
© 2022 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 8, Issue 1, 2022

http://www.ronpub.com/ojiot
ISSN 2364-7108

WoTHive: Enabling Syntactic and Semantic
Discovery in the Web of Things

Andrea Cimmino, Raúl Garcı́a-Castro

Universidad Politécnica de Madrid, C. Ramiro de Maeztu, 7, 28040, Madrid, Spain
{andreajesus.cimmino, r.garcia}@upm.es

ABSTRACT

In the last decade the Internet of Things (IoT) has experienced a significant growth and its adoption has become
ubiquitous in either business and private life. As a result, several initiatives have emerged for addressing specific
challenges and provide a standard or a specification to address them; like CoRE, Web of Things (WoT), oneM2M,
or OGC among others. One of these challenges revolves around the discovery procedures to find IoT devices within
IoT infrastructures and whether the discovery performed is semantic or syntactic. This article focusses on the WoT
initiative and reports the benefits that Semantic Web technologies bring to discovery in WoT. In particular, one of the
implementations for the WoT discovery is presented, which is named WoTHive and provides syntactic and semantic
discovery capabilities. WoTHive is the only candidate implementation that addresses at the same time the syntactic
and semantic functionalities specified in the discovery described by WoT. Several experiments have been carried
out to test WoTHive; these advocate that the implementation is technically sound for CRUD operations and that its
semantic discovery outperforms the syntactic one implemented. Furthermore, an experiment has been carried out
to compare whether syntactic discovery is faster than semantic discovery using the Link Smart implementation for
syntactic discovery and WoTHive for semantic.

TYPE OF PAPER AND KEYWORDS

Short communication: Internet of Things, Web of Things, directory-based discovery

1 INTRODUCTION

In the last decade, the Internet of Things (IoT) has
become ubiquitous in both business and everyday life.
The context in which IoT devices are used is wide
and broad, fostering the consolidation of initiatives that
aim to establish the interactions of these IoT devices.
Some standard initiatives are Constrained RESTful
Environments (CoRE) [25], XMPP [30], HyperCat
specification, OGC Sensor Observation Service [5], Web

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2022) in conjunction with the
VLDB 2022 conference in Sydney, Australia. The proceedings of
VLIoT@VLDB 2022 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

of Things [9], or oneM2M [26]; other well-known
initiatives are Vorto [7].

One of the main goals of these initiatives is to
define discovery procedures for finding existing IoT
devices within IoT infrastructures. Although there
are several generic discovery approaches [4], one of
the most adopted by these initiatives is directory-base
discovery. It consists of having a service named resource
directory in which clients can register documents called
resource descriptions that provide information about
an IoT device or an IoT infrastructure. The nature
of the information contained in resource descriptions
depends on the initiative; it can be very different:
endpoints where data can be fetched, meta-data (such

54

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot

A. Cimmino, R. Garcı́a-Castro: WoTHive: Enabling Syntactic and Semantic Discovery in the Web of Things

as location, vendor, etc.), information about security
protocols used, or validation information (such as JSON
schema). Then, the discovery is performed by issuing
a discovery criterion to the resource directory, which
finds the resource descriptions that meet the criterion and
answers with this result.

The different initiatives specify the format and model
that resource descriptions must have, the format of the
discovery criterion and its results, and the protocol and
API that a resource directory must provide. When the
models and format of the resource descriptions rely on
W3C standards from the Semantic Web, such as RDF
and ontologies, and the discovery criterion is based on
SPARQL; the discovery is named semantic discovery. In
contrast, when the format and model rely on others that
are non-semantic, the discovery is known as syntactic
discovery. The Semantic Web technologies improve
different aspects of the discovery approaches defined
by the different initiatives; a good example of these
benefits has been reported for the discovery procedure
of oneM2M [17, 12].

This article focuses on the Web of Things (WoT)
initiative and describes how Semantic Web technologies
foster and improve the discovery procedure defined by
this initiative. In particular, the WoTHive resource
directory that implements the current WoT discovery
procedure is presented. This directory provides syntactic
and semantic capabilities; which are used in the article
for showing the benefits and drawbacks of relying on
semantic or syntactic discovery. The WoTHive has
been tested with several experiments, among which, one
of them aims at comparing the potential overhead that
semantic discovery may entail in comparison with the
syntactic discovery for equivalent discovery criterion.

The rest of this article is structured as follows.
Section 2 presents an analysis of proposals from
the literature; Section 3 introduces the WoTHive
implementation of the WoT discovery; Section 5
presents some results of the experiments carried out in
the article; finally, Section 6 presents conclusions.

2 RELATED WORK

The different initiatives have spent considerable effort
defining or standardising the different elements that
revolve around IoT, and specifically, for discovery: i)
the resource directories APIs; ii) resource description
format and model; iii) the discovery procedure; and
iv) the discovery criterion and its results. Of all
these initiatives, some are well-known standards [4]:
Constrained RESTful Environments (CoRE) [23],
XMPP (Internet of Things Discovery) [30], HyperCat
specification [21], OGC Sensor Observation Service [5],

WoT [9], and oneM2M [26]. Other initiatives that are
widely used are not standards, such as Eclipse VORTO.

All initiatives can be grouped depending on their
focus: some only establish the data format and model
of the resource descriptions to describe IoT devices
or infrastructures (SAREF, SSN, VORTO, HyperCat);
instead, others describe the API of their resource
directory and also how the discovery procedure must
function: how to receive the discovery criterion and
generate its result. Table 1 summarises the contributions
of the different initiatives.

2.1 Discovery in IoT Initiatives

The IETF CoRe Resource Directory [25] is a
specification based on the CoAP protocol. The
specification expects that IoT infrastructures submit
a resource description expressed in the CoRE Link
Format [23], containing a set of attributes1 such as the
type of the endpoint or the time-to-live of the description
submitted. In addition, the CoRe Resource Directory has
a discovery interface to which search criteria referencing
some attributes are submitted. As a result, the discovery
interface outputs a set of resource descriptions that meet
the search criterion submitted.

XMPP Internet of Things Discovery [30] is a
specification for peer-to-peer networks that connect
IoT infrastructures. In this specification, resource
directory is also known as Thing Registry, which
expects a template-based XML document as a resource
description. The specification allows those restrictions
to contain a set of tags to specify metadata such as
location2. The discovery criterion supported by a Thing
Registry is a URL request with a set of search operators
that can be combined with AND or OR operators. 3

HyperCat [16] is based on the concept of the
IoT catalogue, that is, a resource directory. This
component assumes that each IoT infrastructure is
internally identified by a unique URI associated with a
JSON document, that is, the resource description. The
resource descriptions rely on the HyperCat model that is
designed to be translated into RDF when required [28,
27]. The discovery criteria of this specification are URI
requests with a set of parameters which are used to
filter the descriptions or to find suitable URIs whose
descriptions fulfil a criterion. It uses Media Types for
Sensor Markup Language (SENML) to describe meta-
data [11].

1 https://tools.ietf.org/html/
draft-ietf-core-resource-directory-21#page-22

2 https://xmpp.org/extensions/xep-0347.html#
tags

3 https://xmpp.org/extensions/xep-0347.html#
search

55

https://tools.ietf.org/html/draft-ietf-core-resource-directory-21#page-22
https://tools.ietf.org/html/draft-ietf-core-resource-directory-21#page-22
https://xmpp.org/extensions/xep-0347.html#tags
https://xmpp.org/extensions/xep-0347.html#tags
https://xmpp.org/extensions/xep-0347.html#search
https://xmpp.org/extensions/xep-0347.html#search

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

Ta
bl

e
1:

In
iti

at
iv

es
fr

om
th

e
lit

er
at

ur
e

sp
ec

ify
in

g
Io

T
di

sc
ov

er
y

el
em

en
ts

R
es

ou
rc

e
D

es
cr

ip
tio

n
D

is
co

ve
ry

Sp
ec

ifi
ca

tio
n

In
iti

at
iv

e
St

an
da

rd
R

es
ou

rc
e

D
ir

ec
to

ry
A

PI
Fo

rm
at

M
od

el
Pr

ot
oc

ol
C

ri
te

ri
on

R
es

ul
t

C
oR

E
[2

3]
Y

es
C

oR
E

R
es

ou
rc

e
D

ir
ec

to
ry

[2
5]

C
oR

E
L

in
k

(W
eb

L
in

k
[2

0]
)

L
is

to
fl

in
k

pa
ra

m
et

er
s

A
ny

bi
nd

in
g

su
pp

or
tin

g
U

R
Is

C
oR

E
L

in
k

(U
R

Iw
ith

at
tr

ib
ut

es
)

Se
to

fC
oR

E
lin

ks
(U

R
Is

)

X
M

PP
[3

0]
Y

es
T

hi
ng

R
eg

is
tr

y
X

M
L

L
is

to
f

X
M

L
ta

gs
X

M
PP

X
M

L
do

cu
m

en
tw

ith
co

m
pa

ri
so

n
op

er
at

or
s

us
in

g
th

e
X

M
L

ta
gs

Se
to

fX
M

L
do

cu
m

en
ts

H
yp

er
C

at
[1

6]
-

H
yp

er
C

at
C

at
al

og
ue

Js
on

C
at

al
og

ue
O

bj
ec

t
H

T
T

P
U

R
Iw

ith
at

tr
ib

ut
es

Si
ng

le
Js

on
do

cu
m

en
t

Se
nM

L
[1

1]
Y

es
-

Js
on

,X
M

L
,

or
E

X
I

L
is

to
f

M
ed

ia
Ty

pe
s

-
-

-

O
G

C
Y

es
Se

ns
or

O
bs

er
va

tio
n

Se
rv

ic
e

[5
]

X
M

L
Se

ns
or

M
L

[2
]

A
ny

bi
nd

in
g

su
pp

or
tin

g
U

R
Is

U
R

Iw
ith

at
tr

ib
ut

es
Se

to
fX

M
L

do
cu

m
en

ts

W
oT

Y
es

T
hi

ng
D

es
cr

ip
tio

n
D

ir
ec

to
ry

(T
D

D
)

Js
on

-L
D

1.
1

(R
D

F)

T
hi

ng
D

es
cr

ip
tio

n
(T

D
)

H
T

T
P

Js
on

Pa
th

,
X

Pa
th

or
SP

A
R

Q
L

Se
to

f
Js

on
-L

D
(T

D
s)

O
ne

M
2M

Y
es

C
om

m
on

Se
rv

ic
es

E
nt

ity
(C

SE
)

R
D

F
on

eM
2M

O
nt

ol
og

y

C
oA

P,
M

Q
T

T,
H

T
T

P
an

d
W

eb
So

ck
et

C
oR

E
L

in
k

(U
R

Iw
ith

at
tr

ib
ut

es
)

or
SP

A
R

Q
L

Se
to

fU
R

Is

SA
R

E
F

Y
es

-
R

D
F

SA
R

E
F

O
nt

ol
og

y
-

-
-

SS
N

Y
es

-
R

D
F

SS
N

O
nt

ol
og

y
-

-
-

C
oA

P
[2

4]
Y

es
C

oR
E

R
es

ou
rc

e
D

ir
ec

to
ry

[2
5]

C
oR

E
L

in
k

(W
eb

L
in

k
[2

0]
)

L
is

to
fl

in
k

pa
ra

m
et

er
s

C
oA

P
C

oR
E

L
in

k
(U

R
Iw

ith
at

tr
ib

ut
es

)
Se

to
fC

oR
E

lin
ks

(U
R

Is
)

V
O

R
TO

[7
]

-
-

Vo
rt

o
L

an
gu

ag
e

-
-

-
-

O
G

C
Y

es
C

at
al

og
ue

Se
rv

ic
e

[1
9]

X
M

L
C

at
al

og
ue

Sc
he

m
a

H
T

T
P

C
om

m
on

Q
L

Se
to

fX
M

L
do

cu
m

en
ts

O
A

S
-

-
Js

on
O

pe
nA

PI
L

an
gu

ag
e

-
-

-

56

A. Cimmino, R. Garcı́a-Castro: WoTHive: Enabling Syntactic and Semantic Discovery in the Web of Things

OGC Sensor Observation Service (SOS) [5] is a
specification designed for IoT infrastructures on the
Web. In this specification, resource descriptions must
be expressed according to the Sensor Model Language.
(SensorML) [2]; these are RDF expressed as XML
documents that contain infrastructure metadata and also
allow for the injection of their data values. The OGC
discovery criterion in this specification is URI requests
with parameters; however, SPARQL queries could also
be used [10].

The Web of Things (WoT) [13] is a Web-
based specification. It relies on Thing Description
Directories, that is, resource directories that expect
IoT infrastructures to submit a Thing Description [13],
that is, a resource description, expressed in JSON-
LD.1.1 [14] containing related meta-data. Discovery
criteria are SPARQL queries, filtering criteria such as
Json Path [3] or XPath [1], and URI requests with
attributes. Nevertheless, the WoT discovery standard
is currently under development, and thus, some minor
decisions may change over time; which is not the case
for the resource descriptions (which are a standard) and
the API of the resource directory.

The oneM2M specification [26] is based on the
concept of CSE as resource directory. CSEs are
endowed to provide two levels of discovery. On the
one hand, IoT infrastructures can register in a CSE by
submitting a URI with parameters similar to the CoRE
Link Format [23]. On the other hand, IoT infrastructures
can register in a CSE by submitting an RDF document
expressed according to the oneM2M ontology (TS-
0012). Then, discovery is carried out differently (TR-
0045), for the former case with a URI request with
parameters and for the latter with a SPARQL query.

The OpenAPI Specification (OAS) defines a standard
programming language-agnostic interface to RESTful
APIs that allows both humans and computers to discover
and understand the capabilities of the service without
access to source code, documentation, or through
network traffic inspection. When properly defined, a
consumer can understand and interact with the remote
service with a minimal amount of implementation
logic. An OpenAPI definition can then be used by
documentation generation tools to display the API, code
generation tools to generate servers and clients in various
programming languages, testing tools, and many other
use cases.

2.2 Discovery in WoT

During the last decade, the World Wide Web Consortium
has been working on the Web of Things (WoT)
specification. Recently, this specification has published
two standards: Thing Description (TD) [13], which

describes metadata and interfaces of physical or virtual
entities that provide interaction endpoints, and WoT
abstract architecture [15], which is a conceptual
framework that defines a set of modular building blocks
and how they interact [15] .

WoT has developed a large number of proposals that
aim to provide capabilities for different research topics.
In all likelihood, one of the most addressed topics is
the Thing Description discovery that aims at filtering a
collection of Thing Description for a given discovery
criterion [31]. Nevertheless, the lack of a standard
approach for discovery from the WoT working group has
led to many different proposals [18].

Recently, the divergence of discovery proposals
motivated the WoT to promote a new group focused
on standardising the discovery in WoT. The building
block that implements discovery is the Thing Description
Directory (TDD), which follows a Resource Directory
approach [6]. The TDD aims to store a collection of
TDs and then provide users with discovery capabilities
by means of three different discovery criterion [6].
However, there is no experimental analysis of the new
implementations of WoT discovery in terms of efficiency
and expressiveness.

The TDs promoted by WoT are expressed in JSON-
LD 1.1 that allows to use procedures over the TDs,
consider them as plain JSONs or as RDF. This
entails that different implementations of the TDD may
range from non-semantic based to full semantic based
discovery. Due to this reason, the discovery promoted
by the WoT can be either syntactic using JSON Path or
XPATH expressions or semantic using SPARQL.

In the Web of Things, there are currently three
proposals that aim to implement the current draft
specification 4. LinkSmart Thing Directory is provided
by the University of Fraunhofer [29], it implements
syntactic discovery based on JSON Path. Logilab
TDD is provided by Siemens; it implements semantic
discovery based on SPARQL. Finally, the WoTHive is
provided by the Universidad Politécnica de Madrid and,
to the authors’ knowledge, is the only implementation
covering the syntactic and semantic discovery relying on
JSON Path and SPARQL. Furthermore, the WoTHive
provides other semantic capabilities, such as syntactic
and semantic validation, or discovery by federation.

3 THE WOTHIVE DIRECTORY

The WoTHive directory architecture is shown in
Figure 1. As can be seen, the directory counts with
four main components: the registration, discovery,

4 https://github.com/w3c/wot-discovery/blob/
main/implementations/README.md

57

https://github.com/w3c/wot-discovery/blob/main/implementations/README.md
https://github.com/w3c/wot-discovery/blob/main/implementations/README.md

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

WoT Hive Directory

Registration
API

Search
API

Management
API

Triple
store

<<CRUD>>

<<filtereded by>>

Sets up and configures
the Resource Directory

Thing
Descriptions

JSONPath
query

SPARQL
query

Notification
API

Provides SSE events
of creation, deletion,

or update of TDs

SPARQL API

Figure 1: WoTHive architecture

notification, and management components. The
former component provides the functions for creating,
reading, updating, or deleting Thing Descriptions in
JSON-LD 1.1 or Turtle formats. The discovery
component implements the JSONPAth and SPARQL
based discovery. The notification component provides
an event-based endpoint following the Server-Sends
Events (SSE) standard that informs about the operations
performed by the registration component. Finally, the
Management component allows a user to set up several
functionalities of the directory (like the connection to
the triple store). Note that WoTHive does not provide
any security mechanisms; the reason behind this decision
is the fact that this service is usually used in a context
where security is handled by a third-party service
(like NGINX). The current WoTHive implementation is
publicly available on GitHub5.

The following subsections report detailed information
on the registration and discovery APIs and how they
function to provide semantic and syntactic capabilities.
The Management API and Notification API are not
explained because they follow a standard (such as
Notification API) or fall outside of the scope of this
article (such as Management API).

3.1 Registration API

The registration API enables four main operations: 1)
creation of TDs, which receives a TD in JSON-LD 1.1
format, enriches it with some registration information
(e.g., creation date) and stores it into the triple store
as RDF triples; 2) Anonymous creation of TDs, which
only difference from the first functionality is the fact
that for the first operation an id must be provided,
whereas for anonymous creation is the WoTHive, which
automatically assigns an id to the TD; 3) Update existing

5 https://github.com/oeg-upm/wot-hive

TD, which can be achieved either replacing the TD with
a specific id (PUT) or by performing a patch operation
(PATCH): 4) Deleting an existing TD, which removes
the TD from the system; and finally, 5) Retrieve TDs,
which can be performed individually by providing a TD
id or listing all the TDs stored. Notice that performing
all these operations requires translating the TDs from
JSON-LD 1.1 to triples, and back, ensuring that all the
triples from one TD are always correctly handled by the
triple store.

In general, the operations that may receive either
a JSON-LD 1.1 or an RDF document expressed in
another serialisation follow the same steps; for instance,
registering a TD: 1) if the TD is expressed in JSON-LD
1.1 the validation using JSON schema is applied; then
the document is translated into the RDF serialisation N3;
2) if the TD is expressed in any other RDF serialisation
than JSON-LD 1.1, then the RDF is serialised into N3;
3) then, the WoTHive validates the TD expressed in N3
using SHACL; 3) after which the TD in N3 is translated
into an INSERT SPARQL query; 4) Finally, the query
is sent to the triple store. Note that validations are
performed as long as the user chooses them to occur (this
feature can be enabled or disabled using the Management
API).

The strategy that WoTHive follows for storing the TDs
and ensuring the correctness of the operations is based on
named graphs. The triple store allows users to define a
label to mark the different triples stored; therefore, all
triples obtained as a result of receiving a TD are marked
with its associated id as the label, that is, the name of the
graph. In addition, the WoTHive creates a special named
graph that stores information about the TDs stored, for
instance, if they had specifically written the td:Thing
(since this information is paramount for translating back
from triplets to JSON-LD 1.1).

As a result, all the previous operations are actually
performed, namely over the named graphs. For example,
a deletion operation consists in uniquely deleting the
named graph marked with the TD id. Another example
is to read a TD, which consists of reading the triplets
specified in the named graph with the id of such a TD
and translating them to JSON-LD 1.1 if needed. In the
operation of registering a TD described previously, the
SPARQL query indicates the named graph.

3.2 Discovery

The WoTHive implements both syntactic and semantic
discovery. The WoT specification for directories allows
syntactic discovery to be implemented using either JSON
Path or XPath, or both. WoTHive implements only the
JSON Path, which better suits the TDs since they are
usually expressed in JSON-LD 1.1. To solve the JSON

58

https://github.com/oeg-upm/wot-hive

A. Cimmino, R. Garcı́a-Castro: WoTHive: Enabling Syntactic and Semantic Discovery in the Web of Things

Path discovery criterion, WoTHive has to retrieve all
the TDs stored in the triple store into memory, translate
them into JSON-LD 1.1, and then solve the filtering
expression.

The WoT specification for directories mandates that
semantic discovery must be implemented with SPARQL,
both the protocol and the query language. To this end,
the WoTHive counts with a triple store for keeping the
TDs. In addition, when a SPARQL query is issued,
the WoTHive delegates solving the query directly to the
triple store. In particular, the WoTHive implementation
is distributed with a Jena Fuseky6.

As a result, the syntactic discovery is not as suitable
as the semantic one, since the former is performed in
memory (thus, it is fast but memory consuming); instead,
the semantic relies on a triple store, which are designed
for solving queries in an optimum time.

4 BENEFITS OF SEMANTIC WEB
TECHNOLOGIES FOR DISCOVERY

Once the WoTHive implementation is described, the
authors would like to mark some common discussion
points worth mentioning between syntactic and semantic
discovery and how the Semantic Web brings benefits to
the discovery.

Discovery based on standard language and
procedures: IoT moves to the adoption of standards
to countermeasure existing heterogeneity in different
aspects, such as interoperability, and therefore the
discovery of IoT should also move in that direction.
The Semantic Web offers standards like SPARQL that
is either a W3C standard query language [22] and also
a W3C standard protocol [8]. Note that XPath is only
a standard query language [1] and JSON Path is not a
standard.

Query language vs filtering language: JSON Path
and XPath are not query languages themselves, but rather
filtering languages for tree-based documents; JSON
and XML, respectively. As a result, JSON Path and
XPath are suitable for filtering documents based on
some attributes at the same tree-level; however, they
are limited for retrieving specific elements of the same
document when there is more than one filter at different
tree levels. In addition, complex queries with special
functions or aggregating metrics are not possible to
express in those filtering languages. Instead, SPARQL
is a query language that lacks these limitations.

Query federation: the IoT nature tends to be
distributed, and to this end, the discovery should also
adapt to this nature. JSON Path and XPath are not
suitable for performing distributed discovery among

6 https://jena.apache.org/documentation/fuseki2/

different WoT directories, and thus do not encompases
the distributed nature of IoT. On the contrary, the
Semantic Web also has a distributed nature, which is
reflected in SPARQL with the federation mechanism.
SPARQL queries may specify multiple endpoints where
such a query must be solved and automatically return
an aggregation of the results obtained; this operation
is specified in the SPARQL standard and is known
as SPARQL federation. Since WoTHive implements
a standard SPARQL endpoint, it also provides the
capability of solving the SPARQL query among a set
of other SPARQL endpoints that can be either WoTHive
directories or any other SPARQL endpoint.

5 EXPERIMENTS

This section aims to provide an empirical set of
experiments to analyse the performance of WoTHive
APIs for registration and discovery (section 5.1 and
subsection 5.2), and also to study the difference between
the syntactic and semantic discovery defined by WoT
(section 5.3). All experiments have been carried
out using the WoTHive Docker recipe7 version 2.5.0.
Furthermore, all scripts and materials used are available
at Zenodo 8. These experiments have been carried out
on an Os X with 2,5 GHz of Intel Core i7 and 16GB of
RAM.

5.1 WoTHive Registration

This experiment aims to test the Registration API. To
this end, two Thing Descriptions have been defined; one
is anonymous and the other has a known id. Using
both and the Taurus software 9, most of the registration
operations have been tested (create, create anonymous,
delete, and retrieve). Operations are performed sending
requests during 1 minute, after which, there is a ramp-up
to 50 during 4 minutes; in other words, during 4 minutes
the number of concurrent requests for each operation
grows up to 50. Figure 2 shows the results achieved by
WoTHive in this experiment.

The y-axis shows the number of virtual users using the
application (vu) and the response times in milliseconds
(ms). The x-axis shows the 5 minutes of execution.
The requests for creating a TD is called in the
legend REGISTER, and the anonymous registration
REGISTER ANON; instead, the retrieving operation
is called GET TD and the deletion is DELETE TD.
Finally, ALL corresponds to the number of concurrent
users performing one of these operations. As a result, it
can be concluded from the results shown in Figure 2 that

7 https://github.com/oeg-upm/wot-hive
8 https://doi.org/10.5281/zenodo.6674151
9 https://gettaurus.org/

59

https://github.com/oeg-upm/wot-hive
https://doi.org/10.5281/zenodo.6674151
https://gettaurus.org/

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

Figure 2: Registration, retrieval, and deletion of TDs
in WoTHive

WoTHive supports a large number of parallel operations
from the Registration API.

5.2 WoTHive Discovery

The WoTHive implementation has especially been
endowed with semantic capabilities, whereas the
implementation is not optimised for syntactic discovery.
For this reason, the syntactic discovery is likely to
perform worse than the semantic discovery. The goal
of this experiment is to find the limitations of syntactic
discovery and compare them with semantic discovery.
To this end, 10 queries are defined, 5 are JSON Path
queries, and the other 5 are equivalent SPARQL queries,
reported in Table 3 and Table 4, respectively. Notice
that the SPARQL queries cover a wide number of types:
SELECT, DESCRIBE and CONSTRUCT.

The experiment consists in first populating the
WoTHive directory with 25 TDs, then all the queries
are solved 8 times each, and the first three results are
discarded as warm-up, with the remaining 5 the average
response time being computed. This process is then
repeated 4 times until the number of TDs reaches 100.
Figure 3 shows the results obtained for this experiment.

As mentioned above, and also shown in Figure 3,
the syntactic discovery of WoTHive is designed to be
used with small amounts of TDs. Instead, the semantic
discovery is capable of dealing with a larger number
of stored TDs. Note that an architecture optimised
for syntactic discovery may have other results. To
address this issue, Section 5.3 presents a comparison
with an implementation that has an optimised syntactic
discovery.

0.0

2.5

5.0

7.5

10.0

12.5

40 60 80 100
TDs stored in the directories

Q
ue

ry
 a

ns
w

er
in

g
tim

e
(s

)

WoT Hive discovery: syntactic semantic

Figure 3: Response times of WoTHive for queries
from Table 3 and Table 4

5.3 Syntactic vs Semantic Discovery

The goal of this experiment is to analyse the performance
of the WoT syntactic and semantic discovery and
to try to analyse which performs better and under
which circumstances. Since the syntactic discovery of
WoTHive is not suitable for large scenarios and for the
sake of fairness, this experiment has been carried out
using another of the candidate recommendations for the
WoT Discovery; the LinkSmart directory10, which is
optimised for syntactic discovery. For this experiment,
the queries reported in Table 3 and Table 4, respectively,
are used. However, JSON Path queries are always sent
to the LinkSmart directory; instead, SPARQL queries are
sent to the WoTHive directory.

The experiment consists in first populating both
directories with the same 1,000 TDs, then all the queries
are solved 8 times each, and the first three results are
discarded as warm-up, with the remaining 5 the average
response time being computed. Then, this process is
repeated 10 times until the number of TDs reaches
10,000. Figure 4 shows a subfigure for each query where
the x axis reports the response time needed by LinkSmart
and WoTHive and the y axis reports the number of
TDs stored in each directory when a query criterion was
solved.

Note that WoTHive obtains faster results for queries
Q1 (sub-figure 4a), Q2 (sub-figure 4b), and Q4 (sub-
figure 4d). These results are especially interesting, since
they not only report faster response times, but also,
as the number of TDs increases, that the trend line of
WoTHive has a lower slope; this is especially relevant in
Q4 (subfigure 4d). However, in Q3 (subfigure 4a) and
Q5 (subfigure 4a) WoTHive gets worse results.

The reason behind these bad results of time is the
10https://github.com/linksmart/thing-directory

60

https://github.com/linksmart/thing-directory

A. Cimmino, R. Garcı́a-Castro: WoTHive: Enabling Syntactic and Semantic Discovery in the Web of Things

0.0

0.1

0.2

0.3

2500 5000 7500 10000
TDs stored in the directories

Q
ue

ry
 a

ns
w

er
in

g
tim

e
(s

)

WoT directories: LinkSmart WoTHive

(a) Results for Q1 from Table 3 and Table 4

0.0

0.1

0.2

0.3

2500 5000 7500 10000
TDs stored in the directories

Q
ue

ry
 a

ns
w

er
in

g
tim

e
(s

)

WoT directories: LinkSmart WoTHive

(b) Results for Q2 from Table 3 and Table 4

0.0

0.1

0.2

0.3

2500 5000 7500 10000
TDs stored in the directories

Q
ue

ry
 a

ns
w

er
in

g
tim

e
(s

)

WoT directories: LinkSmart WoTHive

(c) Results for Q3 from Table 3 and Table 4

0.0

0.1

0.2

0.3

2500 5000 7500 10000
TDs stored in the directories

Q
ue

ry
 a

ns
w

er
in

g
tim

e
(s

)

WoT directories: LinkSmart WoTHive

(d) Results for Q4 from Table 3 and Table 4

0

2

4

6

2500 5000 7500 10000
TDs stored in the directories

Q
ue

ry
 a

ns
w

er
in

g
tim

e
(s

)

WoT directories: LinkSmart WoTHive

(e) Results for Q5 from Table 3 and Table 4

Figure 4: Discovery response times in seconds achieved by LinkSmart and WoTHive

61

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

Table 2: Query answer loads with 10,000 TDs stored

Query
LinkSmart
answer size

WoTHive
answer size

Q1 242 Bytes 740 Bytes
Q2 238 Bytes 740 Bytes
Q3 188 Bytes 1.04 Mega bytes
Q4 274 Bytes 2.12 Kilo bytes
Q5 6.38 Mega bytes 34.04 Mega bytes

size of the query answers; for this sake, the response
sizes when 10,000 TDs are stored have been captured
and reported in Table 2. For example, the result of
Q5 (subfigure 4a) outputs all stored TDs; in the worst-
case scenario LinkSmart returns 10,000 TDs expressed
in JSON-LD 1.1 that are 6.38Mb in memory, instead,
WoTHive returns 10,000 TDs expressed in N3 that are
34Mb in memory. The differences in the serialisations
is the reason behind the bad results of WoTHive: JSON-
LD 1.1 needs fewer characters than the N3 serialisation.
This drawback will be resolved in the future when triple
stores natively support JSON-LD 1.1.

From this experiment, it can be concluded that
semantic discovery is as reliable as syntactic discovery.
Although it is true that when the discovery response
is large, the syntactic discovery tends to answer faster,
the semantic discovery seems to scale up as well as the
syntactic. In addition, for queries where the response
size is simmilar, the results advocate that semantic
discovery can be faster than syntactic discovery.

6 CONCLUSIONS

In this article, the WoTHive implementation for the
Web of Things discovery directory is presented. This
implementation aims to provide the syntactic and
semantic features for discovery. Taking advantage of
this dual nature, the article presents the benefits that
semantic discovery provides and that syntactic lacks.
The experiments carried out aim, on the one hand, at
showing that the WoTHive is a solid implementation for
performing the different operations, such as registration
of TDs and discovery. However, the experiments carried
out have analysed whether the semantic or syntactic
discovery performs better and under what circumstances.

The experiments advocate that semantic discovery
can be as fast and resilient as syntactic; in fact, for
similar response sizes, semantic discovery performs
better. Notice that in the experiments, the syntactic
queries and their equivalent (yet not the same) queries
are solved in different implementations of the WoT
discovery directory. These results argue for the fact that
semantic discovery is as efficient as syntactic discovery.

RDF counts with databases that support native query-
solving mechanisms that are highly optimised; instead,
the JSON databases usually do not count with native
and optimised JSON Path query-solving functionalities,
meaning that when the data scale up, the response times
will only increase. In fact, LinkSmart does the filtering
on memory, whereas the WoTHive SPARQL solving
mechanism actually delegates the whole operation to
the triple store. However, note that the response times
for both implementations are quite good and that the
LinkSmart answers have an O(n) shape. Although the
results of this experiment show that semantic discovery
is faster than syntactic carried out in memory for some
scenarios, if in future an implementation relies on a DB
supporting JSON Path then in all likelihood the response
times will be similar.

In addition, results have shown that semantic
discovery performs worst when response sizes are larger
due to the fact that SPARQL queries do not support
JSON-LD 1.1 responses, the other RDF serialisations
need a larger number of characters to express the same
information than one using JSON-LD 1.1. For this
reason, larger responses will take longer to compute.

In the future, the experimentation will be extended to
add queries that rely on the federation and show how the
overall WoT discovery can benefit from this mechanism
that only exists for semantic discovery. In addition,
to countermeasure the poor performance in the JSON
Path achieved by WoTHive, a translation algorithm to
translate from the JSON Path to SPARQL queries will
be explored. Finally, two additional experiments will be
introduced, one in which the results of the queries are
compressed and the other in which the RDF is translated
back to JSON-LD 1.1. The aforementioned experiments
will show the overhead that RDF verbosity introduces
and also the overhead of changing the serialisation to
JSON-LD 1.1.

7 ACKNOWLEDGEMENTS

This work is partially funded by the European Union’s
Horizon 2020 Research and Innovation Programme
through the AURORAL project, Grant Agreement No.
101016854. The authors would like to thanks Farshid
Tavakoliadeh, the developer and author of LinkSmart,
for his help and guidance in the comparison of the WoT
directories.

REFERENCES

[1] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernández, M. Kay, J. Robie, and J. Siméon, “XML

62

A. Cimmino, R. Garcı́a-Castro: WoTHive: Enabling Syntactic and Semantic Discovery in the Web of Things

Path Language (XPath) 2.0 (Second Edition),”
W3C Recommendation, 2010.

[2] M. Botts and A. Robin, “OpenGIS® Sensor
Model Language (SensorML) Implementation
Specification. Version 1.0.0.” Open Geospatial
Consortium (OGC 07-000), 2007, p. 180.

[3] P. Bourhis, J. L. Reutter, F. Suárez, and D. Vrgoč,
“JSON: data model, query languages and schema
specification,” in Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI symposium on principles
of database systems, 2017, pp. 123–135.

[4] A. Bröring, S. K. Datta, and C. Bonnet, “A
Categorization of Discovery Technologies for the
Internet of Things,” in Proceedings of the 6th
International Conference on the Internet of Things.
ACM, 2016, pp. 131–139. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2991570

[5] A. Bröring, C. Stasch, and Echterhoff, “OGC
Sensor Observation Service Interface Standard,
Version 2.0.0 (OGC 12-006).” Open Geospatial
Consortium, 2012, p. 163.

[6] A. Cimmino, M. McCool, F. Tavakolizadeh, and
K. Toumura, “Web of Things (WoT) Discovery,”
W3C Working Draft, 2021.

[7] Eclipse, “Eclipse vorto-iot toolset for standardized
device descriptions, 2016.” [Online]. Available:
https://www.eclipse.org/vorto/index.html

[8] L. Feigenbaum, G. Todd-Williams, K. Grant-Clark,
and E. Torres, “SPARQL 1.1 Protocol,” W3C
Recommendation, 2013.

[9] D. Guinard and V. Trifa, “Towards the web of
things: Web mashups for embedded devices,” in
Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web (MEM 2009),
in proceedings of WWW (International World Wide
Web Conferences), vol. 15, 2009, p. 8.

[10] C. A. Henson, J. Pschorr, A. P. Sheth, and
K. Thirunarayan, “SemSOS: Semantic sensor
Observation Service,” in 2009 International
Symposium on Collaborative Technologies and
Systems (CTS). IEEE Computer Society,
2009, pp. 44–53. [Online]. Available: https:
//doi.org/10.1109/CTS.2009.5067461

[11] C. Jennings, Z. Shelby, J. Arkko, and A. Keranen,
“Media types for sensor markup language (senml),”
Working Draft, IETF Secretariat, Fremont, CA,
USA, Tech. Rep. draft-jennings-senml-08. txt, 2012.

[12] S. M. Jeong, S. Kumar, A. Cimmino,
R. Garcı́a Castro, L. Liquori, M.-A. Peraldi-
Frati, E. Scarrone, J. Koss, and F. Bob, “ETSI

SmartM2M Technical Report 103717; Study
for oneM2M; Discovery and Query specification
development,” Jun. 2021. [Online]. Available:
https://hal.inria.fr/hal-03261080

[13] S. Kaebisch, T. Kamiya, M. McCool,
V. Charpenay, and M. Kovatsch, “W3C Web
of Things (WoT) Thing Description,” W3C
Recommendation, 2020.

[14] G. Kellog, C. Pierre-Antoine, and D. Longley,
“JSON-LD 1.1A JSON-based Serialization for
Linked Data,” W3C Recommendation, W3C, 2020.

[15] M. Kovatsch, R. Matsukura, M. Lagally,
T. Kawaguchi, K. Toumura, and K. Kajimoto,
“Web of Things (WoT) Architecture,” W3C
Recommendation, 2020.

[16] R. Lea, “Hypercat: an IoT Interoperability
Specification,” IoT ecosystem demonstrator
interoperability working group, 2013. [Online].
Available: https://eprints.lancs.ac.uk/id/eprint/
69124

[17] L. Liquori, E. Scarrone, M.-A. Peraldi-Frati, S. M.
Jeong, A. Cimmino, R. Garcı́a Castro, J. Koss,
A. Q. Khan, S. Kumar, and S. El Khatab, “ETSI
SmartM2M Technical Report 103715; Study for
oneM2M; Discovery and Query solutions analysis
& selection,” Jan. 2021. [Online]. Available:
https://hal.inria.fr/hal-03115497

[18] S. S. Mathew, Y. Atif, Q. Z. Sheng, and Z. Maamar,
“Web of Things: description, discovery and
integration,” in 2011 International conference
on Internet of Things and 4th International
Conference on Cyber, Physical and Social
Computing. IEEE, 2011, pp. 9–15.

[19] D. Nebert, U. Voges, and L. Bigagli, “OGC
Catalogue Services 3.0—general model, Version
3.0.0 (OGC 12-168r6),” OGC Implementation
Standard, 2016. [Online]. Available: http://dx.doi.
org/10.25607/OBP-591

[20] M. Nottingham, “Web Linking,” ser. Request for
Comments, no. 8288. RFC Editor, Oct. 2017.
[Online]. Available: https://www.rfc-editor.org/
info/rfc8288

[21] C. Perera and A. V. Vasilakos, “A knowledge-
based resource discovery for Internet of Things,”
Knowledge-Based Systems, vol. 109, pp. 122–136,
2016.

[22] E. Prud’hommeaux and A. Seaborne, “SPARQL
Query Language for RDF,” W3C Recommendation,
2008. [Online]. Available: https://www.w3.org/TR/
rdf-sparql-query/

63

http://dl.acm.org/citation.cfm?id=2991570
https://www. eclipse. org/vorto/index. html
https://doi.org/10.1109/CTS.2009.5067461
https://doi.org/10.1109/CTS.2009.5067461
https://hal.inria.fr/hal-03261080
https://eprints.lancs.ac.uk/id/eprint/69124
https://eprints.lancs.ac.uk/id/eprint/69124
https://hal.inria.fr/hal-03115497
http://dx.doi.org/10.25607/OBP-591
http://dx.doi.org/10.25607/OBP-591
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

[23] Z. Shelby, “Constrained RESTful Environments
(CoRE) Link Format.” RFC Editor, Aug. 2012.
[Online]. Available: https://www.rfc-editor.org/
info/rfc6690

[24] Z. Shelby, K. Hartke, and C. Bormann, “The
Constrained Application Protocol (CoAP),” no.
7252, p. 112, Jun. 2014. [Online]. Available:
https://www.rfc-editor.org/info/rfc7252

[25] Z. Shelby, S. Krco, and C. Bormann,
“CoRE Resource Directory; draft-ietf-core-
resource-directory-02,” 2014. [Online]. Available:
https://datatracker.ietf.org/doc/rfc9176/

[26] J. Swetina, G. Lu, P. Jacobs, F. Ennesser,
and J. Song, “Toward a standardized common
M2M service layer platform: Introduction to
onem2m,” IEEE Wirel. Commun., vol. 21, no. 3,
pp. 20–26, 2014. [Online]. Available: https:
//doi.org/10.1109/MWC.2014.6845045

[27] I. Tachmazidis, S. Batsakis, J. Davies, A. Duke,
G. Antoniou, and S. S. Clarke, “Optimizing a
semantically enriched hypercat-enabled internet
of things data hub,” in Proceedings of the 9th
International Semantic Sensor Networks Workshop
co-located with 17th International Semantic Web
Conference (SSN@ISWC), vol. 2213. CEUR-
WS, 2018, pp. 64–71. [Online]. Available: http:
//ceur-ws.org/Vol-2213/paper6.pdf

[28] I. Tachmazidis, J. Davies, S. Batsakis,
G. Antoniou, A. Duke, and S. S. Clarke,
“Hypercat RDF: semantic enrichment for
iot,” in Semantic Technology - 6th Joint
International Conference (JIST), vol. 10055.
Springer, 2016, pp. 273–286. [Online]. Available:
https://doi.org/10.1007/978-3-319-50112-3 21

[29] F. Tavakolizadeh and S. Devasya, “Thing
Directory: Simple and lightweight registry of
IoT device metadata,” Journal of Open Source
Software, 2020.

[30] P. Waher and R. Klauck, “Xep-0347: Internet of
things-discovery,” Experimental Standard, version
0.1, vol. 4, 2014.

[31] Y. Zhou, S. De, W. Wang, and K. Moessner,
“Search techniques for the Web of Things: A
taxonomy and survey,” Sensors, vol. 16, no. 5, p.
600, 2016.

APPENDIX A: SYNTACTIC AND SEMANTIC
QUERIES

Table 3: Syntactic queries defined for experiments

JSON Path
Q1 $[?(@.title==%27MyLampThing%27)]
Q2 $[?(@.title=∼/.*LampThing/)]
Q3 $.id

Q4
$[?(@.id==%27urn:dev:ops:32473-WoTLamp
-1234%27)]

Q5 $

Table 4: Semantic queries defined for experiments

SPARQL

Q1

PREFIX td: <https://www.w3.org/2019/wot/td#>

CONSTRUCT {
?s ?p ?o .

} WHERE {
?s td:title ”MyLampThing” .
?s ?p ?o .

}

Q2

PREFIX td: <https://www.w3.org/2019/wot/td#>

CONSTRUCT {
?s ?p ?o .

} WHERE {
?s td:title ?t .
?s ?p ?o .
FILTER regex(?t, ”.*LampThing.*”, ”i”)

}

Q3

PREFIX td: <https://www.w3.org/2019/wot/td#>

SELECT ?s {
?s a td:Thing .
}

Q4 DESCRIBE <urn:dev:ops:32473-WoTLamp-1234>

Q5

CONSTRUCT {
?s ?p ?o .
} WHERE {
?s ?p ?o .
}

64

https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/rfc9176/
https://doi.org/10.1109/MWC.2014.6845045
https://doi.org/10.1109/MWC.2014.6845045
http://ceur-ws.org/Vol-2213/paper6.pdf
http://ceur-ws.org/Vol-2213/paper6.pdf
https://doi.org/10.1007/978-3-319-50112-3_21

A. Cimmino, R. Garcı́a-Castro: WoTHive: Enabling Syntactic and Semantic Discovery in the Web of Things

AUTHOR BIOGRAPHIES

Dr. Andrea Cimmino is
an Assistant Professor at the
Information Systems department
at the Universidad Politécnica
de Madrid, and researcher
at the Ontology Engineering
Group. He obtained his Ph.D.
in Software Engineering at
the Universidad de Sevilla in
2019. Currently he his involved
in standardisation bodies and
in the program committees of

conferences and workshops that are most relevant in
his field. His research activities focus on semantic
interoperability, data integration, and IoT discovery.

Dr. Raúl Garcı́a-Castro is
Associate Professor at the
Computer Science School at
Universidad Politécnica de
Madrid (UPM), Spain. In
2008 he obtained a Ph.D.
in Computer Science and
Artificial Intelligence at UPM,
which obtained the Ph.D.
Extraordinary Award. His
research focuses on ontological

engineering, semantic interoperability and ontology-
based data and application integration. He regularly
participates in standardisation bodies and in the program
committees of the conferences and workshops that are
most relevant in his field, having also organised several
international conferences and workshops.

65

	Introduction
	Related Work
	Discovery in IoT Initiatives
	Discovery in WoT

	The WoTHive Directory
	Registration API
	Discovery

	Benefits of Semantic Web Technologies for Discovery
	Experiments
	WoTHive Registration
	WoTHive Discovery
	Syntactic vs Semantic Discovery

	Conclusions
	Acknowledgements

