

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

66

IoT Hub as a Service (HaaS): Data-Oriented

Environment for Interactive Smart Spaces

Ahmed E. Khaled, Rousol Al Goboori

Computer Science Department, Northeastern Illinois University, Chicago, IL 60625, USA

{aekhaled, ralgoboori}@neiu.edu

ABSTRACT

Smart devices around us produce a considerable volume of data and interact in a wide range of scenarios that

guide the evolution of the Internet of Things (IoT). IoT adds informative and interactive aspects to our living

spaces, converting them into smart spaces. However, the development of applications is challenged by the

fragmented nature due to the vast number of different IoT things, the format of reported information,

communication standards, and the techniques used to design applications. This paper introduces IoT Hub as a

Service (HaaS), a data-oriented framework to enable communication interoperability between the ecosystem’s

entities. The framework abstracts things' information, reported data items, and developers' applications into

programmable objects referred to as Cards. Cards represent specific entities and interactions of focus with

meta-data. The framework then indexes cards’ meta-data to enable interoperability, data management, and

application development. The framework allows users to create virtual smart spaces (VSS) to define cards'

accessibility and visibility. Within VSS, users can identify accessible data items, things to communicate, and

authorized applications. The framework, in this paper, defines four types of Cards to represent: participating

IoT things, data items, VSS, and applications. The proposed framework enables the development of synchronous

and asynchronous applications. The framework dynamically creates, updates, and links the cards throughout the

life-cycle of the different entities. We present the details of the proposed framework and show how our

framework is advantageous and applicable.

KEYWORDS

Internet of Things (IoT), Interoperability, Cards, Events, Applications, Service, Virtual Smart Spaces, Hub

1 INTRODUCTION

The Internet of Things (IoT), over the last decade, has

attracted tremendous community and industry interest

for its potential to convert our everyday living and

working spaces into smart spaces [14][23][24].

Sensors, appliances, and devices in our smart spaces

(e.g., homes, offices, universities, cities) are referred to

-in the context of IoT and smart spaces- as things. In

this paper, we use devices and things interchangeably.

Empowered by the recent advances in low-power

wireless technologies and embedded processing, the

main research focus is shifted to include the different

infrastructure options, sensing technologies,

communication standards and protocols, in addition to

 Open Access

Open Journal of Internet of Things (OJIOT)

Volume 8, Issue 1, 2022

www.ronpub.com/ojiot

ISSN 2364-7108

© 2022 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

This paper is accepted at the International Workshop on Very

Large Internet of Things (VLIoT 2022) in conjunction with the

2022 VLDB Conference in Sydney, Australia. The proceedings

of VLIoT@VLDB 2022 are published in the Open Journal of

Internet of Things (OJIOT) as special issue.

A. E. Khaled, R. Al Goboori: IoT Hub as a Service (HaaS): Data-Oriented Environment for Interactive Smart Spaces

67

many other aspects of IoT [1][7][13]. Users and

developers interact with IoT things directly or

indirectly through platforms and edge devices. Such

interactions include triggering the different offered

services and functionalities by the IoT things, updating

and managing the different IoT things, and analyzing

data collected and reported by such things. Through

such interactions (between users or platforms and IoT

things) and interconnections (between different things),

IoT things bring more informative and interactive

dimensions to build intelligent environments and

develop domain-related applications.

The huge range of IoT things with different

processing capabilities, resources, and sensory

technologies enables a wide range of interactions in

many scenarios. With such nature of IoT devices and

interactions, a broad set of application-layer

communication protocols used by application

developers, edge devices, software platforms, and IoT

things to interact have been developed. The IoT

communication protocols are designed to satisfy such

dynamic and ad-hoc nature of smart spaces [2][4][6],

where each protocol addresses a set of requirements

and aspects (e.g., low-power operation, lightweight

message header, confirmable interactions). However,

the development of IoT applications and the

enablement of data analysis and mining tasks are

challenged by such a highly fragmented nature of IoT.

They require considerable integration effort and human

intervention when different communication protocols

are utilized. To avoid such isolation and for friction-

free communication between IoT things, platforms, and

developers, the research topic of communication

interoperability [4][16][19] has the potential to

homogenize communications with a set of mechanisms

and translation schemes.

Under the IoT umbrella, things report information

according to their types, capabilities, functions, and

offered services. Such information includes 1) identity

information about the thing (e.g., name, vendor), 2)

context information (e.g., location), 3) status

information (e.g., on, sleep, requires maintenance), 4)

collected data from the environment (e.g., sensory

data). According to thing-to-thing, thing-to-platform,

and platform-to-users communication channels and

patterns, we point out three main types of interactions

that include: 1) commands to services and functions

offered by a thing; 2) synchronous query and data

analytic related tasks on the currently available data

items collected and reported by IoT things and users;

and 3) asynchronous tasks by application developers

(e.g., call-back functions, event-based scheduled

actions) that address future events. As a regular data

packet, an interaction is composed of a header with

descriptive information about the communicating

entities and a payload as the content of the message is

structured and formatted according to the used

communication protocol.

Proposed solutions in the literature [18][9] target

the interoperability challenge by matching interactions

by IoT things that use different communication

protocols concerning the identifiers. Such solutions

utilize centralized platforms or edge devices throughout

the IoT things report information and communicate

with other IoT things. An identifier of interaction can

be a topic in Message Queuing Telemetry Transport

(MQTT) protocol [17] or URL in Hypertext Transfer

Protocol (HTTP-Rest) or Constrained Application

Protocol (CoAP) protocols [26][22]. For example, if

HTTP-things POST information on a URL

named /Sensor/Data, MQTT-things subscribed to a

topic called /Sensor/Data will receive the information

announced by the first group. Other proposed solutions

[19] address the communication interoperability

challenge through specific translation schemas between

the different communication protocols. Such solutions

allow the translation of the entire interaction from one

protocol to another and enable thing-to-thing

communication. However, the proposed approaches

and solutions restrict the interoperability through only

the identifier of the interaction without exploiting other

metadata and attributes encoded in the header and

payload of each interaction. The proposed solutions

also focus on the interactions between IoT things and

not the interactions between IoT things and the

different users and developers. Users and developers

should interact with IoT things and utilize the collected

knowledge and information to build queries, tasks, and

event-based applications. Abstracting information and

knowledge from IoT things and users about

interactions and applications enables a broader

opportunity for interoperability and interactions

between the different entities of the ecosystem.

This paper introduces IoT Hub as a Service (HaaS),

a framework that enables data-oriented interoperability

and provides an environment for IoT application

development. IoT things and users interact with the

Hub using different communication protocols. The

framework abstracts things' information and reported

data items as well as developers' queries and tasks into

protocol-independent programmable objects referred to

as Cards. Each Card represents a specific entity or an

interaction of focus with a set of meta-data and

attributes. The framework manages and indexes cards’

attributes then links the cards’ attributes accordingly to

enable interoperability and data management and

provide an application development environment. The

framework, in this paper, defines four types of Cards to

represent: 1) participating IoT things, 2) Data-Items

reported by things and users, 3) Virtual Smart Spaces

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

68

(VSS), and 4) Applications. Using the IoT Hub,

developers design and build applications that include:

1) queries, filters, and data analysis tasks; and 2) event-

based actions, alerts, and call-back functions. The

framework utilizes the Hub’s operating system to

provide a run-time environment for the applications to

run on the collected and reported information and

interactions.

The framework allows users to create and configure

VSS as virtual representations of physical smart spaces

(e.g., smart home, office). Within a VSS, users can

identify which IoT things can interact, which data

items to be accessed, and authorized users to access

such space and run applications. The framework

dynamically creates, updates, and links these cards

throughout the life-cycle of the different entities.

Consider a user-defined VSS that logically groups a set

of personal healthcare sensors and their generated data

items as an example. Authorized users can utilize the

defined VSS to build healthcare monitor applications to

answer specific queries.

The contribution of the proposed framework for the

IoT Hub can be summarized as follows: 1) The

framework allows IoT things and users who use

different communication languages to interact with the

IoT Hub; 2) The framework presents data-oriented

interoperability through abstracting knowledge and

information in the various interactions and the various

participating entities into programmable entities called

Cards; and 3) Indexing and linking the different

protocol-independent cards to provide data-oriented

interoperability; and 4) providing an IoT application

development environment and the design of VSS that

define accessibility, visibility, and interaction between

the different cards. The framework utilizes On-Cloud

resources and platforms to enable accessibility by IP-

communicating IoT things, users, and developers from

anywhere and provide scalability to consider more

communication protocols and dynamic processing

capabilities. The Hub may also reside on an edge

device (e.g., local server) in a local organization

allowing IoT things with other communication

technologies (e.g., Bluetooth) to interact with the Hub.

In this paper, we present the architecture of the IoT

Hub, the details of the framework’s different modules,

and the structure of the different Cards and their life-

cycle. The paper is organized as follows: Section 2

highlights related work compared to the proposed

framework. Section 3 describes the proposed IoT Hub

framework, the architecture, and a discussion on the

different modules. Section 4 presents the various cards

and then discusses the structure and the corresponding

meta-data and attributes. Section 5 offers the life-cycle

and the interactions between the cards, then presents

the different design aspects and implementation plan.

Finally, the paper is concluded with a discussion on

future directions in section 6.

2 BACKGROUND AND RELATED WORK

This section provides a quick overview of the

commonly used IoT application-layer communication

protocols that we refer to and use in this paper. We

then highlight proposed frameworks and approaches

that target IoT interoperability in the literature.

2.1 Overview of Messaging Patterns

Communication between different entities (e.g., things,

applications, platforms, users) in an IoT ecosystem

follows one or more messaging patterns. A messaging

pattern describes how such entities are connected and

the sequence of messages required to establish and

terminate communication channels for message

exchange. This paper focuses on two major messaging

patterns: the request/response pattern and the

publish/subscribe pattern [26][12][2].

2.1.1 Request / Response Pattern

This pattern describes the client/server messaging

model, where clients request resources offered by a

server. In a dynamic and distributed peer-to-peer

environment like IoT, an entity can be client and server

simultaneously, depending on the role such entity plays

at a particular point in time. If an on-cloud platform

asks a sensor for a data item, the sensor plays a server

role. If the same sensor requests information from the

platform, the sensor plays a client role. In such a

communication pattern, a resource (e.g., file, data

record, status information) is identified and referred to

by Uniform Resource Identifier (URI) in the client's

request to the server. Under this pattern, Hypertext

Transfer Protocol (HTTP) and Constrained Application

Protocol (CoAP) are the widely used IoT

communication protocols [26][22].

• HTTP is the widely used application protocol for
distributed and collaborative ecosystems and is
believed to be the foundation of data
communication on the World Wide Web. HTTP
implements the request/response paradigm model
over TCP and provides different REST methods
such as GET, POST, PUT, and DELETE for clients
to access various resources hosted by servers [22].

• CoAP is designed for resource-constrained devices
(e.g., battery-powered sensors) and dynamic ad-hoc
networks like IoT. CoAP implements the
request/response model over UDP for lightweight
and reduced-size headers. CoAP compensates for
UDP’s unreliability through acknowledgment and

A. E. Khaled, R. Al Goboori: IoT Hub as a Service (HaaS): Data-Oriented Environment for Interactive Smart Spaces

69

retransmission mechanisms. CoAP offers similar
HTTP-REST methods (GET, POST, PUT, and
DELETE) over confirmable and non-confirmable
messages to access the various resources. In
addition, CoAP supports multi-casting for things to
communicate messages with several other entities
[5][15][26].

2.1.2 Publish / Subscribe Pattern

In this messaging pattern, there are three roles: 1)

publishers post information over topics to an

intermediary message broker, 2) subscribers express

interest in a particular topic(s) with the broker, and 3)

message broker performs the filtering and routing of

the messages from publishers to subscribers. A topic is

a user-defined communication channel where messages

can be sent (published) and received (subscribed to).

Like URLs of request/response patterns, topics can be

organized into a namespace with a hierarchical

structure. Another essential task for the broker is to

enable the publishers and subscribers to be loosely

coupled - where they do not know of each other

existence and do not need to work at the same time.

Such a communication model enables highly scalable

and flexible solutions, where clients (publishers and

subscribers) only communicate over the topic of

interest without knowing each other. The process of

selecting messages for reception and processing is

known as filtering, with two common forms. In topic-

based filtering, the messages are published to

publisher-defined topics, and subscribers receive

messages published on such topics. In content-based

filtering, the messages are delivered to a subscriber if

the content of those messages matches subscriber-

defined constraints. Under such messaging pattern,

Message Queue Telemetry Transport (MQTT) and

Advanced Message Queuing Protocol (AMQP) are the

widely used IoT communication protocols [12][3].

• MQTT is a TCP-based event-driven paradigm that

allows clients (e.g., IoT devices, users) to publish

messages over topics and to subscribe to topics. An

MQTT broker is the central communication point in

dispatching and routing messages between

publishers and subscribers mainly for synchronous

communication. The broker usually resides on an

on-cloud platform or an edge device (e.g., local

server). Each MQTT subscriber has a permanently

open TCP connection to the broker. If the

connection is interrupted, the broker may buffer

published messages to be sent when the subscriber

is back online [17][12].

• AMQP follows the publish/subscribe model where
brokers (also known as mediators) allow messages

to be stored in queues for asynchronous
communication. The receivers collect messages
from queues when they have the capacity to process
them. The broker distributes messages to different
queues according to routing rules. Messages have
routing keys, the queues have binding keys, and the
broker learns which queue the message belongs to
from the routing-binding relationship. A queue may
have several binding keys, and multiple queues can
also share one binding key. The broker replicates
messages and sends them to multiple recipients
accordingly. Another way is through the headers
exchange acts with the message's header, instead of
using a routing key. A header contains values that
match with the binding. The argument with the
name x-match determines if all values must match
(value: all) or only one must match the binding
(value: any). While the former corresponds to the
direct exchange, the latter can produce the same
effect as a topic exchange [3].

2.2 State of the Art

C. Lee et al. [4] proposed a hybrid IoT communication

framework based on a software-defined network (SDN)

that intercepts all packets from CoAP and MQTT, and

vice versa. The proposed framework defines URL rules

to specify the topic and differentiate the homogenous

(e.g., from CoAP client to CoAP client) from

heterogeneous packets (e.g., from MQTT client to

CoAP client). If packets belong to the same protocols,

they operate as the original communication scenarios,

and the SDN just ignores this traffic. When the traffic

of heterogeneous protocols is intercepted, the SDN

switch delivers these packets to the SDN controller.

The SDN controller is responsible for redirecting the

packets to the cross proxy for protocol translation.

P. Bellavista et al. [18] proposed a gateway-oriented

architecture where gateways jointly exploit MQTT and

CoAP to achieve highly scalable IoT device

management through dynamic hierarchical tree

organizations. The proposed gateway extends the Kura

Eclipse framework, which is based on the interworking

of MQTT that is already integrated into the Kura

framework, with CoAP coordination functionality as an

added protocol. The extended Kura framework offers

improved scalability and reduced latency for

communication/coordination among wide-scale sets of

geographically distributed IoT devices interworking via

gateways for efficient resource lookup. MQTT plays a

central role and is strongly exploited by the Kura

framework, but exhibits nonnegligible limitations in

terms of scalability, e.g., inefficient usage of TCP

connections toward the broker when growing the

number of IoT devices in a gateway locality.

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

70

Ponte [9] is an Eclipse IoT project that offers

uniform open APIs to let developers create applications

supporting CoAP, MQTT, and HTTP REST

communication protocols through an independent

module for each protocol. The Ponte gateway can

reside in a server or edge where clients with different

communication protocols can communicate. Ponte

provides a centralized solution for interoperability,

where the smart space resources reside in the cloud and

can be accessed from different clients. Data collected,

from the three modules, is stored in a database;

therefore, no matter which protocol clients utilize for

communication, they can access the same resources.

A. Khaled et al. [2] introduced a framework named

Atlas IoT communication framework. The framework

tools up IoT things with protocol translators that could

be either hosted on the IoT things or in the cloud. The

proposed framework is designed to facilitate

interoperability among heterogeneously

communicating things without taxing the performance

of things that are homogenously communicating. The

framework itself utilizes the topic concept and uses a

meta-topic hierarchy to map out and guide the

translations. The translators target seamless thing-to-

thing homogenous and heterogeneous communication

and do not focus on engaging the user in developing

queries, applications, or defining virtual smart spaces.

P. Desai et al. [19] proposed a gateway and

semantic web-enabled IoT that provide translation

between messaging protocols such as XMPP, CoAP,

and MQTT using a multiprotocol proxy with a separate

interface for each protocol. The proposed gateway,

located between the physical-level sensors and the

cloud-based services, has a centralized topic router that

maps information from the different communication

protocols. EMQTT [10] is a massively scalable MQTT

broker for IoT and mobile applications licensed under

Apache. An EMQTT server implements the MQTT

protocol and supports a set of plugins that allows other

communication protocols to coexist in parallel (e.g.

MQTT-SN, CoAP).

The proposed approaches target the interoperability

challenge concerning the identifiers (e.g., a topic in

MQTT, a URL in HTTP) to allow thing-to-thing

interaction. Other solutions address the interoperability

challenge through translation schemas between the

different communication protocols. Such schemas

allow the translation of the interaction from one

protocol to another. However, the proposed approaches

and solutions restrict the interoperability through only

the interaction’s identifier without exploiting other

metadata and attributes encoded in the header and

payload of each interaction. The proposed solutions

focus on the interactions done by IoT things, not the

interactions by the different users and developers to

design virtual smart spaces and build applications.

Users and developers interact with IoT things and

utilize the collected knowledge to build queries, tasks,

and applications. Abstracting information about

participating entities and their different interactions

enables broader interoperability and two-way

interactions between the different ecosystem entities.

3 IOT HUB

In this section, we present a brief overview of the

proposed IoT Hub in terms of the different entities,

cards, and architecture of the proposed framework.

3.1 Main Entities and Cards

Before discussing the architecture and the different

components and modules, we first need to define the

main entities that communicate and interact throughout

the IoT Hub. The main entities can be summarized

into:

• IoT things communicate with the Hub to share

identity and status information and also to report

data items (e.g., sensory data collected from the

surrounding environment). IoT things employ

different communication protocols (e.g., HTTP,

MQTT) to communicate and interact with the Hub

and also accept interactions and commands from the

Hub.

• Users communicate with the Hub to visualize
information about connected things and the reported
data items, then run synchronous applications.
Users may also create data items and communicate
such items with the Hub. Synchronous applications,
as discussed later, include queries and data analysis
tasks, and user-defined applications. Users also
create and configure virtual smart spaces (VSS) as a
logical representation of physical smart spaces and
a way to define accessibility and interactions.
Within a VSS, users can identify which IoT things
can interact and communicate, which data items to
be accessed, the authorized users, and which
applications to run.

• Application Developers communicate with the Hub
to build another category of applications, known as
asynchronous applications. This category addresses
tasks requiring monitoring future information and
knowledge from IoT things and data items within
user-defined VSS. Asynchronous applications
include customized alerts, call-back functions, and
event-based scheduled actions. The Hub utilizes
simplex and complex processing techniques for
event handling, real-time data processing, and the
runtime environment for such applications.

A. E. Khaled, R. Al Goboori: IoT Hub as a Service (HaaS): Data-Oriented Environment for Interactive Smart Spaces

71

The different interactions by the ecosystem's

entities include 1) identity information reported by a

thing; 2) commands and instructions to services offered

by a thing; 3) sensory data streams, periodic status

information, and events reported by IoT things; 4)

synchronous query (e.g., filter, search) and data

analytic related tasks (e.g., accumulated content,

average sensory data within a time window) on the

currently available things' information and data items;

and 5) asynchronous tasks (e.g., alerts, call-back

functions, event-based scheduled actions). Any of these

interactions, as a regular data packet, is composed of 1)

header - meta-data and descriptive information about

the communicating parties (e.g., IoT thing that created

the data item, a user who developed a synchronous

query); and 2) payload - the actual content of the

interaction that can be structured, semi-structured, or

unstructured with different types (e.g., text file, plain

message, XML page, JPEG image) and formats based

on the communication protocol and standard used by

the entity.

Utilizing the meta-data and descriptive information

embedded in the different protocol-dependent

interactions’ header and payload enables data-oriented

interoperability. The framework of the IoT Hub

abstracts the various interactions and the ecosystem’s

entities into protocol-independent programmable

objects referred to in this paper as Cards. Each Card

represents a specific entity or an interaction of focus

with a set of attributes.

The framework, in this paper, defines four types of

Cards to represent the ecosystem entities and

interactions of focus:

• Data-Item Card: describes and captures data and

knowledge (e.g., sensory data) collected and

reported by IoT things and users.

• IoT thing Card: describes identity and activity

information of the participating IoT thing involved

in creating, modifying, requesting, and accessing

the different data items.

• Virtual Space Card: describes virtual smart space

(VSS) as a logical group of IoT things (e.g.,

belong to a particular user, belong to a specific

organization, co-exist in the same smart space like

home) to restrict communication visibility,

function trigger, and data item accessibility to

authorized users, developers, and things.

• Application Card: describes an application

(synchronous or asynchronous) designed and

developed by developers within accessible VSS to

query and analyze available data items, create

event-based tasks, develop user-defined

application and configurable alerts, and trigger

services offered by things.

Figure 1: The different cards, along with their

interactions and connections

The framework manages and indexes the different

cards then links their descriptive attributes to enable

interoperability and data management. The framework

then allows the development of a wider set of

applications as well as provides a runtime environment

for IoT application development and execution.

3.2 Architecture

As illustrated in Figure 1, the different cards are

dynamically created and updated by the framework

throughout the life-cycle of the various entities and

interactions by IoT things, users, and developers. The

framework links and indexes the descriptive attributes

in the different protocol-independent cards to 1) reflect

the current status of the ecosystem and the connected

entities; 2) enable data-oriented interoperability among

heterogeneously communicating entities; 3) allow

efficient data management as well as the development

of IoT applications. To achieve these goals, in this

subsection, we present an overview architecture for the

proposed framework then show the details of the

different modules. The framework of the IoT Hub, as

illustrated in Figure 2, is divided into a set of main

modules as follows:

The Communication Interface module hosts the

different communication channels that IoT things,

users, and developers can use to communicate and

interact with the IoT Hub. This module is composed of

individual and independent sub-interfaces, an interface

for each supported communication protocol (e.g.,

MQTT, HTTP, CoAP). IoT things, users, and

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

72

Figure 2: The overall architecture of the IoT Hub

developers -with respect to the communication

language and protocol used- address these interfaces to

interact with the Hub. For example, HTTP-

communicating IoT things POST/PUT data items with

the Hub through the HTTP protocol interface. On the

other side, MQTT-communicating users connect with

the IoT Hub through the MQTT protocol interface,

publish queries and subscribe for results and

information about the communicated data items.

The Communication Broker and Processor module

accepts protocol-dependent IoT things' information and

reported data items as well as users’ queries and

developers’ applications received through the different

communication interfaces. According to the

specifications of the communication protocol, the

broker parses metadata and attributes embedded in the

header and payload of the received interaction. The

processor then creates new protocol-independent cards

or updates cards in the Cards Repository.

The Cards Repository is a schema-less lightweight

database to store, manage, and access the different

cards (things, data items, virtual spaces, and

applications) created and updated by other modules.

The choice of such a database is for the support it

offers to structured, semi-structured, and unstructured

data. The User and Development Dashboard module is

the graphical interface of the Hub through which users

visualize available data items and things and then

design and configure VSS. The interface also allows

the developers to design and build synchronous

queries, tasks, and asynchronous event-based

applications that utilize available cards, as discussed in

details next section.

The Run-time Engine performs two main functions.

The first function is to accept users' requests to create

and manage VSS, which leads to creating and

managing virtual space cards in the repository. The

second function is to accept the different designed and

developed applications. This module checks the

validity of an application according to a set of semantic

rules then creates and manages application cards in the

repository. With the help of the Cards Analysis Engine

module and the host operating system of the Hub, the

Run-time Engine executes the different applications

using independent threads in a run-time environment

and returns the results.

The Cards Analysis Engine hosts libraries for the

different data analysis, pattern detection, and real-time

event processing techniques as tools for application

developers to design and develop IoT applications. The

engine processes the new or updated cards; indexes

then links them with other available cards in the

repository throughout the different attributes and meta-

information as discussed in the following subsection.

This module also runs periodically to infer and

understand certain attributes from the cards (e.g., the

domain of specific data items, the nature of the

content).

The framework utilizes On-Cloud resources and

platforms to 1) enable accessibility by IP-

communicating IoT things, users, and developers from

anywhere; 2) provide horizontal scalability allowing

more communication protocols and interfaces to be

integrated; and 3) provide vertical scalability by extra

storage and dynamic processing capabilities. The Hub

may also reside near things in a local organization on

an edge device (e.g., a local server). In this case, IoT

things with other communication technologies (e.g.,

Zigbee, Bluetooth) can communicate and interact with

the Hub.

4 CARDS: STRUCTURE AND ATTRIBUTES

The proposed framework abstracts information about

participating entities along with their different

interactions with the Hub. There is a wide range of

interactions from information and data items

communicated by IoT things and users to queries and

applications by users and developers. Such abstracted

knowledge is transformed into a set of programmable

protocol-independent objects referred to as Cards. The

focus of this paper is on four different types of cards

that represent entities and specific interactions of focus:

Data-Item cards, Thing cards, Virtual-Space cards, and

Application cards.

This section presents the different cards then

discusses the structure and the attributes that shape

every card. The attributes listed in the different cards

A. E. Khaled, R. Al Goboori: IoT Hub as a Service (HaaS): Data-Oriented Environment for Interactive Smart Spaces

73

represent an initial set of attributes defined by the

framework. The Hub allows more framework-defined

and user-defined attributes to be added when required.

The ability to dynamically add or modify attributes

addresses the dynamic nature of the ecosystem’s

interactions and entities. The user-defined attributes

also enable ad-hoc scenarios or use-cases to be

considered. The cards are schema-less; some attributes

are mandatory, while others are considered optional

with respect to the requirements.

4.1 Data Item Card

The data item type of cards represents sensory

information collected by IoT things from the

surrounding environment and other data streams

generated and communicated by things. Users also can

create and communicate data items with the Hub.

These interactions are delivered to the Hub using

different communication protocols and received by the

corresponding communication interface. The

communication broker of the Hub parses these

interactions, analyzes the meta-data in both the header

and the payload of the interaction, and then converts

them into new or updated data-item cards in the

repository. If the meta-data refers to an item with a new

identifier, the broker translates the interaction into a

new data item card; otherwise -if the identifier already

exited- the broker updates an already existing data item

card.

As illustrated in Table 1, a data item card -

following the key-value format- is composed of a set of

framework-defined attributes that are categorized into

1) Identification info, set of attributes that uniquely

identify the data-item card in the repository; 2) Users

and Things info, set of attributes representing users and

IoT things that modify, request, and subscribe to the

data item; 3) Statistical info, set of attributes that track

access and modification requests to the data item; and

4) Content info, set of attributes that capture the format

and domain of the content as well as the actual payload

of the data item. The values of some attributes (e.g.,

name, creator, created date) are created upon the

reception of the interaction by the Hub. The values of

other attributes are added and updated while creating or

modifying other types of cards (e.g., list of things

subscribed to the data item, the access frequency to the

data item). Some attributes receive their values directly

through users’ queries/inputs (e.g., type and domain of

the content) or are inferred by the Cards Analysis

Engine module. The Analysis Engine also applies

different analysis and mining techniques to learn and

infer the value of some attributes (e.g., the domain of

the content).

Table 1: Structure of a Data Item Card

Attribute Description

Identification Info

Unique ID URL or Topic or Short ID assigned by the

framework

Name Short name describing the item

Creator ID of the IoT thing or user first created the

item (e.g., Publish request, Post request,

User’s Input)

Virtual Spaces List of the smart spaces where this item

can be accessed. By default, this item is

public and can be accessed in any VSS.

Time to Live Date/time when this item expires and/or

be deleted (disabled by default)

Users and Things info

Modifier List of users and IoT things update/modify

the item (e.g., Publish requests, Post/PUT

requests, Users’ inputs)

Requester List of users and IoT things request the

item (e.g., GET requests, applications,

queries)

Subscriber List of users and IoT things subscribe for

updates to the item (e.g., Subscribe

requests, Callback functions, even-based

applications)

Statistical info

Created Date/time this card is created

Modified Date/time this card is last modified

Access Frequency Number of times this card is accessed by

requesters and subscribers

Modify Frequency Number of times this card is modified

Content info

Format

The format of the data item (e.g., text file,

image JPEG, XML, JSON)

Type The nature of the data item (e.g., sensory

data, reported event, configuration,

information)

Description The meaning of the content (e.g.,

temperature value in Celsius, humidity

value, noise level)

Domain List of possible applications this item can

be used in (e.g., healthcare, traffic, smart

homes)

Payload the latest version of the data item's body

Accumulated The concatenated version of payload’s

updates

4.2 Thing Card

The thing type of cards represents information about

the participating IoT things (e.g., sensors, devices,

appliances) that communicate and interact with the

Hub. Accordingly, the communication broker of the

framework creates new thing cards or updates already

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

74

Table 2: Structure of a Thing Card

Attribute Description

Identification Info

Unique ID Defined by the thing or a short ID

assigned by the framework

Name Short name describing the participating

thing

Virtual Spaces List of the smart spaces within such IoT

thing can be accessed. By default, this

item is public and can be viewed and

accessed in any VSS.

Thing Info

Type The type of the thing (e.g., temperature

sensor, motor).

Vendor The name/identity of the Manufacturer

Model The specific model of the thing

Description Short description on the thing’s

capabilities

Module The communication module used by the

thing (e.g., Wi-Fi, Bluetooth, Zigbee)

Address The address of the thing (e.g., IP for

Internet enabled thing)

Location The GPS coordinates (disabled by

default)

Statistical Info

Status Date/time for the latest data-item and

updates such thing engaged in, reflecting

the thing’s status (e.g., active, sleep)

Access Frequency Number of times this card is accessed

(e.g., GET request, Developers' tasks,

Users' queries/inputs)

Data Item info

Created List of data items created by this thing

Modified List of data items modified by this thing

Requested List of data items requested by this thing

Subscribed List of data items subscribed to by this

thing

existing thing cards. IoT things create, modify -through

POST, PUT, PUBLISH, DELETE methods- or request

-through GET, SUBSCRIBE methods- different data

item cards.

As illustrated in Table 2, the thing card -following

the key-value format- is composed of a set of

framework-defined attributes that are categorized into

1) Identification Info, a set of attributes that uniquely

identify an IoT thing card in the repository; 2) Thing

Info, set of attributes that describes the IoT thing by

type, vendor, communication module, and location; 3)

Statistical Info, set of attributes that track the activity of

the thing; and 4) Data-item Info, set of links between

the IoT thing and the different data-items such thing

created, modified, subscribed to, and requested. Similar

to Data-item cards, the values of some attributes (e.g.,

Table 3: Structure of a Virtual Space Card

Attribute Description

Identification Info

Unique ID Created by the user or assigned by the

framework

Creator Information about who designed the VSS

Description short description of the VSS

Type public (accessible by any user) or private

space (accessible only by specific set of

users)

Space info

Created Date/time when the VSS is created

Users List of users and developers allowed to run

applications/queries within the VSS

Things List of IoT things accessible within the VSS

Data Items List of data items accessible within the VSS

Name, Address) are created upon the connection

between the IoT thing and the Hub. The values of other

attributes are added and updated while creating or

modifying other types of cards (e.g., the access

frequency to the thing card). Other attributes receive

their values directly through users’ queries/inputs (e.g.,

description, module).

4.3 Virtual Space Card

The virtual space type of cards represents the logical

grouping of IoT things and data items. For example,

users create VSS for IoT things in their homes or

offices and include the data items generated by such

things. The authorized users can visualize and interact

with IoT things and data items. Also, virtual spaces can

define the working areas and boundaries for

applications. For IoT applications (e.g., query, task), as

an example, users create virtual space and list specific

IoT things and sensors needed for such applications.

Through the User and Development Dashboard of

the framework, users create VSS to define the

communication visibility of IoT things and data item

accessibility to authorized members (users, developers,

and things). Applications (e.g., healthcare, traffic,

homes) can utilize the virtual space to collect context-

aware information from the target environment, secure

access windows over specific IoT things and data

items, and build virtual space-oriented applications. As

illustrated in Table 3, the virtual space card -following

the key-value format- is composed of a set of

framework-defined attributes that are categorized into

1) Identification Info, set of attributes that uniquely

identify and describes the VSS; and 2) Space Info, set

of links between the created virtual space and the

different accessible data-items and IoT things within

such space as well as authorized users and developers.

A. E. Khaled, R. Al Goboori: IoT Hub as a Service (HaaS): Data-Oriented Environment for Interactive Smart Spaces

75

4.4 Application Card

IoT things engage in a wide range of interactions with

other things, users, and developers throughout the IoT

Hub. As mentioned before, IoT things report different

types of information according to things' type,

capabilities, and offered services. Such information

includes but is not limited to 1) identity information

about the thing (e.g., name, vendor), 2) context

information (e.g., location), and 3) collected data from

the surrounding environment (e.g., sensory data). The

focus of the Hub is to abstract and index the different

interactions reported by heterogeneous IoT things and

then link the attributes to enable designing and building

applications. The Hub creates corresponding

programmable objects -the thing and data item cards-

and allows users and developers to execute applications

(tasks and queries). The Run-time Engine of the Hub

accepts designed and developed applications then

checks the applications’ validity according to a set of

semantic rules, as discussed in this sub-section. The

engine then creates or modifies application cards in the

repository accordingly. An application card represents

the different queries and tasks a developer can design,

develop, and deploy given the other types of cards

(data items, virtual smart spaces, and IoT things).

In this paper, as illustrated in Figure 3, we

categorize the applications supported by the proposed

framework into two main categories: 1) Synchronous

applications and 2) Asynchronous applications.

4.4.1 Synchronous Applications

Each of the data items, things, and virtual spaces cards

has meta-data and accumulated information updated

and linked to other cards. Synchronous applications

refer to tasks and queries that can be answered directly,

given the currently available cards in the repository. A

query, as illustrated in Table 4, is defined using three

parameters:

• Scope: specifies the search space and domain for

the work of the query, in terms of VSS(s) and

specific cards.

• Return: lists a set of attributes to be accessed from

the cards within the defined scope.

• Conditions: defines an optional set of conditions to

select specific cards from the defined scope. There

are no conditions by default.

The run-time engine of the Hub converts such

database-independent queries into database-dependent

ones with respect to the type of database used to

implement the repository of the cards.

Figure 3: The two main categories of architectures

supported by the IoT Hub

Table 4: Structure of a Synchronous Application

Card

Attribute Description

Identification Info

Unique ID Created by the user or assigned by the

framework

Creator Information about the developer

Created Date/time when the application is created

Type The type of the application can be:

Synchronous Query, Synchronous tasks, or

Asynchronous task (outside the focus of this

paper)

Query Info

Scope Domain of the query

Return The required attributes from the defined

scope

Conditions Optional list of conditions to select specific

cards

Task Info

Scope Domain of the task

Method The body of the task

Input The required inputs

Results Info

Result The result of running the query/task

Frequency Number of times the query/task is executed

On the other hand, a task -as illustrated in Table 4- is

defined using three parameters:

• Scope: specifies the search space and domain for the
work of the task, in terms of VSS(s) and specific
cards.

• Method: accepts user-defined functions or one of the
data-analysis tools available to the developers by the
Card Analysis Engine.

• Input: lists a set of attributes from the cards within
the defined scope as input(s) for the Method’s
execution.

The Cards Analysis Engine provides a set of tools to

the run-time environment to execute the required task.

Under the method attribute, developers can design and

develop their own methods to work using the defined

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

76

input within the defined scope. As an example, the

developer can use or develop an aggregate function on

a certain data item over a specific time window.

Examples of each parameter to build queries and tasks

are listed in Table 5.

4.4.2 Asynchronous Applications

Asynchronous applications refer to queries and tasks

that cannot be addressed given the current repository of

cards. Such applications wait for certain events that

may occur in the future to run scheduled pre-defined

actions. The Run-time Engine, utilizing the hosting

operating system of the Hub, converts such

applications into call-back functions on separate

threads of execution and utilizes real-time event-

processing techniques by the Card Analysis Engine. An

example of event-based tasks is the design of

customized alerts that are triggered on receiving certain

data items within certain VSS. Another example of an

asynchronous application is to trigger a data-analysis

task when specific IoT things post sensory data that is

not within a user-defined range. The syntax of

asynchronous applications and the used event-

processing techniques, are outside the scope of this

paper.

Table 5: Examples of Synchronous Queries and

Tasks
Query Structure Description

Examples on Scope's value

/ {DT or TH}: * / All public data-item or

thing cards

/ {DT or TH}: {ID1, ID2, ... IDN} / Certain data-item or

thing card, given the

card(s) ID(s)

/ {VS}: ID / {DT or TH}: * / All data item or thing

cards within a specific

VSS

/ {VS}: ID /

{DT or TH}: {ID1, ID2, ... IDN} /

Specific data-item or

thing card(s), within

certain VSS

Examples of Input’s and Return's value

{AR1, AR2, ... ARN} Specific attribute(s)

with respect to the

defined scope

Examples on Condition's value

{AR1 θ VL1, AR2 θ VL2, ... ARN θ VLN} returns data-item/thing

cards satisfying such

conditions

Null No conditions

DT: Data Item Card; VS: Virtual Space Card

TH: Thing Card; AR: an attribute, by name, in a card
VL: value for selection

θ:{ ≠ , ≥ , ≤ , < , > , = }

5 CARDS LIFE-CYCLE AND IMPLEMENTATION

Understanding the different interactions by IoT things

and users is of great importance. Such knowledge

enhances the ability to understand and monitor smart

spaces and to design and develop a wide range of

context-aware and smart space-related applications.

Our ongoing efforts target designing and developing

the IoT Hub, a central data-oriented environment as an

on-cloud service that 1) accepts interactions and data

items reported by heterogeneous IoT things and users;

2) allows users to define VSS and visualize available

IoT things and data items; and 3) enables different

queries and tasks to be designed and run by users and

application developers. As detailed in section 4, the

current version of the framework focuses on

participating IoT things, data items, VSS, and

applications as the main entities and interactions of

interest in the ecosystem. The Hub accordingly

abstracts the interactions into protocol-independent

cards, where the meta-data and attributes of each card

offer efficient data representation and management as

well as a run-time environment for applications and

data analysis methods.

The architecture of the IoT Hub, as discussed in

section 3, has two interfaces to accept interactions: the

User and Development Dashboard and the

Communication Interface. The dashboard for users and

developers is a graphical interface that allows defining

VSS and Data Items as well as developing applications.

The Communication Interface allows IoT things and

users to use communication protocols (e.g., MQTT,

CoAP, HTTP) to interact with the Hub. IoT things and

users utilize one of the communication methods (e.g.,

HTTP GET request, MQTT Subscribe request, CoAP

POST request) to access or update either a full card

from the repository or a specific attribute from a

specific card. Table 6 below shows the format for a

request along with few examples for interactions by

IoT things and users to communicate with the Hub

through the communication interface. The broker

analyses and handles the different interactions received

from the communication interface and accesses the

Cards repository accordingly.

The IoT Hub achieves interoperability through

abstracting the interactions into cards then linking the

different attributes and meta-information. Such data-

oriented interoperability enables communication

channels between entities speaking the same or

different communication protocols. Figure 4 below

summarizes the logical connections and relations

between the different cards along with the interactions

through the different interfaces provided by the

architecture.

A. E. Khaled, R. Al Goboori: IoT Hub as a Service (HaaS): Data-Oriented Environment for Interactive Smart Spaces

77

Table 6: Format and Examples on Headers for

Interactions using Communication protocols

The format of Interaction's Header:

Method /{DT/TH/VS/AP:} Card’s ID / {AR: Attribute to access}

Example Description

GET /{DT:}Sensor/ HTTP GET request for the

full Data Item Card with ID

/Sensor

GET /{TH:}Actuator/{AR: Name} HTTP GET request for the

Name attribute of Thing Card

with ID /Actuator

PUBLISH

/{DT:}Home14/{AR: Creator}

MQTT Publish request to set

the Creator attribute of Data

Item card with ID /Home14,

the body of the request

contains the value

DT: Data Item Card; VS: Virtual Space Card; AP: Application Card
TH: Thing Card; AR: an attribute, by name, in a card

5.1 Use Case: Personal Healthcare Monitor

Consider a user-defined virtual smart space that

logically groups different personal healthcare sensors

and their data items to build a healthcare monitor and

to answer related queries by authorized users. As

illustrated in Figure 5 below, user A creates a virtual

space card (VS1).

Within VS1, IoT thing (TH1) is a heart-rate sensor

that collects and periodically updates the heart rate

information of user A as a data item (DT1). IoT thing

(TH2) is a blood pressure sensor that collects and

periodically updates the blood pressure information of

user A as a data item (DT2). User A also creates a data

item (DT3) that represents the contact information of

hospital B in case of an emergency. Hospital B is listed

as an authorized user for VS1 to access the different

data items and to build and run applications. Hospital B

builds a query (Q1) to access and display the

Accumulated Value attributes of both DT1 and DT2.

User A uses the 3 data items and designs an event-

based application (Q2). Q2 is an event-based application

that sends an alert to the contact information provided

in DT3 if the current value of both DT1 and DT2 move

beyond a pre-defined limit.

5.2 Implementation Plan and Future Directions

The current version of the IoT Hub [21] utilizes the

Java Spring Boot [25] to build the framework,

MongoDB for the repository, and thymeleaf HTML

and JavaScript for the User and Development Interface.

The communication interface will use the HTTP-

REST, Californium-Eclipse CoAP library [8], and

Paho-Eclipse MQTT library [20]. The framework

targets Amazon Web Services to host the IoT Hub on

Figure 4: Logical connections between different

cards

Figure 5: Personal Healthcare Monitor VSS and

Applications

Amazon’s cloud platform allowing IP-enabled IoT

things to communicate and interact with the Hub. The

current focus of the proposed IoT Hub is on the four

types of cards mentioned in this paper, while more

types are considered in future work. The current

version of the Hub [21] enables users to design VSS

and synchronous applications through the Dashboard.

The current version of the Hub does not consider the

required security solutions to provide authorized access

for cards within VSS.

6 CONCLUSION

This paper introduces the IoT Hub as an on-cloud

service providing a data-oriented framework for

communication interoperability and the development of

IoT applications. The proposed framework abstracts

different interactions and information about

participating entities into programmable protocol-

independent objects referred to as Cards. The

framework indexes and links meta-data and attributes

in the cards to enable interoperability and data

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

78

management and provide an application development

environment. The framework allows users to create

virtual smart spaces to define cards' accessibility and

visibility. Within virtual smart spaces, users can

identify things to communicate, access data items, and

run specific applications. The framework defines four

types of Cards to represent participating IoT things,

reported data items by things and users, virtual smart

spaces defined by users, and applications designed by

developers. The proposed framework enables the

development of different applications, including

synchronous queries and asynchronous tasks. The

framework dynamically creates, updates, and links the

cards together throughout the life-cycle of the different

entities. We present the details of the proposed

framework and the structure of the different cards.

REFERENCES

[1] A. Al-Fuqaha, A. Khreishah, M. Guizani, A.

Rayes, and M. Mohammadi, "Toward better

horizontal integration among IoT services," IEEE

Communications Magazine, vol. 53, no. 9, pp. 72-

79, 2015.

[2] A. Khaled and S. Helal, "Interoperable

communication framework for bridging RESTful

and topic-based communication in IoT," Future

Generation Computer Systems, 92, pp. 628-643,

2019.

[3] Advanced Message Queuing Protocol (AMQP)

Protocol Specifications, Version 0-9-1, 2008,

rabbitmq.com/resources/specs/amqp0-9-1.pdf

[4] C. H. Lee, Y. W. Chang, C. C. Chuang, and Y. H.

Lai, "Interoperability enhancement for Internet of

Things protocols based on software-defined

network," In 2016 IEEE 5th Global Conference

on Consumer Electronics, pp. 1-2, 2016.

[5] CoAP, RFC 7252 Constrained Application

protocol, 2016, http://coap.technology/

[6] D. Miorandi, S. Sicari, F. De Pellegrini, and I.

Chlamtac, "Internet of things: Vision, applications

and research challenges," Ad hoc networks, vol.

10, no. 7, pp. 1497-1516, 2012.

[7] D. Namiot and M. Sneps-Sneppe, "On internet of

things programming models," In International

Conference on Distributed Computer and

Communication Networks, Spring, Cham, pp. 13-

24, 2016.

[8] Eclipse Californium (Cf) implementation of

RFC7252 CoAP, 2021, https://github.com/

eclipse/californium

[9] Eclipse Ponte by Eclipse Foundation, 2021,

http://www.eclipse.org/ponte/

[10] EMQ - Massive scalable MQTT broker for IoT

and Mobile Applications, 2017, http://emqtt.io/

[11] H. Derhamy, J. Eliasson, J. Delsing, P. Puñal

Pereira, and P. Varga, "Translation error handling

for multi-protocol SOA systems," In 2015 IEEE

20th Conference on Emerging Technologies &

Factory Automation (ETFA), pp. 1-8, 2015.

[12] IBM MQTT v3.1 protocol specification by IBM

Eurotech, 2021, public.dhe.ibm.com/software/dw/

webservices/ws-mqtt/mqtt-v3r1.html

[13] J. Gubbi, R. Buyya, S. Marusic, and M.

Palaniswami, "Internet of Things (IoT): A vision,

architectural elements, and future directions,"

Future generation computer systems, vol. 29, no.

7, pp. 1645-1660, 2013.

[14] L. Babun, K. Denney, Z. B. Celik, P. McDaniel,

and A. S. Uluagac, "A survey on IoT platforms:

Communication, security, and privacy

perspectives," Computer Networks, 192, pp.

108040, 2021.

[15] M. Koster, A. Keranen, and J. Jimenez, "Publish-

Subscribe Broker for the Constrainted Application

Protocol (CoAP)", proposed standard to the

Internet Engineering Task Force (IETF), February

2018, https://tools.ietf.org/id/draft-ietf-core-coap-

pubsub-03.html

[16] M. Noura, M. Atiquzzaman, and M. Gaedke,

"Interoperability in internet of things:

Taxonomies and open challenges," Mobile

networks and applications, vol. 24, no. 3, pp. 796-

809, 2019.

[17] MQ Telemetry Transport connectivity protocol,

http://mqtt.org/

[18] P. Bellavista and A. Zanni, "Towards better

scalability for IoT-cloud interactions via

combined exploitation of MQTT and CoAP," In

2016 IEEE 2nd International Forum on Research

and Technologies for Society and Industry

Leveraging a better tomorrow (RTSI), pp. 1-6,

2016.

[19] P. Desai, A. Sheth, and P. Anantharam, "Semantic

gateway as a service architecture for iot

interoperability," In 2015 IEEE International

Conference on Mobile Services, pp. 313-319,

2015.

[20] Paho Eclipse by Eclipse Foundation, 2019,

https://www.eclipse.org/paho/

A. E. Khaled, R. Al Goboori: IoT Hub as a Service (HaaS): Data-Oriented Environment for Interactive Smart Spaces

79

[21] R. Al Goboori and A. Khaled, Initial IoT Hub

Implementation, March 2022, https://github.com/

RousolAlGoboori/iot-hub

[22] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.

Masinter, P. Leach, and T. Berners-Less,

"Hypertext Transfer Protocol HTTP/v1.1" Draft

Standard to the Internet Engineering Task Force

(IETF), June 1999,

https://tools.ietf.org/html/rfc2616

[23] R. Want and S. Dustdar, "Activating the Internet

of Things [Guest editors' introduction],"

Computer, vol. 48, no. 9, pp. 16-20, 2015.

[24] S. Helal, "Programming pervasive spaces," IEEE

Pervasive Computing, vol. 4, no. 1, pp. 84-87,

2005.

[25] Spring Boot 2.7.0, 2022, https://spring.io/

projects/spring-boot

[26] Z. Shelby, K. Hartke, C. Bormann, "The

Constrainted Application Protocol (CoAP)",

proposed standard to the Internet Engineering

Task Force (IETF), June 2014,

https://tools.ietf.org/html/rfc7252

AUTHOR BIOGRAPHIES

Ahmed Ezzeldin Khaled

received his Ph.D. degree in

Computer Sciences in 2018

from the University of

Florida, Gainesville, FL,

USA. He is currently assistant

professor at the Department of

Computer Science,

Northeastern Illinois

University, Chicago, IL, USA.

He received his B.Sc. and M.Sc. degrees in computer

engineering from Cairo University, Egypt in 2011 and

2013, respectively. His current research interests

include the Internet of Things, Distributed Systems,

Cloud Computing, and Healthcare Systems.

Rousol Al Goboori received

her B.S. degree in Electronics

and Communications

Engineering from Al-Nahrain

University, Baghdad, Iraq, in

2013. and she is a graduate

student at Northeastern

Illinois University, Chicago,

IL, USA, in Computer

Science. She is currently a

 Junior Software Developer

for ATC Transportation LLC, Pleasant Prairie, WI ,

USA.

