
 
 

 

 

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022 

 
32 

 

 
 

 

3D Histogram Based Anomaly Detection for 

Categorical Sensor Data in Internet of Things 
 

Peng YuanA, Lu-An TangA, Haifeng ChenA, Moto SatoA, Kevin WoodwardB 

 
A NEC Labs America, 4 Independence Way, Princeton, NJ, USA, {pyuan, ltang, Haifeng, moto}@nec-labs.com 

B Lockheed Martin Space, 1401 Del Norte St, Denver, CO 80221, USA, {kevin.woodward}@lmco.com 
 

 

ABSTRACT 
 

The applications of Internet-of-things (IoT) deploy massive number of sensors to monitor the system and 

environment. Anomaly detection on streaming sensor data is an important task for IoT maintenance and 

operation. In real IoT applications, many sensors report categorical values rather than numerical readings. 

Unfortunately, most existing anomaly detection methods are designed only for numerical sensor data. They 

cannot be used to monitor the categorical sensor data. In this study, we design and develop a 3D Histogram 

based Categorical Anomaly Detection (HCAD) solution to monitor categorical sensor data in IoT. HCAD 

constructs the histogram model by three dimensions: categorical value, event duration, and frequency. The 

histogram models are used to profile normal working states of IoT devices. HCAD automatically determines the 

range of normal data and anomaly threshold. It only requires very limit parameter setting and can be applied to 

a wide variety of different IoT devices. We implement HCAD and integrate it into an online monitoring system. 

We test the proposed solution on real IoT datasets such as telemetry data from satellite sensors, air quality data 

from chemical sensors, and transportation data from traffic sensors. The results of extensive experiments show 

that HCAD achieves higher detecting accuracy and efficiency than state-of-the-art methods.  
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1 INTRODUCTION 
 

Internet of things (IoT) integrates sensor devices with 

informational components to form a context sensitive 

system that responds intelligently to dynamic changes 

in real-world environments. With rapid development in 

recent years, IoT devices are widely used in different 

fields such as social media, healthcare, transportation, 

satellite, and environment monitoring. A typical IoT 

application usually contains massive number of sensors 

to monitor related systems or surrounding environment. 

Evaluating streaming data in real-time and detecting 

abnormal symptoms are critical for system 

maintenance and operation. Efficient and effective 

anomaly detection methods are required to increase 

engineering productivity and reduce maintenance cost 

for IoT.  

However, the problems of online data monitoring 

and anomaly detection are one of the most difficult 
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problems in IoT research fields [10], partly due to the 

following challenges:  

• Categorical value: In real applications, IoT sensors 

contain not only numerical readings but also 

categorical or symbolic data representing the 

working status and operational modes. In recent 

decades, researchers proposed various 

technologies to detect anomalies on numerical 

readings [3-5]. Unfortunately, anomaly detection 

in categorical data has received little attention 

from the research community. It is also not easy to 

extend the anomaly detection methods on 

numerical values to categorical data. Because such 

methods focus on detecting extreme values or 

outliers. However, most categorical anomalies are 

not related to the values and cannot be detected by 

existing methods.  

• Real time detection: In several IoT applications, 

the actions must be taken out immediately to deal 

with anomalies. Many methods are in the style of 

offline learning [4], they cannot detect anomalies 

in real time.  

In this study, we propose a novel solution called 3D 

Histogram based Categorical Anomaly Detection 

(HCAD) for IoT systems. In this solution, a 3D 

histogram model is obtained from the historical data of 

categorical sensors. The model’s three dimensions are: 

categorical value, event duration, and frequency. 

HCAD profiles the normal state by such model, and 

automatically determines the normal value range 

despite of noisy data. After training the model from 

historical data, HCAD monitors the newly arrived data 

and matches them with historical model. The anomaly 

score is computed based on the model and anomaly 

detection is made in real time. The contributions of this 

study are summarized as follows.   

• We propose and define the problem of anomaly 

detection on categorical sensor data, which is 

rarely studied but important for real IoT 

applications.  

• We design and develop a solution of 3D 

Histogram based Categorical Anomaly Detection 

(HCAD). HCAD has low computation cost and 

can be easily aggregated into various IoT 

monitoring systems. 

• We conduct extensive experiments to evaluate the 

effectiveness and efficiency of HCAD on public 

datasets from real world. The experiment results 

show that HCAD yields better performance than 

state-of-the-art methods. 

• We integrate HCAD into a IoT monitoring system. 

The monitoring system only needs very limited 

parameter setting and can be applied to monitor a 

wide variety of IoT devices.   

The remaining sections of this paper are organized 

as follows. Section 2 surveys the related work of 

anomaly detection in IoT. Section 3 defines the 

problem and introduces the system framework. Section 

4 explains the proposed solution in detail. Section 5 

presents the experiments of testing proposed solution 

and other baselines. Finally, Section 6 summarizes the 

paper and discusses future work. 

 
2 RELATED WORK 

 

In recent decades, the problem of anomaly detection on 

data stream and sensor readings have received 

widespread attentions from research communities. 

Many methods are proposed to detect outliers and 

anomalies on sensor data. These techniques can be 

roughly classified into two classes: knowledge-driven 

approaches and data-driven methods.  
 

2.1 Knowledge-Driven Approaches 
 

Knowledge-driven approaches are based on the 

evidence of user guidelines and expert’s knowledge.  

Shabtai [1] proposed anomaly detection method 

based on Knowledge-Based Temporal Abstraction 

(KBTA). This method was previously proposed for 

intelligent interpretation of temporal data based on 

predefined domain knowledge [2].  The method uses a 

temporal pattern mining process to extract patterns 

representing normal behavior. Some researchers try to 

monitor the sensor data by predefined models. In 

practical applications, the sensor data may have some 

regular patterns. If such patterns can be predefined by 

expert’s knowledge, it is much easier to detect 

anomalies based on the models. Tang et al. define a 

Pseudo Periodical Graph (PPG) model to detect 

anomalies on medical sensors [7].  

Knowledge-driven methods can explain anomalies 

in detail if the knowledge from experts is accurate and 

comprehensive. However, with the rapid development 

of IoT, it is difficult to obtain accurate knowledge to 

describe complex and large scale IoT systems.  

 

2.2 Data-Driven Methods 
 

In the past few years, many data-driven methods are 

proposed for anomaly detection, including regression 

based model [3], clustering based model [4][15] and so 

on.  
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Table 1: Summary of anomaly detection methods 

Method 
Prior 

knowledge 

Categorical 

data 

Online 

monitor 

KBTA [1] Yes No No 

PPG [7] Yes No Yes 

Regression tree [3] No No No 

Clustering  

model [4] 
No No No 

LSTM-NDT [5] No No Yes 

HCAD No Yes Yes 

CUNA [15] No No No 

RobustTAD [16] No No No 

CNNTL [17] No No No 

 

Yairi et.al propose an anomaly detection method to 

monitor health status of spacecrafts based on regression 

tree learning [3]. Gao et.al design an unsupervised 

anomaly detection approach for spacecraft based on 

normal behavior clustering [4]. The method takes 

unlabeled historical telemetry data as input and 

generates a behavior model by extracting clusters from 

the normal data. Aytekin et.al propose a clustering 

based unsupervised anomaly detection method using L-

2 normalized deep auto-encoder representations [15]. 

The method maps past normal data to the high 

dimensional feature space using kernel function. In 

testing stage, the method projects new data to the 

learned subspace and calculates anomaly degree by 

distribution model. More recently, Neural Networks  

based techniques have demonstrated good performance 

on anomaly detection on streaming data. Hundman 

et.al propose an unsupervised anomaly detection 

approach based on long short term memory networks 

(LSTM-NDT) [5]. Gao et.al propose RobustTAD, a 

robust time series anomaly detection framework by 

integrating robust time series decomposition and 

convolutional neural network for time series data [16]. 
Wen et.al use a time series segmentation approach 

based on convolutional neural networks for anomaly 

detection. Moreover, they also propose a transfer 

learning framework. The framework pre-trains a model 

on large-scale synthetic univariate time series data and 

then fine-tunes the weights on small-scale, univariate, 

or multivariate data sets with previously unseen classes 

of anomalies [17]. 

The major advantage of data-driven methods is that 

they do not need domain knowledge in advance. In 

addition, they can easily be applied to different 

scenarios. However, most existing approaches are 

designed only for numerical sensor data. They cannot 

be used for categorical data. Our Histogram based 

Categorical Anomaly Detection (HCAD) solution is 

thus proposed to monitor the health of IoT devices with 

categorical sensor readings.  

 

Figure 1： Categorical sensor data from satellite 

Table 1 presents a summary of the related methods 

in different categories, comparing to the proposed 

HCAD in multiple criteria. 

 

3 OVERVIEW 

 
This section presents the problem definition of 

anomaly detection on categorical data, as well as the 

system framework of HCAD.  

 

3.1 Task specification 
 

Satellite health monitoring is a typical application case 

of categorical anomaly detection in IoT.  We motivate 

the problem in accordance with the requirements of 

real-world satellite monitoring tasks. 

Figure 1 shows recorded data from two sensors. 

Sensor sa and Sensor sb are two sensors installed on a 

telemetry satellite. They are used to monitor the 

satellite's working status. There are four key 

observations: 

1. Categorical data: There is a set of unique values 

and the sensor reading must be one of these values. 

The value set of sensor sa is Va = {-1, -0.5, 0, 0.5, 

1}, the value set of sensor sb is Vb = {-0.2, 0, 0.2, 

..., 1}. 

2. No anomaly of extreme value: All the values 

appear in the sensor’s data and none of them is 

related to any anomaly. There are multiple peaks 

and valleys in Figure 1, but most of them are just 

normal cases. 

3. Anomaly of duration: The red block of Figure 1 

(A) indicates an abnormal event of the satellite: 

Sensor A has a working state of value “1” in every 

60 secs, and the working state only lasts for about 

10 secs. In the red block period, a component is 

over-heated, and the sensor’s working time almost 

Anomaly A

Anomaly B

A

B
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doubled. The event is abnormal because of the 

duration. 

4. Anomaly of frequency: The red block of Figure 1 

(B) indicates another abnormal event of the 

satellite. Sensor B is used to monitor a key 

component of the satellite. Value “1” means the 

component is activated and value “-0.2” means the 

component is deactivated. In the red block period, 

the satellite tried to activate the component but 

failed multiple times due to a hardware problem. 

After several attempts in short period, the 

component is finally activated. This event is 

indeed a precursor of more serious mechanic 

problem. It can only be detected based on the 

event frequency. 

Based on the above observations, we formally 

define the task of anomaly detection in categorical IoT. 

Definition 1 (Categorical sensor reading). Let S 

be the set of categorical sensors in a IoT deployment, S 

= {s1, s2,…, sn}, and si be a categorical sensor. The 

reading of si is denoted as Ri. Ri is a sequence of length 

m, Ri = {(v1, t1), (v2, t2) … (vm, tm)}, where tj is the 

timestamp and vj is the reading value. 𝑣𝑗 ∈ 𝑉𝑖, where Vi 

is the set of unique values of sensor si. 

Problem Definition. Let S be the set of categorical 

sensors in a IoT deployment, S = {s1, s2,…, sn}. Given 

the historical sensor readings R1, R2, …, Rn., the system 

is required to train a model from the historical data and 

use the trained model to monitor newly arriving data of 

s1, s2, …, sn and detect anomalies on them. 

 

3.2 System Framework 

 

In this paper, we propose a 3D Histogram based 

Categorical Anomaly Detection (HCAD) approach to 

monitor the categorical sensors of IoT and detect 

anomalies on the streaming data. 

As shown in Figure 2, the overall structure of 

HCAD consists of two parts: (1) offline training from 

historical data and (2) online monitoring for the 

streaming data. 

Adaptive window separation is a module shared by 

both offline training and online monitoring. By this 

module, the categorical sensor data are segmented into 

sequences through sliding windows of adaptive length. 

After window separation, HCAD learns the features of 

all historical segments and generates a 3D histogram 

model to profile the normal data. At last, HCAD 

computes the threshold by testing the model on 

historical normal data. 

The online monitoring module stores the trained 

histogram model. HCAD converts streaming data into a 

new sliding window, and then transforms the data 

within  sliding   window  into  a  histogram.   The   new  

 

Figure 2: System framework of HCAD. The black 

solid lines denote the procedure of offline training 

and the blue dash lines denote steps of online 

monitoring. 

 

 

Figure 3: Two categorical sensor data with 

periodicity 

histogram is matched with historical model to calculate 

an anomaly score. The system raises alert if the 

anomaly score is higher than trained threshold.  

 
4 DESIGN OF HCAD METHOD 
  

In this section, we present the design of 3D histogram- 

based anomaly detection method. We first introduce 

the offline training modules, including adaptive sliding 

window separation and histogram model training, then 

present the details of online monitoring and anomaly 

detection modules. 

 

4.1 Adaptive Sliding Window Separation  
 

Since the historical sensor data are collected in a 

relatively long time period, i.e., several weeks or 

months.  The system needs to first separate the long 

data sequence into several sub-sequences, i.e., sliding 

windows.  Here the window length l is an important 

parameter: if l is too short, the system may not capture 

the long events and cause false negatives; if l is too 

long, the system has high memory and computation 

overhead, and cannot output the alerts in time. To 

overcome   these   challenges,   we  design  an  adaptive 
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algorithm to determine the window length 

automatically. 

Example 1: Figure 3 shows two categorical 

readings from satellite sensors. We can make a key 

observation from the figure: The duration of certain 

categorical values repeats in a regular way, i.e., there 

are some kinds of periodicity on the duration of the 

categorical values.  
Definition 2 (Event). Let s be a categorical sensor 

and R be the sensor readings from s, R = {(v1, t1), (v2, 

t2) … (vn, tn)}, where tj is the timestamp and vj is the 

reading at tj. For consecutive readings vj, vj+1, …, vj+k, if 

vj = vj+1 = … = vj+k, we can merge these readings to 

event ej = (vj, tj, tj+k), where tj is the event start 

timestamp and tj+k is the event end timestamp. In this 

way, Ri is transformed as a sequence of categorical 

events. Ri = {e1, e2 … em}, ei = (vi, ti, ti+k). 

In categorial sensor data, the event is a more 

important object than a single point. Usually, an event 

reflects a period of certain work state of the monitored 

component. The start and end of an event are often 

related to the system operations (e.g., turn on or turn 

off a component).  

To make a meaningful separation of the sensor data, 

each sliding window should contain enough number of 

events. Given the sensor data Ri, minimum number of 

event m and sliding speed p, Algorithm 1 computes the 

window length l and generates the sliding window over 

sensor data. After initializing the parameters (Line 1 -

3), the algorithm scans the sensor data R and computes 

the total duration for consecutively m events (Lines 4 - 

6). The maximum duration is recorded as the window 

length (Lines 7 - 9). After that, the algorithm initializes 

the sliding window sequence and scans the data again. 

The system retrieves subsequences of sensor data by 

length l and generates the event sequence from the data 

(Lines 10 to 15). Finally, the algorithm returns the 

generated window sequence (Line 16).    

 

4.2 Histogram Model Construction 
 

In this step, HCAD needs to generate a histogram 

model to profile the normal states of the monitored IoT 

system. Since the unique categorical values indicate 

different working states of the IoT, HCAD needs to 

generate a specific histogram for each categorical value 

and distributes the events into m bins by the event 

duration. The height of each bin is the count of event 

(i.e., frequency). As a result, there are 3 dimensions in 

the histogram: (1) the category, (2) the event duration, 

and (3) the frequency. 

Because the distributions of events’ duration are 

varied on different cases. It is necessary to generate an 

adaptive histogram. In most cases, the data of events’ 

duration are not in a standard gaussian distribution. 

Hence the difficulty is on identifying the optimal mean 

and standard deviation for events’ duration. The 

Weibull distribution is a continuous probability 

distribution widely used to analyze event data, model 

failure times and measure product reliability [13]. The 

major advantage of Weibull distribution over other 

ones is on the flexibility. Weibull distribution can be 

used to simulate other distributions. Therefore, we use 

Weibull distribution to approximate the distribution of 

events’ duration and subsequently compute optimal 

mean and standard deviation. As shown in Formula 1, 

HCAD determines the value range of histogram model 

based on optimal mean and standard deviation.  

𝑀𝑖𝑛_𝐵𝑜𝑢𝑛𝑑 =  {
𝜇 - 𝛼 ∗ 𝜎,    𝑖𝑓 𝜇 - 𝛼1 ∗ 𝜎 > 0
0, 𝑖𝑓 𝜇 - 𝛼1 ∗ 𝜎 ≤ 0

 

                                                                                   (1) 

𝑀𝑎𝑥_𝐵𝑜𝑢𝑛𝑑 =  {
𝜇+ 𝛽 ∗ 𝜎,   𝑖𝑓 𝜇+ 𝛽1 ∗ 𝜎 < 𝐿
𝐿, 𝑖𝑓 𝜇+ 𝛽1 ∗ 𝜎 ≥ 𝐿

 

Here, 𝑀𝑖𝑛_𝐵𝑜𝑢𝑛𝑑  represents the lower bound of 

the value range in the histogram. 𝑀𝑎𝑥_𝐵𝑜𝑢𝑛𝑑 

represents the upper bound of the value range in the 

histogram. 𝐿 is length of sliding window. 𝜇 is mean of 

all the events' duration. 𝜎  is the duration's standard 

deviation. 𝛽1 and 𝛼1 are two parameters. 

Once the value range of histogram is determined, 

HCAD further divides the value range into m equally 

distant bins and generates the histogram template. 

Algorithm 2 describes the process of generating 

histogram template for each category. The algorithm 

first   Initializes   the   parameters   (Lines 1 to 5),   then 

Algorithm 1: Adaptive sliding window separation 

Input: sensor data R, minimum number of event m, 

sliding speed p (p is set as 1 in most cases) 

Output: sliding window sequence W, length of sliding 

window l 

1. initialize window size l = 0 

2. event count c = 0 

3. total event duration dtotal = 0 

4. for each event e in R 

5.       dtotal+=(eend - estart) 
6.       c += 1 

7.       if c == m 

8.           if  dtotal > l then l = dtotal 

9.           c = 0 

10. initialize W = {w1, w2, … w(|R|-l)/p} 

11. for each window wi in W 

12.      tstart = p*i, tend = p*i + l 

13.      retrieve Ri = {(vstart, tstart), … (vend, tend)} 

14.      generate a event sequence Ei from Ri      

15.      add Ei to wi 

16. return W, l 
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Algorithm 2: 3D histogram template generation  

Input: Unique category value list U, number of bins 

𝑚 , parameters 𝛼1 , 𝛽1 , sliding window sequence W, 

length of sliding window l 

Output: 3D histogram template T 

1. 𝑇 = ∅  
2. for each unique category value vu in U 

3.      Min_Bound(u)  = 0 

4.      Max_Bound (u) = 𝑙 
5.      𝐷𝑢 = ∅ 

6.      for each window w in W  

7.            for each event e in w 

8.                 if ve = vu  

9.                   𝐷𝑢.append(e) 

10.      use Weibull distribution to model 𝐷𝑢 

11.      compute 𝜇 and 𝜎 based on 𝐷𝑢 's distrubution  

12.      if  𝜇 − 𝛼 ∗ 𝜎 > 0 

13.           Min_Bound(u) =  𝜇 − 𝛼1 ∗ 𝜎 

14.      if  𝜇 + 𝛽 ∗ 𝜎 < 𝑙 
15.          Max_Bound (u) = 𝜇 + 𝛽1 ∗ 𝜎 

16.      generate 2D histogram template ℎ𝑢    
17.      𝑇.append(ℎ𝑢) 

18. return 𝑇 

 

 

generates the event list for each category value from 

sliding window sequence (Lines 6 to 9). After that, the 

algorithm uses Weibull distribution to approximate the 

data of each event list and determines the value range 

of histogram template based on optimal mean and 

standard deviation (Lines 10 to 15). Finally, the system 

generates a histogram template for the specific 

category, adds the template to histogram set and return 

the set after processing all the categories (Lines 16 to 

18).  After the 3D histogram template is generated, 

HCAD fills the template with the events in sliding 

window sequence. 

Example 2: Figure 4 shows an example for filling 

the template with events to generate histograms. There 

are two categories (category A and B) in the data. 

HCAD first generates two histogram templates. Two 

sliding windows are shown in Figure 4 (w1 in red color 

and w2 in yellow color). Two 3D histogram, h1 and h2 

are generated for w1 and w2. In w1, there are 9 events 

retrieved from the sensor data. e1, e3, e5, e7 and e9's 

values are same to category A. They are matched to the 

histogram h1
A.  While e2, e4, e6, and e8's values are 

same to category B. They are matched to histogram 

h1
B. Similarly, e5, e7, e9, e11 and e13 of window w2 are 

matched to histogram h2
A. e6, e8, e10 and e12 of w2 are 

matched to histogram h2
B. 

 

Figure 4: Generating histogram from sliding window 

 

In this way, HCAD generates a series of 3D 

histograms from the historical data. By concatenating 

all these 3D histograms, we can get a k * n * m tensor, 

where k is the size of unique category, n is the total 

number of sliding windows on historical data and m is 

the number of bins in histogram template. The value 

stored in the tensor is the count of event's duration (i.e., 

frequency) in each bin.    

The next step is to learn a model for every bin in 

each category. To learn the model for category vi and 

bin bj, HCAD makes a slice from the tensor to get a 

time series of n values by vi and bj. This time series 

records all the frequencies in the historical sliding 

window. HCAD uses a Weibull distribution to 

approximate the time series, and computes the optimal 

mean and standard deviation. At last, HCAD 

determines the normal ranges of bin bj in category vi's 

model by these parameters, as shown in Eq. (2), where 

𝑙𝑏(𝑣𝑖 , 𝑏𝑗) and 𝑢𝑏(𝑣𝑖 , 𝑏𝑗) are the lower bound and upper 

bound of the normal range for frequency. 𝜇𝑖,𝑗 is mean 

and 𝜎𝑖,𝑗  is the standard deviation computed from the 

Weibull distribution. 𝛼2 and  𝛽2 are two parameters. 

𝑙𝑏(𝑣𝑖 , 𝑏𝑗) =  𝜇𝑖,𝑗 – 𝛼2 ∗ 𝜎𝑖,𝑗  

                                                                             (2) 

𝑢𝑏(𝑣𝑖 , 𝑏𝑗) =  𝜇𝑖,𝑗 + 𝛽2 ∗ 𝜎𝑖,𝑗 

Algorithm 3 shows the process to compute the 

histogram model. The algorithm takes the 3D 

histogram template as input. For each categorical 

value, the algorithm retrieves the 2D histogram 

template and fills it with the events in sliding windows 

of historical data (Lines 1 to 4). Then the algorithm 

retrieves the frequency vector by bin and category 

(Lines 5 to 6), and uses the Weibull distribution to 

compute the mean and standard deviation (Lines 7 to 

8). Furthermore, the algorithm computes the range for 

frequency and fills such information to the model 

(Lines 9 to 11). At last, the system returns the trained 

model (Line 12).  
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Algorithm 3: Histogram model computation  

Input: 3D histogram template T, parameters 𝛼2 , 𝛽2 , 

sliding window sequence W, number of bins m 

Output: Histogram model H 

1. for each categorical value vu in T 

2.       2D histogram hu =  T.get(vu) 

3.       for each window w in W  

4.            fill hu with the events in w 

5.       for each bin bi in hu 

6.            retrieve the frequency vector Vi,u 

7.            use Weibull distribution to model Vi,u 

8.            compute 𝜇 and 𝜎 correspondingly 

9.            compute lbi,u and ubi,u 

10.            add lbi,u and ubi,u to bin bi  

11.       𝐻.append(ℎ𝑢) 

12. return 𝐻 

 

4.3 Threshold Calculation 
 

After generating histogram models, HCAD adaptively 

determines the anomaly threshold for each category’s 

histogram. The system first applies the generated 

model to training data and calculates anomaly scores 

for each bin as shown by Equation 3, where f is the 

frequency (i.e., event count) of that bin. lb is the lower 

bound and ub is the upper bound of the trained model. 

𝑠𝑐𝑜𝑟𝑒(𝑣𝑖 , 𝑏𝑗) =

{
 
 

 
 
|𝑓𝑖,𝑗 − 𝑙𝑏(𝑣𝑖,𝑏𝑗)|

𝑙𝑏(𝑣𝑖,𝑏𝑗)
,   𝑖𝑓 𝑓𝑖,𝑗 < 𝑙𝑏(𝑣𝑖 , 𝑏𝑗)

|𝑓𝑖,𝑗 − 𝑢𝑏(𝑣𝑖,𝑏𝑗)|

𝑢𝑏(𝑣𝑖,𝑏𝑗)
,   𝑖𝑓 𝑓𝑖,𝑗 > 𝑢𝑏(𝑣𝑖 , 𝑏𝑗)

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

    (3) 

For a histogram hi, the overall anomaly score is 

calculated as the maximum score of all its bins' scores.  

               𝑠𝑐𝑜𝑟𝑒(ℎ𝑖) = max
𝑏𝑗∈ℎ𝑖

(𝑠𝑐𝑜𝑟𝑒(𝑣𝑖 , 𝑏𝑗))         (4)    

After computing the anomaly scores for all the 

historical data, HCAD extracts the largest score in 

histogram to compute the anomaly threshold for 

category vi.  

𝛿(𝑣𝑖)  =  max
ℎ𝑖∈ℎ𝑖𝑠𝑡_𝑠𝑒𝑡(𝑣𝑖)

(𝑠𝑐𝑜𝑟𝑒(ℎ𝑖)) ∗ (1 + ε)      (5) 

In Equation 5, 𝜀 is a parameter to represent the safe 

scale range. For instance, if ε = 20%, it means the user 

believe that the score for real anomaly should be 120% 

larger than the historical maximum score in training 

data.  

 

 

 

4.4 Online Monitoring 
 

Finally, HCAD uses the trained model to monitor 

streaming data from categorical sensors of deployed 

IoT. The main difficulty of online monitoring is on 

dealing with new values and unseen event durations: 

(1) Some categorical values may not appear in training 

data and there is no model for such values; (2) Some 

events may have very long or short durations that are 

outside the boundaries of histogram model.  

To deal with these problems, HCAD has designed 

following strategies: 

• If HCAD finds a new category value that not 

appeared in training data, it will directly assign 

a relatively high anomaly score. 

• If HCAD finds an event with duration shorter 

than the minimum boundary of histogram 

model. The system will compute the anomaly 

score by Equation 6. 

 

                     𝑆𝑐𝑜𝑟𝑒 =
| 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 -𝑙𝑏(𝑣𝑖,𝑏𝑗)|

𝑙𝑏(𝑣𝑖,𝑏𝑗)
                    (6) 

• If HCAD finds an event with duration larger than 

the maximum boundary. The system will compute 

the anomaly score by Equation 7. 

 

                𝑆𝑐𝑜𝑟𝑒 =
| 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 -𝑢𝑏(𝑣𝑖,𝑏𝑗)|

𝑢𝑏(𝑣𝑖,𝑏𝑗)
                 (7) 

 

Algorithm 4: Online monitoring 

Input: Stream data within sliding window wnew, 

histogram model H, histogram template T, anomaly 

threshold 𝛿 

Output: Anomaly label for wnew 

1. for each categorical value vu in T 

2.       2D histogram hu =  T.get(vu) 

3.       fill hu with the events in wnew 

4.       Hnew.append(hu) 

5. for each hu in Hnew 

6.       score(hu) = 0 

7.       for each bin bi in hu 

8.             if unseen value or event duration 

9.                   comupute score(bi) by Eqs. 6, 7 

10.             else 

11.                   compute score(bi) w.r.t. H 

12.             if score(hu) < score(bi) 

13.                   score(hu) = score(bi) 

14.        if score(hu) > 𝛿(𝑢) 
15.             return true 

16. return false  
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Algorithm 4 describes the online monitoring 

process: First, HCAD fills the event data of new sliding 

window to histogram template and generates a new 

histogram for each categorical value (Lines 1 to 4). 

Then the algorithm matches the generated histograms 

to trained model and compute the anomaly score for 

each bin of the histogram (Lines 5 to 11). The overall 

score of the histogram is calculated as the maximum 

score of all the bins (Lines 12 to 13). If the score of any 

category’s histogram is larger than threshold, the 

algorithm returns true, and an alert will be sent to the 

user (Lines 14 to 15). Otherwise, the algorithm returns 

false and continues monitoring the stream. 

 
5 PERFORMANCE EVALUATION  

 

In this section, a thorough experimental study for 

HCAD is conducted. First, we conduct the comparison 

experiment on HCAD and baselines. Then we evaluate 

some factors that affect the performance of proposed 

algorithm. We also present the ablation study of 

different components of HCAD. At last, we present a 

case study, followed by a short discussion on real 

applications of HCAD.  

 

5.1 Experiment Setup 

 

We evaluate the proposed HCAD method on three real 

datasets of different IoT applications, the statistic of 

datasets is listed in Table 2.  

• Dataset D1 [5]: The telemetry data from NASA 

Soil Moisture Active Passive (SMAP) satellite.  

• Dataset D2 [8]: The air quality data from an Italian 

city. The data were recorded from March 2004 to 

February 2005 by deployed chemical sensors. The 

raw data are numerical. There is no abnormal 

event in the data. We generated the categorial time 

series by mapping the numerical values into 

several keys and inserted 270 abnormal events for 

testing.  

• Dataset D3 [9]: The traffic data recorded from the 

twin cities metro area in Minnesota, collected by 

the deployed IoT sensors on streets around the 

city. The raw data are numerical. There is no 

abnormal event in the data. We generated the 

categorial time series by mapping the numerical 

values into several keys and inserted 78 abnormal 

events for testing. 

We compare HCAD with the most recent state-of-

the-art anomaly detection method for IoT sensors: 

LSTM with Non-parametric Dynamic Thresholding 

(LSTM-NDT) [5]. Table 3 lists the main parameters 

used in the experiments. For different datasets, LSTM-

NDT   requires  the  users  to  setup   different  anomaly 

Table 2: Statistics of the datasets 

 

Table 3: Experiment parameter setting 

 

Table 4: Evaluation metrics 

 

threshold. However, HCAD does not require the 

parameter setup in advance (which is indeed hard for 

the user). It can use the same (default) parameter 

settings for all the datasets.  

Table 4 shows the three metrics used for 

performance evaluation. Precision measures the 

robustness of anomaly detection method. Recall 

measures the sensitivity of anomaly detection method. 

F1-Score is a combined measure of precision and recall 

for an overall judgement.  

 

5.2 Comparison on Accuracy and Efficiency  
 

In the first experiment, we compare the proposed 

HACD with LSTM-NDT on the detection accuracy on 

different datasets. The precision and recall of these 

methods are shown in Figure 5. The precision of 

HCAD is 12% higher than LSTM-NDT on D1.  The 

recall of HCAD is 13% higher than LSTM-NDT on D1, 

30% higher on D2, and 80% higher on D3. 

Dataset
Method

HCAD LSTM-NDT

D1 p = 0.13

D2 p = 0.03

D3 p = 0.03

HCAD parapmeters:

: number of bins.

: determine left and right boundaries of histogram.

, : determine lower and upper boundaries of normal range.

LSTM-NDT parapmeters:

p: anomaly threshold.

Measure Formular

Precision

Recall

F1-Score

TP: true positives, number of correctly detected anomalies.

FP: false positives, number of false alters.

FN: false negatives, number of missed anomalies.
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Figure 5: Accuracy comparison on precision and 

recall 

 

 

Figure 6: Accuracy comparison on F1 score 

 

 
Figure 7: Comparison on detecting efficiency 

 
As an overall measure, the F1 score of HCAD is 

18% higher than LTSM-NDT on D1 and D2, and 

around 67% higher than LTSM-NDT on D3, as shown 

in Figure 6. 

In many IoT applications, the algorithm is required 

to detect the anomalies in real time. Hence, we 

compare the time cost of HCAD and LSTM-NDT in 

processing the test data stream and detecting 

anomalies. From the results in Figure 7, we can see that 

HCAD is much more efficient than LSTM-NDT: the 

time cost of HCAD is 1476 milliseconds on D2 and 91% 

lower than LSTM-NDT; the time cost of HCAD is only 

303 milliseconds on D3 and 80% lower than LSTM-

NDT. 

 

5.3 Parameter Tuning and Ablation Study 
 

In this experiment, we analyze the performance of 

HCAD by adjusting values of different parameters. We 

test the algorithm on the total dataset (i.e., Union of all 

three datasets).  The parameters  of  HCAD are  𝛼1,  𝛽1,  

 

Figure 8: Accuracy. (A) shows influence of  𝜶𝟏. (B) 

shows influence of 𝜷𝟏 

 

Figure 9: Effectiveness. (A) shows influence of  𝜶𝟐. 

(B) shows influence of 𝜷𝟐 

𝛼2 , and 𝛽2 , as listed in Table 3. We adjust them in 

training stage to generate different models. Then we 

apply the trained models to testing data for anomaly 

detection. We use precision, Recall, and F1-score to 

evaluate the influence of parameters.  

First, we study influence of 𝛼1. 𝛼1 is to determine 

the minimum bound of histogram model. we increase 

𝛼1 from 0 to 5 with a stride equal to 0.5. F1-score of 

HCAD is converged when 𝛼1 equals to 2.5 (Figure 8 

(A)). So we set  𝛼1 as 2.5 as the default value.  𝛽1is 

used to determe the maximum bound of histogram 

model.  We use same procedure to increase 𝛽1 from 0 

to 5. The influence of 𝛽1  on precision is greater than 

recall (Figure 8(B)). The F1-score is converged when 

𝛽1 equals to 3.  

Then we study influence of 𝛼2. 𝛼2 is used to control 

the lower bound of frequency. Figure 9 (A) shows that 

the influence of 𝛼2 on recall is greater than precision. 

The F1-score converges at the value around 1.5. Finally, 

we study the influence of β2, which controls the upper 

bound of frequency. Figure 9 (B) shows that the 

influence of β2 on precision is greater than recall. The 

F1-score converges when β2 equals to 2. 

Table 5 shows the ablation study on the impact of 

adaptive sliding window (ASW), 3D histogram (3DH), 

and Weibull distribution (WD). We use dataset D1 to 

analyze the performance of HCAD with the different 

combinations of components.  

In the first round, we remove all the components 

including ASW, HECV, and WD: (1) We use a fixed 

sliding window (The length of sliding with is set as 

100) to replace the adaptive sliding window; (2) we use 

a 2D histogram to replace the 3D histogram, and (3) we 

use the normal distribution to replace Weibull 

distribution. We record the performance of such a 

model as baseline. 

(B) Recall (A) Precision 
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Table 5: Ablation study of components 

Components 
Different combinations of 

components 

ASW × √ √ √ 

3DH × × √ √ 

WD × × × √ 

Precision (%) 47% 50% 82% 92% 

Recall (%) 54% 54% 75% 85% 

F1 Score (%) 50% 52% 78% 88% 

 

In the second round, we add ASW to HCAD and 

compare it with the baseline. The performance is 

slightly improved (~2% increase in F1-score). In the 

third round, ASW and HECV are both added to HCAD. 

The accuracy is significantly boosted (~26% increase 

in F1-score). Finally, all components are added, and the 

performance is further improved. The table shows that 

the 3D histogram model (3DH) is the key component 

to improve detection accuracy of HCAD.  

 

5.4 Case Study and Discussions 
 

In this section, we use a case study to illustrate the 

reasons that why HCAD has better performance than 

LSTM-NDT. 

Figure 10 (A) shows a categorical sensor dataset. 

The data are divided to two parts by a green line. The 

left part is used for training and the right part is used 

for testing. For simplicity, we select a dataset with only 

two unique values (0 and 1). The testing data contain 

one abnormal event.  Figure 10 (B) shows details of 

this abnormal event. The anomaly is caused by 

frequent switching of category “0” and “1” in a short 

time period.  

LSTM-NDT uses historical data to predict new 

value. If the different between prediction and 

observations is larger than a certain threshold, the 

system will report anomaly. Unfortunately, it is 

difficult for LSTM-NDT to correctly predict such 

categorical values.  

On the other hand, HCAD not only considers the 

value of categories but also considers the switching 

frequency of them. It transfers the streaming data from 

original 2D space to a 3D histogram. Figure 11 shows 

the histogram of category “1”. There are four bins in 

the histogram. The frequencies of four bins are 

[21,2,0,0] and the corresponding thresholds are {[0,8], 

[0,4], [0,2], [0,2]}. The frequency of bin-1 is outside of 

the corresponding threshold, which is therefore 

considered as an abnormal data by HCAD. 

Figure 12 shows a snapshot of the prototype system 

that we developed to monitor categorical sensor data 

for IoT. The green lines in Figure 12 (A) shows all the 

received data from a specific sensor. The lines in 

Figure 12 (B)  are  the   new   data   in   current   sliding  

 

Figure 10: (A) shows a categorical sensor dataset. 

The data to the left of green line is used for training 

and the rest is for testing. The red rectangle is 

sliding window. (B) shows details in sliding window.  

 

 

Figure 11: Blue rectangles are frequencies of 

category “1”. Red rectangles represent thresholds of 

bins.  

 
window. The 3D objects in Figure 12 (D) are the 

histogram constructed from the new streaming data.  

The lines in Figure 12 (C) are the calculated anomaly 

scores. The red lines indicate the detected abnormal 

events.  

To apply HCAD in real IoT systems, the solution 

can be deployed in a distributed manner. The model 

training is conducted in the cloud. Once the histogram 

model is generated, it is sent to every edge device of 

the IoT. The online monitoring algorithm (Algorithm 

4) is running on the edge device.  Since Algorithm 4 

only needs to store the current window of streaming 

data and train histogram models with limited memory. 

Once an anomaly is detected, the edge will 

communicate with the cloud and report the abnormal 

events. In this way, the edge does not need to 

communicate with the cloud during normal period, the 

cost of bandwidth is limited. HCAD tool is 

programmed with C/C++ language. There are no 

special requirements for hardware, and it can be easily 

embedded into IoT operating system such as Raspberry 

Pi. 

Training Testing

A

B
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Figure 12: The GUI interface of HCAD based IoT 

monitoring system. (A) stores all the received data. 

(B) plots the current window. (C) shows the 

anomaly score. (D) is 3D histogram. 

6 CONCLUSION AND FUTURE WORK 
 

In this study, we present a 3D Histogram based 

Categorical Anomaly Detection (HCAD) method for 

monitoring the sensor data in IoT devices. In the 

proposed method, the system generates a 3D histogram 

model on the dimensions of category, event duration, 

and frequency. HCAD automatically determines 

normal ranges of the histogram model and anomaly 

thresholds. Then, the system applies the model to 

monitor streaming data and detect anomalies in real 

time. Extensive experiments on real datasets show that 

HCAD achieves higher accuracy and efficiency in 

anomaly detection tasks than other baselines.   

In the near future, we plan to extend HCAD to 

complex IoT monitoring with both categorical and 

numerical sensors, and to apply HCAD in other 

application domains such as weather forecasting and 

financial analysis.  
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