter
reduces the time to verify integrity, storage space, and
computational complexity, at the price of introducing
False Negatives (FN) (i.e., records that exist but may fail
an integrity check).

One may argue that the alternative simple solution
for verifying integrity in the cloud is to keep a list
of Message Authentication Codes (MACs) in the cloud
along with the data. However, it has multiple problems
that are solved with HDI. In our scheme, the owner’s
gateway is the only fully trusted party that can change the
data and the temporary access that the trusted caregiver
or service provider receives does not allow it to change
the data since the key is only kept in the owner’s gateway.
In contrast, consider storing a list of MACs in the cloud
instead of using HDI. If we use unkeyed hash functions,
the cloud and whoever has access to the cloud server
(e.g., in the proposed scenario, in the presence of secure
access control, any caregiver can do this) can change the
data. If we use keyed hash functions (without performing
any key distribution) the service provider’s UGW will
have to send the whole data block to the owner’s gateway
for verification which increases the communication cost
between UGW and OGW considerably. Otherwise, the
OGW will have to share a key with the UGW which is
a complex process (also we do not necessarily trust the
UGW with the key) that we are avoiding through HDI.

Security assumptions: HDI relies on a trusted

126

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

verifier (OGW) that belongs to the owner of the data
(e.g., patient). The OGW stores the data in (many)
cloud servers and generates and stores the key that can
verify the integrity of data. A trusted third-party (UGW)
that wants to retrieve the data, checks with the owner
of the data through the gateway (OGW) to ensure that
the data remain unchanged compared to what the data
owner stored in the cloud. The UGW only shares small
metadata that is sufficient for the OGW to verify the
integrity of data to be used by the UGW. Under these
constraints, HDI is able to detect accidentally corrupted,
forged, or fabricated data sent to the third-party retriever
(UGW) instead of the original data. We assume that
OGW is the trusted secure verifier and since UGW is the
third party that requests the data, it only makes sense to
trust this entity with sending the correct metadata to the
verifier.

Contributions: HDI provides a solution that can store
the owner’s data, gathered from multiple sources, in
multiple clouds and verify the data integrity, when a
service provider retrieves it. The contributions of this
HDI method are:

e Each data block is hashed into an empty fixed-size
Bloom Filter. This Bloom Filter is hashed into a
Concatenated Generalized Bloom Filter (CBF). The
two-level Bloom Filter reduces the communication
cost of data integrity verification.

e To resolve the false negatives in the CBF, a hash tree
for blocks of data is created and stored in the cloud
to identify the corrupted blocks quickly.

e As far as we know, this is the first method that
specifies the ability to verify the integrity of data
from multiple sources, stored in multiple clouds,
without requiring explicit key distribution. All
processes are designed in a way to avoid any key
establishment. The key remains only in the owner’s
gateway.

e Analysis and simple hardware implementation
show that HDI performs better than or as well as
previous methods and is efficient in time, storage
and communication overhead.

The rest of the paper is structured as follows: Section 2
discusses the background material on Bloom Filters
and hash functions. Section 3 describes the proposed
method to solve the problem. Section 4 analyzes our
provided solution, Hierarchical Data Integrity (HDI).
In this section, we present experimental results and
compare our provided method with previous methods.
Section 5 provides a literature review and Section 6
discusses the security of gateways, the consequences of
the gateways getting compromised, and how to secure

the gateways. Finally, Section 7 concludes the paper and
summarizes our contributions.

2 BACKGROUND

We use Bloom Filters and secure hashes to ensure
data integrity verification. Here we provide a brief
background to keep the paper self-contained. Please
check references ([13], [35], [45]) for details.

Bloom Filters: Bloom Filters (BFs)([13]) have been
used for set membership queries. A traditional BF
begins with an array of all Os and then hashes all of
the set members using & different hash functions (not
necessarily secure hashes). Each hash yields a bit in
an array called the Bloom Filter. To check if a given
element exists in the set, the element is hashed using all
k functions and the bit map is compared to the array.
If the same bits in the array were set to 1, the element
exists in the set. BF allows false positives, but it saves on
storage and search space.

BFs have been used for password security checks [55,
40], spell checks [42, 47], speeding up database semi-
join operation [47, 12, 59], distributed caching [24, 50],
resource discovery, and routing [13, 57], checking image
existence [51], etc. Special kinds of Bloom Filters exist
for different types of applications such as key-value-
supported BF [63, 62] used for checksums, counting
BFs [24], and scalable BFs [2] that split the filter space
into k hash functions to make them scalable. Also [37,
36, 32], introduced methods to reduce the rate of false-
positive errors in Bloom Filters.

Considering that the best number of hash functions &
is k = m - In(2)/n (see [13]), the minimum required
space in the BF for storing n items is m, which is
calculated as m > nlog,e - logy(1/€) [13], where €
corresponds to the maximum fraction of the universe of
false positives that is tolerable. As an example, if we use
n = 12 and allow at most 1% false positive, m should
be at least 115 bits.

In the Generalized BF (GBF) [35], the initial filter
is randomly filled with 0’s and 1’s. Then, k; hash
functions set the bit and k5 other hash functions reset the
bits. This method limits false positives, but it introduces
false negatives. Concatenation of GBFs (CBF) [45]
which consists of multiple GBFs improves robustness
and capacity since there is less insertion and therefore
fewer false negatives in each sub-filter.

Plain BFs are not enough and do not perform well
for three reasons: they are not well structured, nor well
organized, and data cannot be deleted or modified in the
case of change, because they remember old data. For
instance, all of the bits in the BF can eventually become
1 which would defeat the purpose of the BF. GBFs (and

127

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

therefore CBFs) on the other hand tend to forget old
data. Thus CBFs also address the problem of advertising
saturated filters (all-one attacks). In this paper, we use
CBFs and we assign a dedicated part (subfilter) for each
device that generates data; therefore, for each device, the
overall BF has the most recent data. Further, a device that
generates data more frequently does not overwrite data
from other devices that may make less frequent updates.
The False Negative probability (FN) and False Positive
probability (FP) calculation is discussed in Section 3.6.2,
using formulas from [35]).

Hash functions: Simple unkeyed hash functions (e.g.,
MD-5 - that are also not secure) are used in BFs. We use
secure hashes — SHA-3 [8] (unkeyed) and HMAC [34]
(keyed) hash functions to build a secure tree which we
employ in data integrity verification in this paper.

3 How HDI WORKS

In this section, we provide a high-level idea of how
HDI works. Figure 1 shows the motivating scenario
where health tracking devices are connected to a trusted
owner’s gateway (that can even be the data owner’s
cellphone) called OGW, which forwards data to the
appropriate cloud servers. Later some or all of the data
are retrieved by the trusted third party data user (service
provider that requires data to provide service to data
owner) through a user’s gateway (UGW). The UGW and
OGW interact to verify the integrity of retrieved data
(the onus is on the OGW). In HDI, the OGW hashes
data blocks when they come from the health monitoring
devices into a concatenated Bloom Filter —- CBF which is
stored locally in the OGW (as calculated in Section 3.6.2,
this can be as small as 10700 bits). The OGW also
creates a (keyed) hash tree to keep the (secure) hash
values of the blocks in a structured manner. The OGW
removes the leaves of the tree and sends them to a
preferred cloud server for storage. When the need arises
to verify the integrity of data, the OGW checks the
retrieved blocks using the locally stored CBFE. If the data
have been forgotten by the CBF, the OGW can retrieve
the tree from the preferred cloud server and use the tree
to verify the integrity of the associated data blocks. This
distinguishes the source of mismatch up to a block of
data. If data are forgotten in the CBF due to aging and
the tree can verify the data, no action needs to be taken,
otherwise, the owner and/or the trusted third party user
is alerted to the accidental or malicious change.

3.1 Threat Model
We have the following elements in our scenario:

e Adversary: This entity sends corrupted data to

) —— ——)

ﬁ(= O = oew uew)a

(\ (\
Data Owner Owner User Data User
(e.g. Patient) Gateway Gateway (e.g., Doctor)

@ xCOm @

“Things”

Interaction during data retrieval
to verify integrity

Figure 1: Motivating scenario

the third party (as an example, in the healthcare
scenario, this hurts the patient because the doctor
has incorrect information). This adversary can be
of two forms: (1) The cloud server storing the data,
which may be under attack, itself wants to forge the
data or accidentally provides corrupted data blocks
that harm the data owner. (2) An adversary that
is a man-in-the-middle that sends wrong data to
the third party instead of the cloud server and thus
harms the data owner.

e Fully Trusted OGW: This entity is the data owner’s
gateway which is secure and trustworthy. It stores
the generalized Bloom Filter and the key used for
HMACs in building the tree. It performs data
updates by storing data in the cloud, hashing them
into the Bloom Filter prior to storage, and also
hashing them securely in the tree.

e Trustworthy UGW: The UGW is the entity that
needs to retrieve and use the data to service the data
owner. If the UGW is not trustworthy it does not
have to get any data and ask for verification from the
OGW. It can harm the data owner directly without
any of these hassles; therefore, the only scenario
that makes sense is to assume that the UGW is
trustworthy.

Some more discussions of the security implications
and behavior of the OGW and UGW are included in
Section 6.

3.2 Formal Preliminaries

The HDI system’s protocols for storing data are shown in
Figure 2 and for verifying the integrity of retrieved data
in Figure 3 and have the following functions:

e KeyGen(1*) — x: The OGW Generates a random
private key & of size of A from the keyspace K. « is

128

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

Wearable
Or User Device

Bloom Filter function is implemented using
Algorithm 1.

oGW Cloud

Sensing

o UpdateTree(n,{F;},, subtree, K, d) —

subtree: This process is done in OGW. F' and n

are defined previously. subtree is received from

the cloud and will be updated using SHA-3 values

of the tree nodes and HMAC values of the cluster

Ej of nodes (nodes with similar attributes (device
ID, creation time, etc.)). The key x is used in the
HMAC and d is the maximum number of children
each node in the tree can have. The Update
Tree function is implemented using Algorithm 2.

UpdateCBF()
UpdateTree()

CBF

UpdateCBF()

For each block:
Insert Block in TBF
Change TBF to string and insert into CBF
Reset TBF

UpdateTree()

Use SHA-3 to create leaf nodes
Build subtree using HMAC
Omit leaves before sending

e RequestQuery(time, I Dgeyice) — I Deioua: This
function finds the corresponding cloud based on the
requested data D geyice (the ID of the device that

Figure 2: Data storage protocol

oGW Cloud UGW generated that data). UGW forwards the request
_ Lcqueryl) for the data from the specific device in a specific
Sensing AW timeline to the corresponding cloud services.
Respond()m e
% < e Respond(time, I Dgeyice) — {Fi}g, 1,
_ HQ_E subtree: The cloud responds to the UGW with the
g data blocks & matched blocks and number of those blocks along
- TBFs, S M ot . .
e W § with the subtree corresponding to those blocks.
o> <
'§ W%KJ o PreVerification(n, {F;}™ o, k, {H;}¥_,, subtree)
— {TBF;}7,, {SHA-3(F;)}_, subtree: This

process is done in the third-party user gateway
(UGW). {F;}_, includes the set of blocks that
are retrieved, n is the number of blocks, k is
the number of hash functions and, {H;}¥_ are
the hash functions for simple Bloom Filter. The
output values includes the simple Bloom Filters
({BF;},) and SHA-3 values ({SHA-3(F;)}™)

Verification()

A. Check TBFs against CBF

B. Use SHA values to build new subtree
Compare new and old subtrees

PreVerification()

Create TBF for each block
Calculate SHA-3 for each block

Figure 3: Data verification protocol

used for building tree hash values using HMAC 7.

UpdateC’BF(n, {Fi}?:m k, {Hi}i‘c:()v CBF, ko, kl
AH!, {HY R) — CBF: This process is
performed in the OGW and it updates the
Concatenated Bloom Filter. Here, F' is the file
that has n blocks (Fjs) of data. Each block has
information about time and ID of the device that
created the data. k is the number of hash functions
in ({H;}%_,) which are used to set bits in a simple
Temporary Bloom Filter (TBF) (explained in
Section 3.3). CBF is the main Bloom Filter,
ko is the number of hash functions ({H{}fgo)
that set bits in the CBF, and k; is the number
of hash functions ({H!'}",) that reset the bits
in the CBF. This Update Concatenated

for each block and the subtree are sent to the OGW.
Pre-Verification function is implemented
using Algorithm 3.

Verification(n,{TBF;}}_,, CBF, ko, ki,

{HLYE, {HIY, (SHAB(F,))iy, subtree, k)
— {0,1}: The OGW receives the SHA-3 values,
the subtree and simple Bloom Filters {T' BF;}_)
from the UGW and verifies the data. The OGW
uses SHA-3 values, the HMAC function, and the
key (k) to rebuild a tree and compares it to the
received subtree. The output is reject (0) or verify
(1). Verification function is implemented

using Algorithm 4.

The algorithm for updateCBF, UpdateTree, Pre-
7 We assume that the key size is commensurate with the needed verification, and Verification methods are described in
security. the following corresponding sections.

129

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

3.3 Creating and Updating Data, Bloom Filter,
and Hash Tree

HDI executes functions to create the CBF, hash tree,
and store the very first data from the wearable devices.
Further updating the data includes inserting, deleting,
or modifying a block of the data in the cloud. The
OGW has a secret key that belongs and is known only
to itself. The way data blocks, the Concatenated Bloom
Filter, and Tree are created and stored is described in
Figure 2. When the owner requests updating the data
(e.g., when the wearable device generates new data), the
trustworthy OGW, that has access to the HMAC key,
starts the process. The OGW updates the CBF using
the function UpdateCBF () and and the tree using
UpdateTree (). We recall that the CBF is a coarse
rendition for integrity checks while the tree can identify
specific data blocks. The OGW receives the data in
blocks from a device, passes the data blocks through
k hash functions to update the corresponding sub-filter
€ C sub-filters in the CBF, updates the tree using SHA-
3 values of new data blocks, and sends the data and the
updated tree to the cloud. Algorithm 1 and Algorithm 2
show these procedures and in the following, they are
explained with an example.

Algorithm 1 is described with the example in Figure 4,
Stages 1 and 2. These stages are applicable whenever
data blocks arrive, irrespective of whether it is at the start
or later. The OGW receives n data blocks from one or
more devices (e.g., n = 12 blocks). As shown in Line
4 Algorithm 1, these data blocks are first hashed into a
fixed-size temporary BF (TBF) that has been previously
reset (the fixed size is 20 bits — please see Section 3.6.1
for justification). Then the OGW treats this TBF as a
string of 0’s and 1’s and hashes this string into a CBF
(lines 5 and 6). This CBF has subsections (sub-filters)
for different devices; therefore, the most recent data
from each device is available at any time (we note again
that the CBF tends to forget old data). This procedure
is performed for the insertion and modification of data
blocks. Since the CBF tends to forget old data, we do
not explicitly consider updating the BFs in the case of
deletion of data in the cloud. The TBF will be cleared to
be used by future data blocks (line 7).

In the following, we explain the differences in creation,
insertion, deletion, and modification of the tree or sub-
tree, which is more involved than the CBF.

New tree: We first describe how the tree is created
using Figure 4 - Stage 3. At the start-up of the entire
process when the first data blocks arrive and the tree is
null, in order to build the tree, the OGW calculates the
SHA-3 value for each block of the data as the leaves of
the tree (e.g., Figure 4 Stage 3, node 1, through node

12). The reason for using plain SHA-3 is as follows.
Later during data integrity verification, SHA-3 is used
in the user’s gateway — UGW; therefore, for the first
level, we choose an unkeyed, yet secure, hash function
to avoid the expensive and complicated process of key
establishment/state between an OGW and potentially
different UGWs. Next, nodes with the same device ID
and year are grouped and hashed using HMAC (e.g.,
1,2,3 and 5 from device B and year 2020) and a secret x
and a new node is created as their parent and tagged with
the year and device ID (e.g.,2020-B); therefore no entity
other than the OGW can manipulate these nodes. Then
nodes with the same device ID (e.g., B) are grouped and
a new node is created as their parent and tagged with the
device ID. Finally, all nodes are merged into a single root
node (Peter)®.

Algorithm 2 is described with an example similar to
that in Figure 4 — Stage 3, where the OGW updates the
hash tree. The OGW receives new data blocks from
devices, the related subtree retrieved from the cloud (the
subtree here is the set of nodes in the path from the
possible parent of the new node to the root along with
its siblings), and sibling data blocks. The node will be
added to the tree under the proper device and time (line
4, Algorithm 2). Each node in the tree stores the block
ID, date, device ID, and hash value. The OGW starts
updating the tree by calculating SHA-3 values for new
blocks and requested sibling blocks (line 6). Then, the
related subtree is updated using HMAC and the key « on
the calculated SHA-3 values (line 7). It continues using
HMAC for updating the upper nodes until reaching the
tree’s root. The leaves are deleted from the tree to save
space.

Subtree creation & storage: The tree is then divided
into subtrees (based on the device that created the data.
Each subtree includes the data created by one device
along with the siblings of the topmost node, e.g., the
second subtree includes the nodes created using data
blocks from device B (nodes 2020-B, 2021-B, and B)
along with B’s siblings (nodes A and C).)°. The OGW
then sends the updated subtree along with the new data
to the preferred cloud server (e.g., the second subtree is
sent to cloud server B in Figure 5 (b)). The tree helps
us to check data integrity and reduce the effect of false
negatives (FN) in the local CBF as we will see later. The
key x and the CBF remain in the OGW.

8 In stage 3, node 6 in the tree is in a rare situation, in which, it is
the only child of that branch. In this case, nodes merge together;
therefore, node 6 (which replaced A) is consist of the HMAC value
of the SHA-3 value for the block 6.

9 It is OGW’s responsibility to update node A and C when they
changed in the corresponding cloud server

130

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

Algorithm 1: Update Concatenated Bloom Filter

Nk ey

7
8:

input: (n, {F}o. k. {Hi}_o. CBE ko, k1, {H[}{%. {H'}[20)
output: CBF
foreachi e {1...n} do
TBF :{Vje{l...k}:v(H;(F;))«+ 1} >Hash " block of data in the temporary Bloom Filter (TBF)
CBF : {Vje{l...ko}: v(Hj(I'BF)) <+ 1} »Hash TBF in Concatenated Bloom Filter (set bits to 1 for ko
number of hash functions)
CBF :{Vje{l...k1}:v(H/(TBF))+ 0} ®Hash TBF in Concatenated Bloom Filter (reset bits for k1
number of hash functions)
TBF :{Vje{l...sizerpr}:v(j)« 0} > Reset the TBF for future blocks
end for each

*v (i) denotes the value of bit 4 in the corresponding Bloom Filter

Algorithm 2: Update Tree

1
2
3
4

AN

10:
11:

. input: (n, {F;}7_, subtree, k, d)
: output: subtree
: for each f € {F;}7_, do > For each new block

insert the node n under the proper node > Proper node is leaves’ parent (second layer) with proper device ID
and date

split the branch if the number of nodes exceeds d > Split process is shown in Figure 7 and Section 3.5
s < SHA-3(f) > Calculate SHA-3 value for the new block
p <+ HMAC((s|Vx € {siblings} : s = s& SHA-3(z)), k) > Recalculate HMAC value for parent using

children’s SHA-3
for each np in the path from n to subtree root do
np < HMAC((s|Vz € {npsiblings} : s = s @ z),x) > Update HMAC value for nodes in the path to the
root
end for each
end for each

12: omit leaves from the subtree
1 || —
5 A =
P 3
3 k 2 3 | o« These thrlee are
hash Q3 — merged into a
1 2|3 4 L3 k1 ® a single node
5 3 3 reset ff— 2 3 -~
456 s = B 5 <
el LNy, I
7809 8 . I -
SERYZ4 R
10|11 |12 10 set C Lo
11 ; x
- String of Os, 1s é
Stage 1: Data Stage 2: Creation of CBF first using TBF Stage 3: Creation of Tree. Leaf nodes are SHA-3 values and all higher level
Blocks Arrive and then categorizing by Device ID nodes are created using HMAC. Key is local to OGW

Figure 4: Data/CBF/Tree creation

131

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

Can be built using 4, 7
and 2020-B |

Shaded nodes are omitted

2020 - 5) Qo21-B D

Figure 5: Subtrees that are stored in cloud servers A,
B&C

Insertion: In the case that the tree already exists and

we want to update it, different scenarios are possible
that we explain using (Figure 6). In this figure, all
nodes that are involved in the recalculation of the tree
are shaded grey. The nodes that actually change are
shown with a yellow background. To insert a node (say
node 13 in Figure 6.top), the SHA-3 of node 13 should
be calculated, the nodes in the path to the root (nodes
2021-B, B, Peter) should be updated, and HMAC values
should be recalculated. Consequently, the OGW requires
all the siblings, including the SHA-3 values of nodes
4 and 7, as well as the node 2020-B, and nodes 6 and
C.'0 After insertion, if the number of children exceeds d
(d = 4 in this example), the tree is split as described in
Split Procedure in Figure 7 and Section 3.5.

Deletion & modification: Figure 6.d depicts deletion.
If there is a need to delete node 5, the gateway (OGW)
needs to recalculate the HMAC values to re-create a node
along the path from 5 to the root which includes 2020-B,
B, and Peter; therefore, the OGW requests their Siblings
(data blocks 1, 2 and 3, as well as node 2021-B, and
nodes 6 and C) from the cloud server. In the case of
modification, the same procedure is followed, but the
OGW updates node 5 instead of removing it, and here,
the gateway needs to recalculate the SHA-3 value for
node 5 as well.

3.4 Data Integrity Verification

Verification of data integrity occurs when a third-party
user of the data retrieves it from the cloud servers.
Integrity verification is performed by the gateways

101f the node is being inserted to a node that was previously merged
with the parent, the tree splits into two branches, and different split
points can happen based on the features of the new data. As an
example, in Figure 6.b, the new node (13) and node 6 are both
created in 2020, so both nodes will be children of 2020-A (2020-
A merges with A). In a different situation, for example in Figure 6.c,
the new node is created in 2021. In this case, node A will have two
children (2020-A and 2021-A) that each of them will have one child
and are merged with their child (6 and 13 respectively).

Nodes that >

are changed @
!

- @D @D
SE0E 00 GO EOE

‘ Insertion of Node 13 - Device B ‘

2021 —

ozo D

/\@
\ N\

Insertion of Node 13 - Device A
(same year)

\gzo B
-

\1\\2\\3\\5\

2021 —

20207 2021 7> 2020 (' 2021 7>

Slolo &a B0

3
3%
S
S 9
R

merged

/

(2020-A) ((2021 A)

® @

‘ Insertion of Node 13 - Device A ‘

‘ Modification of Node 5 - Device B ‘

Figure 6: Updating the tree: shaded nodes are needed
for the update and nodes with the yellow background
are changed

(OGW and UGW) at this time. We assume that the OGW
has authenticated the UGW to the cloud servers '!.

The procedure for verifying the integrity of the
retrieved data blocks is described in Figure 3. The user’s
gateway — UGW - requests data from a cloud provider.
The cloud provider sends the requested data blocks along
with sibling data blocks and the subtree associated with
the data to the user’s gateway. The subtree includes
the HMAC values of parent nodes that are in the path
between the requested block to the root of the tree along
with the siblings of the nodes in the path. As an example,
Figure 8 shows the requested data block, sibling data

' To authorize and control access of the user, the owner’s gateway
may act as a temporary certificate authority and generate a one-
time password and share it with both parties (user and server). That
password can be used as an initial temporary key that helps the cloud
server to authenticate the user. It also can be used as an initial key
to set up connection keys and establish a secure connection between
the user’s gateway and the server or using TLS. This is outside the
scope of this paper

132

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

<

82y

sxg
(6\3" (Cc) 2E£ 3
=/ w35
o< o

. =4
o L - — T 9,8
P (2020 - BD \2021 B/ €] 2(120 () 2021-C) | 588
AN T\ I 7T\ 223

x [\ | / \ /T \ g Q8
8 (D) () ENE (B)(2)(7) A A | 28 E
o W2 EENID BY) NN -

Node is split
Peter)
(o) o)
§ oo BN B o o1
L \3020— B) \ 2021 - B/ \2020 C/ \2021 C/
VA T m e T i\
. / \ M\ ‘\ ;‘\\
e N I /
S Jan Jun Jul- Dec |\ [
= N -‘— - / “‘ ‘\ \ ‘ \ [\\
| \ \ [
/ [\ \ [
% / "J \ J“ |\ ‘ \ AR
2l DD /5\ D () /4\/ N (8)(9) D)
W28 @& B (8)) NG AN AN

Figure 7: Splitting nodes when the number of
children exceeds d (here d = 4)

Figure 8: Subtree for retrieving block number 4. The
darker nodes are in the path between node 4 and the
root. Lighter nodes are the siblings of the path nodes.
Dashed nodes are SHA-3 values that are omitted from
the tree; however, the cloud sends the data blocks (not
the SHA-3 values) of nodes 4 and 7 along with the
subtree.

block, and the subtree when data block 4 is requested
by the UGW.

The UGW and the OGW share the same hash
functions that are used to create the CBF (these are
unkeyed and can be public). As shown in Algorithm 3,
there is a pre-verification process at the UGW. In line 4
Algorithm 3, for each block of data, the UGW creates a
simple Bloom Filter — this process is identical to the TBF
creation. It then calculates the SHA-3 values of retrieved
data nodes (line 5) and sends them to the OGW for
verification along with the subtree. The SHA-3 values
of the data nodes need to be sent to the OGW for it to
rebuild the subtree if necessary. Note that the entire data
need not be sent from the UGW to the OGW - this saves

on communication costs. Next, the OGW verifies the
integrity of data as shown in Algorithm 4. The OGW
checks the received TBF’s against the locally stored CBF
(lines 3 to 6) . If there is no match (and this may happen
if the data are old), then the gateway rebuilds a new
tree with the received SHA-3 values and compares it
with the received tree (lines 8 to 11). If they match, a
confirmation is sent otherwise the data is rejected and
an alert is issued. In the following, this procedure is
explained in more detail with an example.

In Figure 9, the user requests the owner’s data for the
year 2021 from devices A and B (blocks 4, 6, and 7 —
see the top of the figure). The UGW sends the request
to the cloud (steps 1,2). The cloud sends the data along
with the related subtree to the UGW (step 3). The UGW
hashes the received data into three TBFs (for the three
blocks) and also calculates the SHA-3 values (step 4)
of the data blocks. The UGW sends the TBFs, hash
values, and the subtree to the OGW (step 5). The OGW
verifies the integrity of data by comparing the received
BFs’ strings against their dedicated parts (sub-filter) of
the locally stored CBF (based on the device ID) (step
6-A). New data is verified with a higher probability. If
the data are very old, the CBF may have forgotten them.
Alternatively, if the data are old, corrupted, or cannot
be verified using the CBF, the OGW uses a rebuilt tree
to verify the data (step 6-B). For this, the OGW uses
the hash (SHA-3) values to rebuild the tree. The OGW
compares the rebuilt tree with the received subtree. If the
comparisons do not match, the OGW sends a rejection
message to the UGW; otherwise, the OGW sends a
confirmation message to the UGW (step 7). The UGW
sends the blocks to the user (Doris) (step 8).

3.5 Refinements for Efficiency

In order to reduce the amount of data required to be
fetched from the server for verification, we suggest
choosing d (the number of children for each parent in
the tree) between 2 and log(n). The lower bound is 2, in
view of the fact, that it is more efficient to merge the child
and parent into a single node if a node has only one child.
The upper bound is log(n), since it limits the number
of extra sibling data blocks that have to be fetched
when data is being retrieved and verified; therefore,
the communication complexity between the cloud server
and UGW would be more efficient and is limited to
O(log(n)) (considering that subtree size complexity is
also O(log(n)) -discussed in Section 4.1). As shown in
Figure 7, if any node has more than d children, the tree
splits into two branches (in this example, we selected d to
be 4). Here we have shown this split happening between
the first six months and the next six months of the year
for illustration only - the split can be accomplished using

133

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

Al

gorithm 3: Pre-Verification in UGW

CANRANE N ey

input: n, {F;}7 o, k, {H;}}_,, subtree
output: {TBF;}7 ,, {SHA-3(F;)}7_,, subtree
: foreachic {1...n} do > For each new block
TBF; : {Vje{l...k}:v(H;(F))+ 1} > Hash i*" block of data in the temporary Bloom Filter
SHA-3; + SHA-3(F;)) > Calculate SHA-3 values

end for each

*v (i) denotes the value of bit 4 in the corresponding Bloom Filter

Al

gorithm 4: verification in OGW

1:

input: n, {TBF;}?_,, CBF, ko, kv, {H/}™,, {H/ K,
{SHA-3(F;)}™ ,, subtree, k

2: output: {0,1}

s e

foreachi e {1...n} do

: result; < min({Vj € {1...ko} : min{v(H;(TBF;))}},{Vj € {1...k1} : min{l — v(H](BF;))}})
> Check if the received TBF exists in CBF

end for each

6: resultBF <+ {Vi € {1...n}: min{result;}} > resultBF is 1 if all blocks’ TBF exist in CBF

if result BF # 1 Or randomly then > if the data are old or higher accuracy is required and 1% false negative is
not tolerable
Build a new-subtree using SHA-3 values:
Merge the SHA-3; values that have the same device-ID and time interval and create HMAC parents
Merge HMAC parents with the same device-ID and create a parent for them
resultTree < compare(subtree, new-subtree) > Compare the built subtree and received subtree, output is 1
if they are equal
end if

11238
4157 Step 6: Verification
4 BA. Check—]
Cloud A match _——
Step 4: Pre-Verification — © A 2 (—
o S o 5]
= Il | 2 |88 —
g =3 o3 ~ 3 |O _:5 To String
hash 3 g9l |z |82 |23
Q g© ol go |8 Hashto CBF/ [
o 5] n o 5] €n T
3 L E o e E = ——
g < ¢ e |@a®
w <= PR b o~ —
Nodes n o g Q Ng e
RS Q awm (2
3 Lol o £o To —
: J— (2] & S
4 .g Step 5: Send Nodes, Subtrges
@4’_ 6 g UGW and TBFs oGW <
i > Step 7: Confirm/Reject
fos] ep 7: Confirm/Rejec
7 m -9 User 2 | < Owner If no match
N T 3] Rebuild tree
SHA-3 5 Q S Gateway % Gateway
3 3 < © 6B. Compare Tree with
E $3 5 Tree from Cloud
5 8§35 5
<2 o
- e P ?
0
2 = a =
% g Data User $
o° (e.g.,Doctor)

Figure 9: Retrieving and verifying the integrity of data

134

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

other factors.

Another refinement that can be done to reduce
the communication complexity during the verification
process is to avoid sending the middle nodes of the
subtree that can be rebuilt using the received SHA-3
values; therefore, in such a case, it is sufficient to send
SHA-3 values and some high-level common parents.
As an example in Figure 5(b) nodes ”2021 — B” and
”B” can be rebuilt using current information (SHA-3
for blocks 4 and 7 and HMAC values for 2020-B) and
sending them as a part of the subtree will not add to the
security of the integrity verification. Furthermore, in the
verification phase step 6 — B, it is not required for those
nodes (2021-B and B) to be compared to the rebuilt tree.

Yet another possibility that reduces the
communication overhead is to send the SHA-3 values
and the lowest common parent(s). As an example, in
Figure 8 to retrieve and verify the integrity of node 4,
only the SHA-3 value of nodes 4 and 7 and the H M AC
value of the node 2021 — B are needed '2.

3.6 Tuning Bloom Filters

In this section, we discuss how to tune the size of Bloom
Filters to reduce the overhead and still have tolerable
false positive and false negative rates.

3.6.1 False-Positive Probability for Simple
Temporary Bloom Filter

As mentioned in Section 2, the size of the Bloom Filter is
m and the number of data blocks inserted into the Bloom
Filter is n; however, only one data block (n = 1) is
inserted into the Temporary Bloom Filter. For such a
simple Bloom Filter, the false positive probability (that
a block that does not exist is believed to be correct) is
calculated as FP = (1 — e(=w) [35]. Based on
this formula, our analysis shows that for m = 20 the
false positive probability would be less than 0.01 when
k is between 2 and 50. As an example, the FP for
m € (0,20) and k = 3 is shown in Figure 10. For k = 3
and m = 20 we have F'/P = 0.0027.

12 As another example, in Figure 8, to retrieve and verify the integrity
of nodes 5 and 7, UGW sends SHA-3 values for 1,2,3,5,4,7 and
HMAC for B to OGW. In a more complicated example to retrieve
and verify the integrity of nodes 7 and 8, UGW sends SHA-3 for
4,7,8,9, and to create node Peter we also need the HMAC of node A.
There is no need to send node B since it can be created using SHA-
3 values. However, OGW still needs 2020-B (there is no need to
transmit node 2021-B since it can be created using SHA-3 values),
the same situation is true for node C that needs node 2021-C for
verifying data integrity.

—_

FP=0.0027
FP=0.01

False positive probability
o o o o
S)

o

5 10 15 20
Bloom filter size (bit)

Figure 10: False positive probability for temporary
simple Bloom Filter: n =1 & k =3

3.6.2 False-Positive and Negative Probability
for a General Bloom Filter - GBF

The false-negative probability for a GBF is calculated
in [35] and summarized in this section. Let us assume
that kg is the number of hash functions that turn the bit to
1 and k; is the number of hash functions that change the
bit to 0. The false-negative rate for a GBF is calculated
as shown in the set of equations below (Equation Set 1)
with comments:

Equation set 1: False Negative probability in GBF [35].

go = (1 — el~Fo/m))
> o determines the probability of a bit reset
a=(1- e(fkl/m)) « e(—ko/m)

> ¢ determines the probability of a bit set
bo =m X qo

> by is the probability of resetting m bits

by =mxq

> by is the probability of setting m bits

let’s define Q as(1 — qo — q1)

40

poo(n —i) = [Q' + ot x (1-QY)*
N PN 0 i

puln =) =@+ 2 x (1= Q)

Fa= 2 3710 = pooln = ") % (pus(n = ")
i=0

> F, is false negative probability

* poo(n — 1) is the probability of a bit that is reset in
the n — 4-th insertion remains 0 after the ith insertion.
p11(n — 1) is the same for a bit that is set.

Similarly, the calculation of the false positive for GBF is
calculated in Equation set 2 below with comments:

135

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

Equation set 2: False positive probability in GBF [35].

qo
qo + 1

p=po(l—qo—q)" + X(1—(1T-qg0—aq)")

> p is probability of a bit remaining zero after n insertions

Fp= (™) x (L—p)™)
> F}, is the false positive probability

Based on Equation sets 1 and 2, and assuming that each
owner generates one data block (each data block is 16
KB as suggested in [19]) each day and also assuming
that in most cases users may require the data from the
past year, in order to keep false positive as low as 1%,
we calculate the minimum required size of the Bloom
Filter for n = 365. With m = 10700 the false positive
probability is less than 0.01 for & > 3'3 (where k =
k1 + ko); therefore, m > 10700 bits satisfies F'P <
0.01. Figure 11 and 12 show the FN and FP rates for
k € {3,5,7,10} as example.'* As shown in Table 1,
in the case the owner is storing more data blocks each
day, if we maintain m = 10700 bits, in order to keep
F'P less than 0.01, k should increase. As an example, if
the owner (e.g., a patient) is creating 10 data blocks each
day of the year (3650 data blocks), in order to satisfy
FP <0.01, k should be 7. k¥ = 7 also satisfies F'P <
0.01 for 100 data blocks a day (36500 data blocks each
year). The reason that we do not select a higher value
of k is the F'N. The false-negative probability increases
with increasing k with a small number of blocks (check
k=7 FPand k = 7 FN in both Figures 11 and 12).
Although F'N is addresses by the tree (if the data cannot
be verified by the Bloom Filter it will be checked against
the tree as explained in Section 3.4), it is more efficient
to optimize k based on the application requirements as
this reduces the time needed for integrity verification.

4 ANALYTICAL AND EXPERIMENTAL
RESULTS AND COMPARISONS

We first analyze HDI’s security and complexity in time,
for storage and communication. Then we simulate the
HDI process and analyze the results and compare HDI
with DPDP [19, 21]. Finally, we implement HDI in Java
using two Raspberry Pis as gateways (OGW and UGW)
and a Desktop computer as a cloud server to see how
HDI may perform in a real-world experiment.

13 The upper bound is an 8 digit number.
14 In HDI, it is more important to keep the false positives low, since
false negatives can be addressed using the rebuilt tree.

o
[

E —FP
—c% N:365, m=10700: --FN
S FP<0.01

8 02

2 k=19
201 k=7

2 ks

S Y k=3 b] k=3
o e e e B
S 0.0 e ——
2 0 5000 10000 15000 20000
s m: generalized bloom filter size (bit)

Figure 11: False-positive and negative probability for
GBF for n = 365

2
= 03 N=36500, m=10700: ~ — FP
- S B -
a8 02
QZ) [D <~ S
a ----- o Yy

)
o1l Tk =
0; ___________________________________
g, N R k=10
o =
2 0.0k 7
2 0 5000 10000 15000 20000
£ m: generalized bloom filter size (bit)

Figure 12: False-positive and negative probability for
GBF for n = 36500

4.1 Analysis

We discuss security and evaluate time, storage, and
communication complexity in this section.

4.1.1 Security

We discuss trust, hash functions linearity property, and
collision to analyze the security in this section.

e Trust: Trustworthiness of entities is defined in the
threat model in Section 3.1. The most important
security assumption is that the owner’s gateway -
OGW - should be fully trustworthy. No key is
shared with the UGW; therefore, the UGW will not
be able to change the data without such changes
being detected. One may argue that the cloud may
keep the old correct SHA-3 values and then tamper
with the data. The UGW cooperates with it to send
those pre-calculated SHA-3 values to OGW instead
of calculating SHA-3 values for the data it received
currently; however, if the UGW is malicious in this
way, it would be much easier for it to not even
communicate with the OGW and use unverified
data. On the other hand, this scenario does not make
sense since the UGW starts the process and asks

136

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

Table 1: False-positive and negative probability for the different number of data blocks each day for CBF
size of 10700 bit. 365 blocks (one block per day),3560 (10 blocks per day), and 36500 (100 blocks per day)

y | k=3 | k=5 \ k=17 \ k=10 \
’ Number of data blocks \ FP \ FN \ FP \ FN \ FP \ FN \ FP \ FN ‘
365 0.0100 | 0.0351 | 0.0014 0.0843 | 0.00026 | 0.13627 | 0.000029 | 0.1917
3560 0.1016 | 0.1784 | 0.02876 | 0.2106 | 0.0076 0.1682 0.00097 0.0972
36500 0.1250 | 0.227 0.03127 | 0.155 0.0078 0.0904 0.00098 0.037

OGW to verify the data for it. Therefore, we also
assume that the UGW should be trustworthy enough
to verify the data with the OGW’s help. After all,
the UGW needs the correct data so that the service
provider can offer the best service to the owner.

e Linearity: One of the advantages of HDI is that
the hash functions do not have to be linear or
homomorphic as in most (if not all) provable data
possession (PDP) and proof of retrievability (POR)
provided solutions (PDP and POR are discussed in
Section 5). Here we chose SHA-3 and HMAC but
other secure hash functions can be used as well
(e.g., SHA-512).

e Collision: As mentioned in Section 3, in HDI, data
is first hashed into a simple temporary Bloom Filter
(TBF). Then the TBF will be transformed into a
string, and the string is hashed into a concatenated
Bloom Filter. The probability of detecting a forged
element as a valid one is the same as the probability
of false-positive, which in HDI would be equal to
FP, = P+ (1 — P1) x (P) where P; is the
probability of having a collision in the TBF and P,
is the probability of having a collision in the CBF.
As discussed in Section 3.6.1, the false positive for
TBF is calculated as FP = (1 — e(%nk. For
n =1k = 3 and m 20 bits, we have the
FP or P, of 0.0027 (Figure 10). As discussed in
Section 3.6.2 in Equation sets 1 and 2, in CBF, for
n = 365 (one year data, assuming that each day 1
data block is created.), £ = 7 and m = 10700 bits
the F'P or P, would be 0.0002 therefore, the overall
false positive rate wouldbe F.P, = P; + (1 —P;) x
(P2) = 0.0027 + (1 — 0.0027) x 0.0002 = 0.0029.
This value will change with time — for example,
after two years the data is doubled and this value
wouldbe FP, = P+ (1—P;) x (Py) = 0.0027 +
(1 —0.0027) x 0.0014 = 0.004 when the number
of blocks that are hashed into the Bloom Filters are
doubled. Therefore, it is suggested to use the tree

more frequently for older data'>. In the tree, the
collision happens based on the collision probability
in SHA-3, which is negligible ([48]).

4.1.2 Storage

The cloud services store the data and the tree. The
number of children each node of the tree can have is
between 2 and d (2 < d < log(n)). The number of
nodes in the tree can be calculated using a geometric

()

progression sum as S = -——~, in which /1 is the height
of the tree (considering the value of d, h is between
log,(n) and log,(n)). Assuming we have n data blocks,
the number of nodes in the worst case, when each node
has only 2 children, is (n — 1) (note that the leaves are
omitted). Thus, the cloud storage of the tree is O(n). The
OGW stores the CBF with a fixed size (m) which has a
storage complexity of O(1). As shown in Section 3.6.2,
with n = 36500, to get a FP of 0.01 or less (with
k = 7), m should be 10700 bits. In summary, the
client storage has the complexity of O(1) (HMAC key
and CBF) and cloud storage has the complexity of O(n)
(tree) in addition to the data blocks.

4.1.3 Time

Storing the data includes the process of inserting the data
into the CBF and creating the tree. For storing n data
blocks, the time complexity of inserting data nodes into
a CBF using k hash functions is O(kn). To create the
tree, all blocks need hashing (i.e., a calculation of SHA-
3 or HMAC:s values) which is fast to compute [48, 34].
For a tree with 2n — 1 nodes,'® this process has the

15 We tuned out variables so carefully (e.g., k = 7 and m=10700) that
with n increasing, the F'P would not exceed 0.01. As an example,
for n = 36500, the F'P is 0.0027 + (1 — 0.0027) * (0.0078) =
0.0104 and from this point, increasing n does not affect F'P.
Choosing efficient £ and m, based on the application requirement,
can make a huge difference.

16 Building the tree involves n number of SHA — 3 computations
and at most n — 1 number of HM AC computations. Although
the SH A — 3 values are omitted from the tree, they affect the time
complexity of computation.

137

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

time complexity of O(n). Therefore, the overall time
complexity for storing n data blocks including filling the
CBF and creating the tree is O(kn).

The integrity check process includes Bloom Filter
comparisons and sub-tree rebuilding. A comparison
between BFs and CBF is done in O(1), and then there
is log(n) — 2 number of HMAC calculations to rebuild
the sub-tree; therefore, the overall verification process
time complexity is O(log(n))

To update the tree (change, insert, delete), the SHA-
3 or HMAC for the siblings is retrieved and the nodes
along the path to the root should be updated (log(n) —2).
The CBF does not have to be updated since it tends to
forget old data. The overall time complexity for updating
process is O(log(n)).

4.1.4 Communication

In the process of retrieving the data and verifying
the integrity of data, two places have communication
overhead. @ The communication between the cloud
server and UGW (fetching the data) and communication
between the UGW and OGW (for verifying the integrity
of the retrieved data blocks).

In fetching the data, the cloud server sends the data
(O(n)) and the sub-tree to the UGW O(log(n)). The
sub-tree is the certain overhead in HDI, which has the
complexity of O(log(n)) (n is the size of the retrieved
data). Based on the nature of the user’s query, the
data may need to include not only the requested data
but also sibling blocks of the requested data. In the
scenarios, we considered, this situation happened rarely
in experiments, where the user requested data from
a random time period and random device and mostly
included all of the children of one parent node. In
rare cases that sibling data blocks are required, in a
worst-case scenario, the number of overhead sibling data
blocks would be d — 1 data blocks (each block is 16
KB as suggested in [19] and 2 < d < log(n) as
mentioned in Section 3.5.); therefore, the complexity
of communication overhead between the cloud and the
UGW including sibling data blocks (O(log(n))) and
subtree (O(log(n))) still would be O(log(n)).

In verifying the data, the UGW sends the temporary
BF (O(1)), sub-tree (O(log(n))) and SHA-3 of blocks
(O(1) per block — we have at most d blocks due to the
limited number of children in the tree (2 < d < log(n));
therefore, the complexity is O(log(n)) to the OGW.
Hence, the entire communication overhead complexity
between OGW and UGW is O(log(n)).

" Gateway ", ﬂ

A D __~
% Server %
Ve— WV

Figure 13: Elements in the implementation

" Gateway ™,
:)

4.2 Experimental Results

An implementation in hardware can help us to make
a better sense of the performance of the HDI method
in the real world. As shown in Figure 13, we
implemented a server (to emulate the cloud) on a desktop
computer using a Mac operating system (with 2.66 GHz
Quad-Core Intel Xeon processor and 8§ GB 1066 MHz
memory), and Java version 8. We also implemented the
OGW and UGW on two Raspberry Pis version 3 Model
B, with a Raspbian operating system, running Java 8.
Our justification is that a Raspberry Pi can emulate an
IoT gateway (inexpensive but perhaps running a full OS).

The elements (server, OGW, and UGW) communicate
with each other using Java sockets!”. We tested
this implementation on different networks including a
wireless network (WiFi with a data rate of 28 Mbps using
NET GEAR N750 wireless dual band gigabit router),
wired Ethernet network (using Cisco gigabit smart
switch SG 200-08), and finally, in order to eliminate
the effect of network connection speed and processing
power of Raspberry Pis, we also performed experiments
on a single system (PC) for comparison.

We used crowd-sourced fit-bit data sets from [26].
The devices in our experiment include HRM (heart rate
monitor), activity tracker, and calorimeter. We assumed
that each device stored its data in a corresponding server
(on the desktop). We assumed 36500 data blocks (each
block 24 bytes as suggested in [19]) as information from
a single year (each day generates 100 blocks of data) to
select the tuned Bloom Filter size (m value) for tolerable
FP and FN rates. As discussed in Section 3.6.2, to
satisfy an FP rate of at most 0.01, in CBF the value of
m = 10700 bits is enough (considering that k£ should
be chosen based on the number of data), as shown in
Figures 11 and 12. In the temporary BF, as discussed in
Section 3.6.1 and Figure 10, the size as small as m = 20
bits gives us the overall FP of less than 0.01.

In order to evaluate the performance, we measured the
execution time of updating and verification processes.
We repeated each experiment 100 times and calculated
the average with a 95% confidence interval as shown in
Figure 14 and Figure 15.

The experiment outcome (time) for the updating

17 The implementation is available on Github and can be reached at
https://github.com/Maryam-mary-karimi/HDI

138

https://github.com/Maryam-mary-karimi/HDI

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

50 1000
£ 40 JZE 33 £ 800
@ | i %
e =
230 £ 600 55
2 g F
= Q
220 £ 400
o
E 3
2 10 6N % 200
g
2 0 0
WiFi Ethernet One WiFi Ethernet One
system system

Figure 14: Updating time: (Left) The required time
for requesting the tree from the server and updating
it. (Right) The entire updating process including
updating CBF, updating the tree, sending the data
and the tree to the server

process is shown in Figure 14. The required time for
updating the tree and the entire updating process was
measured. Updating the tree involves requesting the
related part of the tree from the server, creating new
leaves (SHA-3 values) for new blocks of data, and
rebuilding the tree. This process took 36 ms using the
wireless network, 35 ms in a wired network, and 5 ms in
a single system, on average. The entire updating process
including receiving data, updating CBF, updating the
tree, and sending the new data and the tree to the server
took 552 ms using WiFi connection, 383 ms in wired
connection, and 180 ms in a single system, on average.

The verification process is shown in Figure 9. In
this experiment, we measured the verification time
(steps 4,5,6,7), starting from the time that the UGW
receives the data and metadata from Servers. The UGW
then starts negotiating with the OGW and the OGW
verifies/rejects the data and replies to the UGW. We also
measured the required processing time for the OGW to
verify the data both with CBF or the tree.

The averages in the experiments indicate that the
number of nodes in the tree is 377.7 and the average
size of the sub-tree that should be sent to the UGW
contains 50.19 nodes. On average, in 75% of the cases in
each experiment, the CBF could verify the data without
requiring the usage of the tree. In all cases, the integrity
verification time using only the CBF took less than
0.5 ms.

As shown in Table 2 and Figure 15, considering a real-
world implementation (using WiFi as the communication
network protocol and Raspberry Pis as gateways),
verifying the integrity of data blocks using CBF took
only 0.37 ms on average in the OGW, and in this
situation, the entire verification process took only 207
ms (considering the PC experiment which eliminates the

[)
1%

]
S

W

0.3

0.2

0.6
0.5 i
0.4

S

w

o1 1

0 .
AaY et et
o ‘\“\N\; _\“E\\\eﬁ\w CG‘“‘N
0! ek
RasP Y

300 300

250 J_

200 ‘

I

Verification time with tree in Pgw (ms)

wn
e“‘isac.\)‘“eﬁﬂ ® Oce’\dov

)
93
S

()
=3
IS

9
IS

150

o
S

100

v
1=

50

o

0
Aa 2"
Wit E‘\\eﬂ\eo“e $\Js{e“‘

Entire verification time with CBF (ms) g Verification time with CBF in Pgw (ms)

Entire verification time with tree (ms)

\N'\\:'\ o emez)“e o \;S‘c‘“

Figure 15: Verification time: the top-left chart shows
the required time to verify the data in the owner’s
gateway, using only CBF (step6A in verification), the
top-right chart shows the required time to verify the
data in the owner’s gateway, using the hash tree
(step6B in verification), the bottom charts show the
entire verification time

network delays this time would be 63 ms). In the cases
that the CBF failed to verify the data, it takes 6.1 ms for
the OGW to verify the data using the tree. However in
most cases (more than 75%), in which the CBF is enough
for verifying the integrity of data, the verification time in
the OGW would be much less than 1 ms.

4.3 Comparison with HDI and DPDP

We also compared our method, Hierarchical Data
Integrity (HDI), with Dynamic Provable Data Possession
(DPDP) [19, 21], both analytically and experimentally
with 1GB file of 2'6 blocks of data. We compared the
storage in the cloud, storage on the client-side (client and

Table 2: Experimental evaluation for verification
time

’ \ Using CBF \ Using tree ‘
[Process | in OGW | all | in OGW | all ‘
Step 6A 4,5,6A,7 | 6B 4,5,6,7
WiFi 0.37ms | 207 ms 6.1 ms 208 ms
Eth 0.44ms | 176 ms 8.7 ms 181 ms
PC 0.06 ms | 63 ms 1.5 ms 63 ms

139

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

2000

o
¥ 1500 — = DPDP _- <
& P d
S ——HDI .
2 1000 -7
w -
i -7
£ 500 ——
< ==

0

0 73 146 219 292 365

Number of blocks

Figure 16: Cloud storage in HDI and DPDP

gateway), and communication overhead.

In DPDP [20, 22, 19, 21], clients store data in a
rank-based authentication Skiplist (a data structure that
keeps the meta-data of n blocks as leaves and ranks
upper layers as the number of accessible leaves) in an
untrustworthy server. The nodes in the search path are
affected in the case of the insertion, modification, or
deletion of blocks. The client stores the root of the list.
Please note that as discussed in Section 5, DPDP was not
developed for the scenario we have considered, where a
trusted third-party data user needs integrity checks by
a data owner, not in the cloud. Further, DPDP does
not consider multiple data sources and multiple cloud
stores. Yet, it is a reasonably close integrity verification
approach.

As shown in Figure 16, DPDP stores its Skiplist in the
cloud with the complexity of O(n®log(n)) (e is expected
amortized and is between 0 and 1 [19, 21].) while HDI
stores the tree with the complexity of O(n). Storing 216
blocks in DPDP consumes 1.0084G B while in HDI it
takes at most 1.0035G B. HDI requires less storage than
DPDP in the cloud.

Storage in the client (OGW in HDI) in both methods
has the complexity of O(1). DPDP stores the root node
and HDI stores the CBF. Although they both have the
same complexity of O(1), experiments show that for
216 blocks DPDP needs 18.13 KB, while, HDI requires
4.231 KB (as discussed in Section 3.6.2, the required size
of the CBF is 10700 bits), to make sure that the integrity
of one whole year worth of data is verifiable with a false
positive probability of less than 0.01, without requiring
to use the tree for verification. HDI requires less storage
than DPDP in client storage as depicted in Figure 17.

Considering that DPDP was implemented in C++ and
HDI is implemented in Java and they used different
platforms, comparing the experimental execution time
may not be valid; however, the analytical comparison
can give us a good estimation. The integrity verification
time in both methods (DPDP and HDI with tree) has the
complexity of O(log(n)); however, experiments showed
that in HDI, in 75% of the cases, the tree is not required

@ 20000 18130
& % % DPDP ®HDI
o 15000
&
L /
“ 10000
E 4231
g 5000
[
216 number of blocks

Figure 17: Client-side storage in HDI and DPDP

for data verification and the CBF alone can verify the
integrity of data. In this case (using Bloom Filters), the
verification has the time complexity of O(1) and has a
better performance than DPDP. Of course, we cannot
compare the security implications completely in the case
of using Bloom Filters. HDI and DPDP both have the
time complexity of O(log(n)) for updating the data.

We compared communication overhead as well.
Communication complexity in DPDP includes sending
the ”proof” (the path from the root to leaf) and the key
which has the complexity of O(log(n)) which would be
415.5 KB overhead in experiments [19]. As mentioned
in Section 4.1, in HDI the communication complexity is
divided into two parts: the communication complexity
between cloud and UGW and the communication
complexity between UGW and OGW.

In our experiments, the user requests data blocks from
a random device and random time period. In assessing
the communication complexity between the cloud and
UGW, based on such experiments, the query includes all
leaf-level children of one parent (recall that leaves are
SHA values that are omitted and only pointers remain
to determine which data blocks belong to this lowest-
level parent.); therefore, the communication overhead
between the cloud and UGW includes only the subtree
(with the size complexity of O(logn) which was 480
bytes on average in the experiments— n is the number
of nodes in the tree and each node size is 32 bytes);
however, imagine the case where the user queried data
that does not include all children of the lowest parent.
In this case, the cloud server should also send the
requested sibling blocks to the UGW. In the worst-case
scenario, the number of sibling data blocks is (d — 1)
and each block is 16 KB. In this case, considering the
communication between cloud and UGW, with d < 28,
HDI is still better than DPDP. Consider also that DPDP
is assumed to be working with a single source of data
stored in a single cloud; hence the assumption is to have
one skip list for all data. However, if we apply DPDP

140

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

Communication Over Head

450
7 #DPDP

|

2716 number of blocks

m HDI

300

150

Communication Overhead
(KB)

Figure 18: Communication Overhead in HDI and

DPDP

to the multiple clouds scenario we may need multiple
skip lists which may also increase the communication
overhead by a factor of ¢ which is the number of cloud
servers.

The communication complexity between UGW and
OGW includes temporary BFs (O(n(1)), sub-tree
(O(log(n))) and SHA-3 values (O(1)) which is
O(log(n)) in overall. Therefore HDI and DPDP have
the same communication complexity; however, as shown
in Figure 18, experiments showed that for 216 plocks,
DPDP has 415.5 KB overhead while HDI has only 1.11
KB, overhead. The number of siblings does not change
this communication overhead considerably, since each
extra sibling will add only 32 bytes (size of SHA-3
output value) to the communication overhead.).

Analytical and experimental results showed that HDI
performs as well or somewhat better than DPDP in time,
storage, and communication overhead. Analytically,
HDI has the same or less time complexity than DPDP in
verifying the data. In addition, experiments showed that
HDI surpasses and was better than DPDP in requiring
less storage and communication overhead.

5 RELATED WORK

This section discusses methods from the literature
that provide data integrity verification, provable data
possession (PDP), and proof of retrievability (POR). In
experiments explained in Section 4.3, we compare HDI
with DPDP [19] in terms of time complexity, memory
complexity, and communication cost. The procedures
used with HDI and their complexity are explained in
detail in Sections 3 and 4. Here, we provide a summary
that helps to compare HDI with other previous methods.
Then we review some previous methods in integrity
verification, PDP, and POR and compare them with HDI.

5.1 Summary of HDI

We assume that there is an owner’s gateway that stores
data in different clouds and later the trusted third party’s
gateway retrieves the data and requests the owner’s
gateway to verify the data integrity. In HDI, we verify
the integrity of the data using a hierarchical structure
of nested Bloom Filters (simple Bloom Filters inside a
generalized Bloom Filter) and a tree (that keeps HMAC
values which are derived from SHA-3 values). Hashing
the data in the Bloom Filter and creating the tree has
the time complexity of O(1) and O(n) respectively.
Updating the tree has the complexity of O(log n).
Then, we store a Bloom Filter and one key in the
client’s gateway with a storage complexity of O(1).
The key remains in the owner’s gateway and there is
no requirement for key sharing. The tree is stored in
the cloud with the storage complexity of O(n) (up to
n — 1 number of hash values). The communication
between the User’s gateway and owner’s gateway, during
verification, includes SHA, sub-tree, and simple Bloom
Filter which has the complexity of O(log n).

The verification process, in most cases, uses the
Bloom Filter which has the complexity of O(1). If data
blocks are not verified with the BF, in order to avoid false
negatives, the data integrity will be verified using the
tree which has the time complexity of O(log n). In the
following, we highlight the differences between previous
approaches (mostly provable data possession and proof
of data retrievability) and HDI.

5.2 Integrity Verification in Literature

Providing data integrity, privacy, and trust in IoT
networks has attracted much attention. In order to
balance user privacy and integrity in cloud servers, and
computational cost, authors in [61] added some user-
arbitrary weights while calculating the mean and used
users’ identity and biometric elliptic curve cryptography
to authenticate them [61]. Authors in [25] and [1]
modeled trust and reputation. Authors in [38] used a data
integrity monitored method to detect and isolate failures
in a sensor system.

In HDI we discuss how to assure that the data being
stored in the cloud, is the same data that is received from
sensors and IoT devices. It is out of the scope of this
work to check the integrity of the data that sensors and
IoT devices created at the time of creation; however,
we briefly discuss it here. Ontology Evaluation (OE)
is used to assure that IoT devices’ measurements and
information were correct and the data are coherent. OE
can be used to address the heterogeneity and diversity
of data created by devices in IoT networks. It addresses
the integrity verification problem semantically. It can be

141

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

used to assure that the data coming from the sensors and
IoT devices were correct in the first place. Ontology can
be based on rule, evolution, metric, application, data-
driven, evaluation by humans, gold standard (compare
with a high standard reference), and task. OE can be
done with different aspects such as syntax, structure,
vocabulary, semantics, representation, and context. It is
important to build the ontology correctly (verification) in
both lexical and structural features and build the correct
ontology (validation) [44].

The authors in [29] used a cryptographic one-way
hash to detect up to d defective items in a set of n
items. They proposed a digital watermarking technique,
to encode authentication information in a data structure
D. They did this by modifying non-data fields, in a way
that they should not be immediately identifiable by an
adversary. In their model, the adversary modified the
values of D but not the topology of D’s pointers. The
adversary had the knowledge of the algorithm but not the
cryptographic master key. The authors built a program
that identified up to ‘d’ number of changes and made it
probabilistically difficult for an adversary to reproduce
the database structure. The idea in [29] came from blood
testing in which a test consists of selecting a sample
including ‘¢’ items and performing a single experiment
that determined if the sample contained bad blood. They
produced a ¢ x n matrix, where for any d + 1 columns
there was one designated, with non-adaptive combined
group testing scheme performed on each row. The
column with a negative test result had 1 in a row and
was removed. The remaining columns corresponded to
bad elements.

In the method described in [29], the only quantity that
is needed to remain at the client-side was a key. In our
method (HDI), a Bloom Filter and a hash key, both of
fixed size, are needed to be stored in the gateway; both
methods have the same client-side storage complexity
of O(1). In [29], the authors add some watermarks
to the data in the cloud that has the complexity of
O(d®log n log d) where ‘d’ determines how many
defective items can be identified and n is the number of
bits. In HDI, considering each item as a block of data, the
extra memory required in the cloud has the complexity of
O(n). Depending on d, HDI can either perform better in
storage or better in detecting more modifications to data
blocks. The work in [29] did not consider updating the
data, or retrieval by a third party.

Multi-party fair exchange and blockchains have been
used for exchanging items that are efficiently and
verifiably encrypted [33]. These methods are not
practical to be used for large files and are more
useful towards keeping track of transactions, signing
agreements, etc. In FairSwap [18], authors used
optimistic blockchain-based fair exchange -in which a

trusted third party verifies the data only in cases where
two parties cannot reach an agreement and for signing
contracts between two parties. In recent work in [3],
authors used coin-based fair exchange for exchanging
large files between multiple parties. While it was
unnecessary for all parties to receive the file in previous
schemes, in coin-based fair exchange all parties receive
the file at the same time (requires synchronization) and if
anybody does not, the sender that did not send its share
needs to compensate the rest; broadcasting the message
here has a complexity of O(n?). Further, in [3], the key
belongs to the trusted third party, the prover encrypts the
message and the receiver verifies the ciphertext message.
The process has 3 phases: (1) Parties generate a public
key and obtain their share of the file (2) They encrypt
their share of the message with a symmetric key and
forward it to anyone requires it. (3) They generate a
decryption and a proof for every party that requires it.

The protocol in [3] includes exchanging of many
messages and the communication cost has a complexity
of O(n?) for each participant (blockchains typically have
large communication costs). HDI has a complexity
of O(1) for the number of communications and
each communication has only the size complexity
of O(log(n)). Further, HDI does not involve any
key sharing versus [3] that includes both symmetric
keys sharing between the parties and an additional
asymmetric key with a trusted third party [3]. HDI does
not require an additional trusted third party.

5.3 Provable Data Possession in Literature

In this section, we review the literature in PDP. The work
in [4] provides provable data possession at untrusted
stores, using fully additive homomorphic signatures;
however, since it is not secure, they added one-time
indices to make it secure. In homomorphic message
authentication, the user generates a set of tags that
authenticates some values using a secure key. This
method is able to dynamically add blocks without re-
tagging the entire file, support unlimited verification, and
with some variations, it also supports public verifiability;
however, even the publicly verifiable modified version
of this work requires sharing the key with other entities
which we avoid in HDI. Other work such as [6, 27,
15, 5, 52] all tried to provide more efficient PDPs.
In [28] a Diffie-Hellman Key Exchange and Merkle
hash tree is used which has a storage overhead as
large as the file itself to reduce the server computation;
however, this method increased communication. The
works in [27, 16] are RSA-based PDP approaches that
have a communication complexity and client storage
complexity of O(1); but, they have heavy computation
on the server, and performing RSA over a file is slow. In

142

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

[52], authors provide a method in which the signature of
the parity blocks is equal to the parity of the signature
of the data blocks and use this method to provide a
PDP approach with a communication complexity of
O(n). In [53, 64], authors used Diffie-Hellman-based
approaches; however, in both approaches, the client
has to store n bits per data block; therefore, these
methods would not be efficient if data blocks are small.
All these methods involve public-key cryptography and
they all require key sharing which we avoid in HDI.
Some PDP schemes are based on identity to eliminate
the requirement for public key certificates [49]. They
eliminated PKI (public key infrastructure); therefore
when the third party verifier wants to very the data for
data owner it should receive the key from PKG (public
key generator) by using the identity of the data owners.
HDI eliminates the process of key sharing completely.
Authors in [30] designed a PDP scheme that performs
multiple updates at the same time by using a Merkle hash
tree that enables updating the values of multiple leaves
and their parents up to the root which also requires key
sharing [30].

Authors in [7] discussed an amortized verifiable
computation in which the client provided a function
and an input to the server. The server replies with the
answer and proof of the correctness of the result. The
evaluation of polynomials was derived from very large
data sets. Initially, the client stores the data on the
server with some authentication information and keeps
a short secret key. The server computes a result with
an authentication code. The client keeps the clear text
polynomial P and a vector of coefficients. The server
has a vector of groups of the form g{*“r; in which r; is
the i*" coefficient of polynomial R and was calculated
using a pseudorandom function. When queried, the
server replies with y = P(z) and t = g¢F(@)+E(®) and
the client accepts y if t = ¢®+%(@) One application
of [7] is in verifying outsourced computation to make
predictions based on polynomials fitted to many sample
points in an experiment. Another application is updating
data and performing verifiable keyword searches and
securing proofs of retrievability. For an n variable for
polynomial of degree d, assuming Decisional Diffie-
Hellman the required time for the setup is O((n + d)?).
After the setup, the required time is O(nd) in the client
and is O((n+d)?) in the server; while in HDI, the set up
time is O(n) and it avoids key sharing while [7] requires
key sharing.

In the work in Catalano-Fiore [14] a value m
is encoded into 1-degree polynomial gy, where

y(0) = m and y(or) = Fk(L), where F' randomizes
a label. The server creates a new MAC with n
authentication polynomials (y1,y2,..yn) that

authenticate m as result of f(ml,...mn) and also

ylay = f(Fk(L1),Fk(L2),...,Fk(Ln)). Before
this work, existing verification algorithms were
not time efficient. = The server sends m’ to the
client that could test whether m’ is the result of
f(ml,m2,....,mn) by checking if y(0) = m’
and y(«) = f(Fk(L1),Fk(L2),..., Fk(Ln)).
The authors avoid the time consuming y(a) =
f(Fk(L1), Fk(L2),..., Fk(Ln)) part by safely reusing
labels. They constructed a pseudo-random scheme that
pseudo-computes a piece of the label. They split the
labels into 2-dimensions: the data set identifier and
input identifier represented as (A, 7) that allows the
same 7 in labels. Also with a pseudo-random function
F using new amortized closed-form efficiency, if a
user pre-computes some information w f with same 7s
and different As it is possible to use wf to compute
W = f(Fk(A,7), Fk(A, 1), ..., FE(A, 7)) in constant
time. The client either should store the labels, which is a
2-dimensional matrix, and/or compute them, which has
time and communication complexity of at least O(n?)
and it is not efficient compared to HDI which has the
complexity of O(n). In addition, this scheme requires
public key sharing.

In Dynamic Provable Data Possession (DPDP) [20,
22, 19, 21], clients store data and a Skiplist in an
untrustworthy server. The skip list is a data structure
that keeps the meta-data of n blocks as leaves and
ranks upper layers as the number of accessible leaves.
This method is based on rank-based authenticated skip
lists. The nodes in the search path are affected in the
case of insertion, modification, or deletion of blocks.
The client keeps the label of the top-leftmost element
in the skiplist which is the root of the list. The
validation of data integrity consists of the hash of nodes
in the verification path (leaf to root) with the size of
O(log(n)). For updating the data, the client verifies
the new proof and computes the new label of the root
node after the update. The updating process affects
nodes along the verification path with the length of
O(log(n)). As shown in Section 4.3, HDI outperforms
DPDP in storage: O(nlog(n)) in DPDP comparing to
O(n) in HDI, time: both O(log(n)) if HDI uses tree;
however, HDI is O(1) if the Bloom Filter is used and
communication costs: both have the same complexity
of O(log(n)): however, experiments show that HDI's
communication cost for a 1G file verificationis 1.11 K B
while in DPDP it is 450K B. The DPDP scheme is
based on homomorphic verifiable tags combined with
authenticated data structures, such as Merkle trees,
skip lists, hash tables, etc. to store them. There
are other variations of DPDP that may serve specific
requirements such as blockless DPDP, RSA-tree-based
DPDP, and FLexlist DPDP. Authors also developed a
Generalized DPDP that separates the process of creating

143

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

tags and building the authenticated implicitly-ordered
data structure. Therefore, after proving the security of
data structure, their framework can be used to create the
basic DPDP scheme[23].

5.4 Proof of Retrievability in Literature

In [31, 54, 17, 11] proof of retrievability (POR)
is provided which applies to encrypted files only
and supports limited numbers of challenges. High
Availability and Integrity Layer (HAIL) [10] provided
proof of retrievability (POR) for a trusted verifier that
checks the integrity of data and corrects the errors
where the file is distributed across multiple servers with
redundancy across servers and the threat model has a
Byzantine adversary that can corrupt multiple servers at
a time. In HAIL the client stores only the key. It assures
granularity of a full file by detecting server faults in
a challenge-response reactive cryptographic system and
recovers corrupted files using cross-server redundancy.
The file is publicly verifiable even if it is encrypted. They
build an IP-ECC (Integrity protected error-correcting
code) which combines MAC and parity and aggregate
responses by combining MACSs across multiple blocks.
In HAIL the client is the one that verifies the data and it
does not support public verifiability. In HAIL the server
code overhead is 9% of the file size for a 1G data while
in HDI as explained in Section 4.3 the storage overhead
in cloud servers is only 0.35%. In addition in HDI, the
user is the one that receives the data and the gateway
verifies the data without sharing any key with any party;
however, HAIL requires sharing the public key with the
cloud but provides error correction and redundancy.

6 DISCUSSION

In this paper, we develop a hierarchical data integrity
(HDI) verification method for connected health devices,
that can be used with other IoT services, when we have
multiple sources and data is being stored in multiple
clouds. In this method, there is a gateway that exists
on the data owner’s side (OGW) that stores the data in
multiple could servers. We verify the integrity of the data
using a hierarchical structure of nested Bloom Filters
(simple Bloom Filters inside a generalized Bloom Filter)
and an encrypted hash tree (that stores keyed-HMAC
values which are derived from SHA-3 values). We store
a Bloom Filter and one key in the owner’s gateway and
there is no requirement for key sharing. The hash tree is
stored in the cloud.

A gateway on the user (third-party) side (UGW)
retrieves the data and requests the OGW to verify the
data integrity. The communication between the UGW
and OGW during verification, includes SHA values, the

sub-tree, and a simple Bloom Filter. The verification
process, in most cases, uses the Bloom Filter; however,
if the data are not verified to be unchanged, to avoid false
negatives arising with the Bloom Filter, the data integrity
will be verified using the encrypted hash tree. Results
show that this scheme reduces the complexity of time,
storage, and communication required for verifying the
integrity of data without requiring explicit key sharing.

In this scheme, we have two security assumptions.
First, OGW is trustworthy and secure. Second, UGW
is trustworthy and secure. We clarify these assumptions
in the following:

1. OGW has to be trustworthy. This is the strict
minimum security requirement for this scheme.
Every security scheme depends on the secret key,
and in HDI the secret encryption key for the tree
is stored in OGW. All the processes are managed
so that OGW never shares this key with any entity.
The secret key is used in the hash tree (hash
values are keyed-HMAC values) and this cannot
be compromised without having the key (assuming
secure encryption and hashing schemes). We can
assume that OGW gets partially compromised, e.g.,
the CBF gets manipulated; in this case, we can still
use the encrypted tree for verification. However,
if we assume that OGW is totally compromised
then the secret key is revealed and the tree can be
compromised. If we cannot trust the OGW with
either the CBF or the key, then there is no way to
verify the integrity of data. Therefore it is a strict
necessity for the scheme to make sure that OGW is
secure and can store the key securely.

2. If UGW gets compromised, the problems are
different. A service provider does not require
communication with the OGW and can hurt the
patient (or data owner) directly; the compromised
UGW does not ask for integrity verification of
the data since it intends to compromise the data.
Therefore, it does not make sense to assume that
a UGW is compromised and would still use this
scheme.

To assure the security of OGW and UGW authors
in [41] describe a platform based on the combination
of software defined network (SDN) [43] and software
defined perimeter (SDP) [9, 46]. The combination
of SDN and SDP assures the safety and security of
OGW and UGW through a global network view and
the flexibility of SDN and security mechanisms of SDP.
This software defined platform has a single controller
that authenticates and checks the security parameters of
each entity before allowing it to communicate with other
entities in the network. Each authenticated entity should

144

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

send a request for communicating with another entity,
the controller authorizes the connection, and creates
secure communications between them [41].

7 CONCLUSIONS

In this paper, we develop a solution that can store the
owner’s data, gathered from multiple sources, in multiple
clouds and verify the data integrity, when the service
provider retrieves it. We assumed a scenario where
the data owners (e.g., patients) own their data (e.g.,
medical data) and replace expensive monitoring devices
with wearable devices. Since the cloud services are
provided by different vendors and may not be reliable,
trustworthy, or secure, the data owner should be able to
verify the integrity of their data with local information
but not have significant storage, communication, or
computational overhead. Therefore, we suggest and
create a hierarchical model that uses Bloom Filters and a
Hash Tree to verify the integrity of data.

The methodology is hierarchical — this feature helps
us to trade-off between the trustworthiness of retrieved
data and speed. Each data block is hashed into an empty
fixed-size Bloom Filter. This Bloom Filter is hashed
into a concatenated generalized Bloom Filter (CBF). The
two-level Bloom Filter reduces the cost of data integrity
validation. To resolve the false negatives in the CBF, a
hash tree for blocks of data is created, encrypted, and
stored in the cloud. The hash tree is trustworthy but it
is slower; however, the Bloom Filter is speedy, but it
introduces false negatives and false positives and may
not be completely secure. If the application’s security
is more important, we can set a flag to occasionally
check the tree, as an extra verification step, even in
cases that the Bloom Filter was enough to verify the
integrity of data. One can imagine a challenge-response-
like protocol in such situations.

As far as we know, this is the first method that specifies
the ability to verify the integrity of data from multiple
sources, stored in multiple clouds, without requiring
explicit key distribution. The key remains only in the
data owner’s gateway. This method has the advantage
of having the capability to verify the integrity of data
that is coming from multiple sources and is stored
in multiple servers, and as experiments and analytical
comparisons show, HDI still surpasses or is comparable
to the methods that work with a single source and single
server. Results showed that HDI is efficient in time,
storage, and communication overhead.

This method may apply to applications such as
healthcare as well as storing data from smart homes in
cloud servers, smart city data, smart cars, smart farming,
etc. and the parties that need access to those data can be

banks (who wants to give loans), insurance companies,
city departments, or other service provider companies.
Gateways will have to mediate the verification of data
integrity.

We plan to examine and analyze security attacks
in detail in the future and investigate how they may
interfere with HDI and how we should make HDI
secure against those attacks. For example, we have
not carefully considered a curious cloud provider or a
malicious adversary. We plan to compare this method
with blockchain integrity check approaches. We also
plan to improve this approach to be able to perform error
correction by improving either the Bloom Filter structure
or improving hash functions used in the tree. In addition,
one possibility for future work is to integrate an ontology
layer to detect errors and check integrity of the data at
the source. Ontology has been widely used to examine
devices’ measurements, information correctness and the
data coherency and we plan to add another integrity
checking layer this way.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Vladimir
Zadorozhny for valuable relevant discussions. We would
like to express our deep gratitude to Alptekin Kupcu for
providing the DPDP implementation in C++.

IMPLEMENTATION CODE

The HDI implementation is available online. It includes
three Java projects for the three elements including
server, DGW, and PGW. They communicate through
sockets. It also includes Matlab code for calculating
false positive and negative rates. The code is on GitHub
and can be reached at https://github.com/Maryam-mary-
karimi/HDI

REFERENCES

[1] N. B. Akhuseyinoglu, M. Karimi, M. Abdelhakim,
and P. Krishnamurthy, “On automated trust
computation in iot with multiple attributes and
subjective logic,” in 2020 IEEE 45th Conference on
Local Computer Networks (LCN). 1EEE, 2020, pp.
267-278.

P. S. Almeida, C. Baquero, N. Preguiga,
and D. Hutchison, “Scalable bloom filters,”
Information Processing Letters, vol. 101, no. 6, pp.
255-261, 2007, https://www.sciencedirect.com/sc
ience/article/pii/S0020019006003127.

H. K. Alper and A. Kiipg¢ii, “Coin-based multi-
party fair exchange,” in International Conference

(2]

(3]

145

https://github.com/Maryam-mary-karimi/HDI
https://github.com/Maryam-mary-karimi/HDI
https://www.sciencedirect.com/science/article/pii/S0020019006003127
https://www.sciencedirect.com/science/article/pii/S0020019006003127

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

on Applied Cryptography and Network Security.
Springer, 2021, pp. 130-160.

G. Ateniese, R. Burns, R. Curtmola, J. Herring,
L. Kissner, Z. Peterson, and D. Song, “Provable
data possession at untrusted stores,” in Proceedings
of the 14th ACM conference on Computer and
communications security, 2007, pp. 598-609.

G. Ateniese, R. Di Pietro, L. V. Mancini,
and G. Tsudik, “Scalable and efficient provable
data possession,” in Proceedings of the 4th
international conference on Security and privacy in
communication netowrks, 2008, pp. 1-10.

M. Backes, D. Fiore, and R. M. Reischuk,
“Verifiable delegation of computation on
outsourced data,” in Proceedings of the 2013
ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 863—
874, https://dl.acm.org/citation.cfm?id=2516681.

S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable
delegation of computation over large datasets,” in
Annual Cryptology Conference. Springer, 2011,
pp. 111-131, https://link.springer.com/content/pdf/
10.1007/978-3-642-22792-9_7.pdf.

G. Bertoni, J. Daemen, M. Peeters, and
G. Van Assche, “Keccak,” in Annual International
Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2013, pp.
313-314, https://link.springer.com/content/pdf/10
.1007/978-3-642-38348-9_19.pdf.

B. Bilger, A. Boehme, B. Folres, Z. Guterman,
M. Hoover, M. lorga, J. Islam, M. Kolenko,
J. Koilpilla, G. Lengyel et al., “Sdp specification
1.0,” 2014.

K. D. Bowers, A. Juels, and A. Oprea, “Hail:
A high-availability and integrity layer for cloud
storage,” in Proceedings of the 16th ACM
conference on Computer and communications

security, 2009, pp. 187-198.

K. D. Bowers, A. Juels, and A. Oprea, “Proofs
of retrievability: Theory and implementation,” in
Proceedings of the 2009 ACM workshop on Cloud
computing security, 2009, pp. 43-54.

K. Bratbergsengen, “Hashing methods and
relational algebra operations,” in Proceedings
of the 10th International Conference
on Very Large Data Bases. Morgan
Kaufmann Publishers Inc., 1984, pp. 323-333,
https://dl.acm.org/citation.cfm?id=671296.

A. Broder and M. Mitzenmacher, ‘“Network
applications of bloom filters: A survey,” Internet
mathematics, vol. 1, no. 4, pp. 485-509, 2004,

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

146

https://projecteuclid.org/download/pdf_1/eucli
d.im/1109191032.

D. Catalano and D.
homomorphic macs for arithmetic circuits,”
in Annual International Conference on the
Theory and Applications of Cryptographic
Techniques. Springer, 2013, pp. 336-352,
https://link.springer.com/content/pdf/10.1007/978-
3-642-38348-9_21.pdf.

R. Curtmola, O. Khan, R. Burns, and G. Ateniese,
“Mr-pdp: Multiple-replica provable data
possession,” in 2008 the 28th international

conference on distributed computing systems.
IEEE, 2008, pp. 411-420.

Fiore, “Practical

Y. Deswarte, J.-J. Quisquater, and A. Saidane,
“Remote integrity checking,” in Working
Conference on Integrity and Internal Control
in Information Systems. Springer, 2003, pp. 1-11.

Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of
retrievability via hardness amplification,” in Theory
of Cryptography Conference. Springer, 2009, pp.
109-127.

S. Dziembowski, L. Eckey, and S. Faust,
“Fairswap: How to fairly exchange digital
goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications
Security, 2018, pp. 967-984.

C. C. Erway, A. Kiip¢ii, C. Papamanthou, and
R. Tamassia, “Dynamic provable data possession,”
ACM Transactions on Information and System
Security (TISSEC), vol. 17, no. 4, p. 15, 2015,
https://user.eng.umd.edu/~cpap/published/cce-
alp-cpap-rt-09.pdf.

C. Erway, A. Kiip¢ii, C. Papamanthou, and
R. Tamassia, “Dynamic provable data possession,”
in Proceedings of the 16th ACM Conference
on Computer and Communications Security, ser.
CCS ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 213-222.
[Online]. Available: https://doi.org/10.1145/1653
662.1653688

E. Esiner, A. Kachkeev, S. Braunfeld, A. Kiipcii,
and O. Ozkasap, “Flexdpdp: Flexlist-based
optimized dynamic provable data possession,”
ACM Transactions on Storage (TOS), vol. 12, no. 4,
pp- 1-44, 2016, https://crypto.ku.edu.tr/wp-conten
t/uploads/2019/05/flexdpdp.pdf.

E. Esiner, A. Kiipcii, and O. Ozkasap, “Analysis
and optimization on flexdpdp: A practical
solution for dynamic provable data possession,’

https://dl.acm.org/citation.cfm?id=2516681
https://link.springer.com/content/pdf/10.1007/978-3-642-22792-9_7.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-22792-9_7.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-38348-9_19.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-38348-9_19.pdf
https://dl.acm.org/citation.cfm?id=671296
https://projecteuclid.org/download/pdf_1/euclid.im/1109191032
https://projecteuclid.org/download/pdf_1/euclid.im/1109191032
https://link.springer.com/content/pdf/10.1007/978-3-642-38348-9_21.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-38348-9_21.pdf
https://user.eng.umd.edu/~cpap/published/cce-alp-cpap-rt-09.pdf
https://user.eng.umd.edu/~cpap/published/cce-alp-cpap-rt-09.pdf
https://doi.org/10.1145/1653662.1653688
https://doi.org/10.1145/1653662.1653688
https://crypto.ku.edu.tr/wp-content/uploads/2019/05/flexdpdp.pdf
https://crypto.ku.edu.tr/wp-content/uploads/2019/05/flexdpdp.pdf

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

in International Conference on Intelligent Cloud
Computing. Springer, 2014, pp. 65-83.

M. Etemad and A. Kiipgii, “Generic dynamic data
outsourcing framework for integrity verification,”
ACM Computing Surveys (CSUR), vol. 53, no. 1,
pp- 1-32, 2020.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder,
“Summary cache: a scalable wide-area web cache
sharing protocol,” IEEE/ACM Transactions on
Networking (TON), vol. 8, no. 3, pp. 281-293,
2000, http://www.cs.utexas.edu/users/lam/396m
/papers/SummaryCache.pdf.

G. Fortino, L. Fotia, F. Messina, D. Rosaci, and
G. M. Sarné, “Trust and reputation in the internet
of things: state-of-the-art and research challenges,”
IEEE Access, vol. 8, pp. 60 117-60 125, 2020.

R. Furberg, J. Brinton, M. Keating, and
A. Ortiz, “Crowd-sourced fitbit datasets
03.12.2016-05.12.2016,” May 2016, https://do
1.0org/10.5281/zenodo.53894. [Online]. Available:
https://doi.org/10.5281/zenodo.53894

D. L. Gazzoni Filho and P. S. L. M. Barreto,
“Demonstrating data possession and uncheatable
data transfer.” IACR Cryptology ePrint Archive,
vol. 2006, p. 150, 2006.

P. Golle, S. Jarecki, and I. Mironov, “Cryptographic
primitives enforcing communication and storage
complexity,” in International Conference on
Financial Cryptography. Springer, 2002, pp. 120-
135.

M. T. Goodrich, M. J. Atallah, and R. Tamassia,
“Indexing information for data forensics,” in
International Conference on Applied Cryptography
and Network Security. Springer, 2005, pp. 206—
221, https://link.springer.com/content/pdf/10.100
7/11496137_15.pdf.

J. He, Z. Zhang, M. Li, L. Zhu, and J. Hu,
“Provable data integrity of cloud storage service
with enhanced security in the internet of things,”
IEEE Access, vol. 7, pp. 6226-6239, 2018.

A. Juels and B. S. Kaliski Jr, “Pors: Proofs
of retrievability for large files,” in Proceedings
of the 14th ACM conference on Computer and
communications security, 2007, pp. 584-597.

G. C. Kayaturan and A. Vernitski, “Routing in
hexagonal computer networks: How to present
paths by bloom filters without false positives,”
in Computer Science and Electronic Engineering
(CEEC), 2016 8th. 1EEE, 2016, pp. 95-100, https:
/lieeexplore.ieee.org/abstract/document/7835895.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

147

H. Kilin¢ and A. Kiipcii, “Optimally efficient multi-
party fair exchange and fair secure multi-party
computation,” in Cryptographers’ Track at the RSA
Conference. Springer, 2015, pp. 330-349.

H. Krawczyk, M. Bellare, and R. Canetti, “Hmac:
Keyed-hashing for message authentication,” 1997.

R. P. Laufer, P. B. Velloso, and O. C. M. Duarte,
“A generalized bloom filter to secure distributed
network applications,” Computer Networks,
vol. 55, no. 8, pp. 1804-1819, 2011, https:
/Iwww.gta.ufrj.br/ftp/gta/TechReports/LVD11.pdf.

H. Lim, J. Lee, and C. Yim, “Complement bloom
filter for identifying true positiveness of a bloom
filter,” IEEE Communications Letters, vol. 19,
no. 11, pp. 1905-1908, 2015, https://ieeexplore
.ieee.org/abstract/document/7264999.

H. Lim, N. Lee, J. Lee, and C. Yim, “Reducing
false positives of a bloom filter using cross-
checking bloom filters,” Appl. Math, vol. §, no. 4,
pp- 1865-1877, 2014, https://pdfs.semanticscholar
.org/aalf/2b857e93dc5d76c010fc091c6e83e76316
25.pdf.

G.-X. Liu, L.-F. Shi, and D.-J. Xin, “Data integrity
monitoring method of digital sensors for internet-
of-things applications,” IEEE Internet of Things
Journal, vol. 7, no. 5, pp. 4575-4584, 2020.

A. Loten, “CIOs contend with ever-expanding
range of cloud services,” The Wall Street Journal,
December 1st 2017. [Online]. Available: https:
//blogs.wsj.com/cio/2017/12/01/cios-must-manag
e-ever-expanding-range-of-cloud-services/

U. Manber and S. Wu, “An algorithm for
approximate ~ membership checking with
application to password security,” Information
Processing Letters, vol. 50, no. 4, pp. 191-197,
1994, http://webglimpse.net/pubs/password.pdf.

P. K. Maryam Karimi, “Software defined ambit of
data integrity for the internet of things,” in The 21st
IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing. 1IEEE/ACM, 2021.

M. Mcllroy, “Development of a spelling list,” IEEE
Transactions on Communications, vol. 30, no. 1,
pp- 91-99, 1982, www.acooke.org/spell.pdf.

N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, pp. 69-74,
2008.

S. Mishra and S. Jain, “Ontologies as a semantic
model in iot,” International Journal of Computers

http://www.cs.utexas.edu/users/lam/396m/papers/SummaryCache.pdf
http://www.cs.utexas.edu/users/lam/396m/papers/SummaryCache.pdf
https://doi.org/10.5281/zenodo.53894
https://doi.org/10.5281/zenodo.53894
https://doi.org/10.5281/zenodo.53894
https://link.springer.com/content/pdf/10.1007/11496137_15.pdf
https://link.springer.com/content/pdf/10.1007/11496137_15.pdf
https://ieeexplore.ieee.org/abstract/document/7835895
https://ieeexplore.ieee.org/abstract/document/7835895
https://www.gta.ufrj.br/ftp/gta/TechReports/LVD11.pdf
https://www.gta.ufrj.br/ftp/gta/TechReports/LVD11.pdf
https://ieeexplore.ieee.org/abstract/document/7264999
https://ieeexplore.ieee.org/abstract/document/7264999
https://pdfs.semanticscholar.org/aa1f/2b857e93dc5d76c010fc091c6e83e7631625.pdf
https://pdfs.semanticscholar.org/aa1f/2b857e93dc5d76c010fc091c6e83e7631625.pdf
https://pdfs.semanticscholar.org/aa1f/2b857e93dc5d76c010fc091c6e83e7631625.pdf
https://blogs.wsj.com/cio/2017/12/01/cios-must-manage-ever-expanding-range-of-cloud-services/
https://blogs.wsj.com/cio/2017/12/01/cios-must-manage-ever-expanding-range-of-cloud-services/
https://blogs.wsj.com/cio/2017/12/01/cios-must-manage-ever-expanding-range-of-cloud-services/
http://webglimpse.net/pubs/password.pdf
www.acooke.org/spell.pdf

Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

and Applications, vol. 42, no. 3, pp. 233-243,
2020.

M. D. D. Moreira, R. P. Laufer, P. B.
Velloso, and O. C. M. Duarte, “Capacity
and robustness tradeoffs in bloom filters for
distributed applications,” [EEE Transactions
on Parallel and Distributed Systems, vol. 23,
no. 12, pp. 22192230, 2012, https:
/lieeexplore.ieee.org/abstract/document/6171165.

A. Moubayed, A. Refaey, and A. Shami,
“Software-defined perimeter (sdp): State of the
art secure solution for modern networks,” IEEE
Network, vol. 33, no. 5, pp. 226-233, 2019.

J. K. Mullin, “A second look at bloom filters,”
Communications of the ACM, vol. 26, no. 8, pp.
570-571, 1983, https://dl.acm.org/citation.cfm?id=
358167.

C. Paar and J. Pelzl, “Sha-3 and the hash function
keccak,” Understanding Cryptography A Textbook
for Students and Practitioners, www. crypto-
textbook. com, 2010, http://professor.unisinos.b
r/linds/teoinfo/Keccak.pdf.

S. Peng, F. Zhou, Q. Wang, Z. Xu, and J. Xu,
“Identity-based public multi-replica provable data
possession,” IEEE Access, vol. 5, pp. 26990-
27001, 2017.

A. Rousskov and D. Wessels, “Cache digests,”
Computer Networks and ISDN Systems, vol. 30,
no. 22, pp. 2155-2168, 1998, https://www.scienced
irect.com/science/article/pii/S0169755298002517.

A. Salvi, S. Ercoli, M. Bertini, and A. Del Bimbo,
“Bloom filters and compact hash codes for efficient
and distributed image retrieval,” arXiv preprint
arXiv:1605.00957, 2016, https://arxiv.org/pdf/16
05.00957.pdf.

T. S. Schwarz and E. L. Miller, “Store, forget,
and check: Using algebraic signatures to
check remotely administered storage,” in 26th
IEEE International Conference on Distributed

Computing Systems (ICDCS’06). 1EEE, 2006,
pp- 12-12.
F. Sebe, A. Martinez-Balleste, Y. Deswarte,

J. Domingo-Ferrer, and J. Quisquater, “Time-
bounded remote file integrity checking,” Technical
Report 04429, 2004.

H. Shacham and B. Waters, “Compact proofs
of retrievability,” in International Conference on
the Theory and Application of Cryptology and
Information Security. Springer, 2008, pp. 90-107.

E. H. Spafford, “Opus: Preventing weak password
choices,” Computers & Security, vol. 11, no. 3, pp.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

148

273-278, 1992, https://www.sciencedirect.com/sc
ience/article/pii/0167404892902078.

R. Tamassia, “Authenticated data structures,” in
European Symposium on Algorithms. Springer,
2003, pp. 2-5, https://link.springer.com/chapter/10
.1007/978-3-540-39658-1_2.

J. Tapolcai, J. Bir6, P. Babarczi, A. Gulyais,
Z. Heszberger, and D. Trossen, “Optimal false-
positive-free bloom filter design for scalable
multicast forwarding,” IEEE/ACM Transactions on
Networking, vol. 23, no. 6, pp. 1832-1845, 2015,
http://real.mtak.hu/22032/1/06877748.pdf.

E. Topol, “The smart-medicine solution to the
health-care crisis,” The Wall Street Journal, July 7
2017. [Online]. Available: https://www.wsj.com/ar
ticles/the-smart-medicine-solution-to-the-health-c
are-crisis- 1499443449

P. Valduriez and G. Gardarin, “Join and semijoin
algorithms for a multiprocessor database machine,”
ACM Transactions on Database Systems (TODS),
vol. 9, no. 1, pp. 133-161, 1984, https://dl.acm.org
/citation.cfm?id=318590.

M. P. Wallen, S. R. Gomersall, S. E. Keating,
U. Wislgff, and J. S. Coombes, “Accuracy of
heart rate watches: Implications for weight
management,” PloS one, vol. 11, no. 5, p.
e0154420, 2016, https://www.ncbi.nlm.nih.gov
/pubmed/27232714.

T. Wang, M. Z. A. Bhuiyan, G. Wang, L. Qi, J. Wu,
and T. Hayajneh, “Preserving balance between
privacy and data integrity in edge-assisted internet
of things,” IEEE Internet of Things Journal, vol. 7,
no. 4, pp. 2679-2689, 2019.

S. Xiong, F. Wang, and Q. Cao, “A bloom filter
based scalable data integrity check tool for large-
scale dataset,” in Proceedings of the Ist Joint
International Workshop on Parallel Data Storage
& Data Intensive Scalable Computing Systems.
IEEE Press, 2016, pp. 55-60, http://www.pdsw
.org/pdsw-discs16/papers/pS5-xiong.pdf.

S. Xiong, Y. Yao, S. Li, Q. Cao, T. He, H. Qi,
L. Tolbert, and Y. Liu, “kbf: Towards approximate
and bloom filter based key-value storage for cloud
computing systems,” IEEE Transactions on Cloud
Computing, 2014, https://ieeexplore.ieee.org/docu
ment/6995996.

G. Yamamoto, S. Oda, and K. Aoki, “Fast
integrity for large data,” in Proc. ECRYPT
Workshop Software Performance Enhancement for
Encryption and Decryption, 2007, pp. 21-32.

https://ieeexplore.ieee.org/abstract/document/6171165
https://ieeexplore.ieee.org/abstract/document/6171165
https://dl.acm.org/citation.cfm?id=358167
https://dl.acm.org/citation.cfm?id=358167
http://professor.unisinos.br/linds/teoinfo/Keccak.pdf
http://professor.unisinos.br/linds/teoinfo/Keccak.pdf
https://www.sciencedirect.com/science/article/pii/S0169755298002517
https://www.sciencedirect.com/science/article/pii/S0169755298002517
https://arxiv.org/pdf/1605.00957.pdf
https://arxiv.org/pdf/1605.00957.pdf
https://www.sciencedirect.com/science/article/pii/0167404892902078
https://www.sciencedirect.com/science/article/pii/0167404892902078
https://link.springer.com/chapter/10.1007/978-3-540-39658-1_2
https://link.springer.com/chapter/10.1007/978-3-540-39658-1_2
http://real.mtak.hu/22032/1/06877748.pdf
https://www.wsj.com/articles/the-smart-medicine-solution-to-the-health-care-crisis-1499443449
https://www.wsj.com/articles/the-smart-medicine-solution-to-the-health-care-crisis-1499443449
https://www.wsj.com/articles/the-smart-medicine-solution-to-the-health-care-crisis-1499443449
https://dl.acm.org/citation.cfm?id=318590
https://dl.acm.org/citation.cfm?id=318590
https://www.ncbi.nlm.nih.gov/pubmed/27232714
https://www.ncbi.nlm.nih.gov/pubmed/27232714
http://www.pdsw.org/pdsw-discs16/papers/p55-xiong.pdf
http://www.pdsw.org/pdsw-discs16/papers/p55-xiong.pdf
https://ieeexplore.ieee.org/document/6995996
https://ieeexplore.ieee.org/document/6995996

M. Karimi, P. Krishnamurthy: Hierarchical Data Integrity for IoT Devices in Connected Health Applications

AUTHOR BIOGRAPHIES

Maryam Karimi is a Ph.D.
candidate at the University of
Pittsburgh in the Department
of Informatics and Networked
Systems, School of Computing
and Information. She is working
on the Internet of Things,
wireless networks, security,
cryptography, and machine learning. Her thesis is on
security in the internet of things for which she achieved
second place in the ACM graduate research competition
at Grace Hopper conference 2019. She passed two
internships in Medtronic working on product security
in the software department. She got her M.Sc. and
B.Sc. in Information Technology Engineering from the
Shiraz University of Technology, during which she was
participating in RoboCup international competitions and
she achieved first place in the international competition
of RoboCup Iran Open 2014. Her publications are
mostly in the fields of security, data integrity in the
internet of things, wireless software defined networks,
and machine learning.

Prashant Krishnamurthy is
a professor in the Department
of Informatics and Networked
Systems, School of Computing
and Information. He teaches
at both the graduate and
undergraduate levels, offering
introductory and advanced courses on wireless networks
and cryptography. He also was one of the co-founders
of the school’s Laboratory for Education and Research
in Security Assured Information Systems (LERSAIS),
a national Center of Academic Excellence (CAE) in
Information Assurance Education (IAC) and Research
(IAR). During his time at Pitt, Krishnamurthy has
developed new courses and programs of study for the
school, particularly addressing the wireless and security
curricula, (for which he served as either the principal
investigator or co-principal investigator) from the
National Science Foundation and the Commonwealth of
Pennsylvania.

149

	Introduction
	Background
	How HDI Works
	Threat Model
	Formal Preliminaries
	Creating and Updating Data, Bloom Filter, and Hash Tree
	Data Integrity Verification
	Refinements for Efficiency
	Tuning Bloom Filters
	False-Positive Probability for Simple Temporary Bloom Filter
	False-Positive and Negative Probability for a General Bloom Filter - GBF

	Analytical and Experimental Results and Comparisons
	Analysis
	Security
	Storage
	Time
	Communication

	Experimental Results
	Comparison with HDI and DPDP

	Related Work
	Summary of HDI
	Integrity Verification in Literature
	Provable Data Possession in Literature
	Proof of Retrievability in Literature

	Discussion
	Conclusions

