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ABSTRACT

A smart manufacturing line consists of multiple connected machines. These machines communicate with each other
over a network, to solve a common task. Such a scenario can be located in the Internet of Things (IoT) area. An
individual machine can be perceived as an IoT device. Due to machine to machine communication, a huge amount
of data is generated during manufacturing. This emerging data flow is an essential part of today’s industry, as
analyzing data helps improving processes and thus, product quality. To adequately make use of the collected data,
we require a high level of data quality. In our work, we address the issue of inconsistent data in smart manufacturing
and present an approach to automatically generate SPARQL queries for validation.
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1 INTRODUCTION

In the Internet of Things (IoT), many individual devices
communicate with each other via a network [22] [23].
The purpose of this communication is to exchange data
between one another. A data stream is emerging.
Possible domains of such IoT scenarios range from
energy supply [15] over healthcare [13] to smart industry
[26]. In all of these domains, IoT devices are used
to increase efficiency, conserve resources or optimize
processes and medical treatments.

As data is a decisive factor in such smart environments
[20], this work focuses on monitoring the data stream

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2022) in conjunction with the
VLDB 2022 conference in Sydney, Australia. The proceedings of
VLIoT@VLDB 2022 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

from an IoT application to identify inconsistencies.
Therefore, we refer to a real IoT scenario in smart
manufacturing at Bosch. Robert Bosch GmbH is
a globally operating group with diverse markets.
In the automotive electronics sector, among other
things, highly complex control units for vehicles are
manufactured. To ensure high quality standards of
control units and thus, a safe end product, a core task at
MFT1 department in Salzgitter is to evaluate data from
manufacturing processes. By analyzing this data, we can
avoid errors, conserve resources and make the overall
manufacturing process more sustainable.

The lower half of Figure 1 shows the current data
flow: Data is generated during manufacturing and
propagated by the machines. This data flow is collected
and stored. Directly storing data leads to a decrease
in data quality, since the machine data may contain
inconsistencies. Inconsistencies occur in such scenarios,
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Figure 1: Application environment

due to a heterogeneous landscape [18] consisting of
machines from various fabricators with diverse software
versions. The existing data flow causes subsequent
applications to access inconsistent data.

Currently, there is effort at Bosch to identify invalid
data. This work is performed manually by creating
SQL based constraints. This manual step is time-
consuming [27] and has the drawback that only known
inconsistencies can be identified.

Our work addresses the issue with potential
inconsistent data. Therefore, we created SPARQL
and SHACL constraints in a first step to identify
limitations of current specifications. In [16], the authors
pointed out that however SPARQL and SHACL are
expressive enough, the constraints become very complex
and error-prone. In addition, users need deep insights
into the application of these technologies to their domain
knowledge [10]. To overcome this problem, we aim
to develop a framework to automatically generate
constraints from a simple definition of consistency. To
accomplish the problems, we pick up the challenges
from [16] and adapt them in the following way: We still
have to handle large data streams from heterogeneous
sources. This task is splitted up into the challenges C1 to
C3. In challenge C4, in contrast to improving the overall
manufacturing processes, we solely focus on increasing
data quality through consistency checking. Further,
we add C5 to point out the necessity of validating new
machine and line configurations.

C1 Handle Big Data. A typical manufacturing line at
our plant includes at least six machines. Due to
multiple lines at one plant, the machines generates
over thousand messages each day.

C2 Handle continuous data streams. The machine
in one line communicate via network. This
communication results in a continuous data stream,
which has to be processed immediately to receive a
fast feedback [9].

C3 Handle heterogenous data sources. In the SMT
area at Bosch, the worldwide production network
includes more than 200 lines with over 3000
machines. Each machine can be considered as an
IoT device and thus a data source.

C4 Enhance data quality. Data quality has an
impact on subsequent analyses and thus, can reduce
manufacturing costs, save resources, such as energy
and raw materials and improve product quality.

C5 Fast deployment of machines and lines. After
completion of machine and line configurations
as well as new setups of entire lines, it should
be ensured as quickly as possible that no
inconsistencies occur during production.

To address our five challenges, the remainder of this
paper is as follows: Section 2 provides an overview
of related work in the field of data validation using
semantic methods and automatic constraint generation.
Afterwards, Section 3 describes our IoT environment
and introduces the setup of a manufacturing line for
printed circuit boards. Section 4 is the core of our work,
as it describes our understanding of consistency and
how we aim to automatically generate correct constraints
to validate the data. Subsequently, Section 5 briefly
presents preliminary results. Section 6 discusses our
approach, before we finally conclude in Section 7.

2 RELATED WORK

At the beginning of our work, we present related work in
the area of data validation and automatic generation of
SPARQL queries and constraints.

Baclawski et al. [1] and Steyskal et al. [19] present
approaches on validating semantic models. Both works
focus on violation detection between various models
of the same physical system. In contrast, we have
one semantic model of our system (SMT line) and
continuously validate machine data against our model.
Haav et al. [11] and Xuanyua et al. [25] semantically
check product configurations to see if configurations are
created according to defined specifications. Validation is
performed using SHACL or SWRL. As in our scenario,
knowledge is represented in ontologies. In contrast,
we use SPARQL to create validation constraints on
continuous data streams. Furthermore, [4] presents
another practical example. The work focusses on
medical sensor data stream sourced from healthcare
apps. Cortes et al. use a similar data pipeline consisting,
e.g. of a stream based cleaning and an analysis step.
The authors do not provide concrete architectures and
methods. [5] describes a distributed concept to handle
inconsistent streams. The work assumes a fixed ontology

81



Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

and does not provide an application scenario. In [21],
the authors focus on detecting and cleaning inconsistent
data. As in our case, the validation constraints are
exchangeable. As a disadvantage, Bleach can only detect
and fix violations if the competing data tuples are in the
same window. Our system checks for inconsistencies
both within and between events. Through various case
distinctions, each state can be uniquely classified as
consistent or inconsistent.

In summary, we can state that for different domains
systems exist in which data validation is performed
using semantic web methods. The significant difference
are on the one hand processing of a continuous data
stream: most systems work with offline data, where
full information is given. On the other hand, systems
working on streams mostly process simple events, such
as a sensor data flow. In contrast, our system handles
complex JSON files.

The work of Corman et al. [3] describes an
approach to automatically generate SPARQL queries
from SHACL graphs. Following this approach,
constraints can be defined using SHACL, even if just
a SPARQL endpoint is present In contrast to SPARQL,
SHACL was initially developed for validation purposes
and, among others, offers a detailed violation report.
Although their framework provides a good approach to
the creation of queries, defining constraints in SHACL is
not less complex than in SPARQL.

Further, there exist approaches to extract queries from
ontologies. Chen et al. [2] give a detailed overview over
existing approaches. Since we ask very specific queries
regarding the consistency of the collected data, such an
approach would produce too much overhead.

Jung et. al [12] and Sander et. al [17] present
approaches to transform natural language into SPARQL
queries. Applying NLP seems to be an interesting
direction. In further work, we aim to explore this area,
especially with regard to adaptability and overhead.

In contrast to all these contributions, we focus on an
efficient, lean, and at the same time simple approach
to validate continuous data streams in manufacturing
scenarios. In particular, the creation of new constraints,
even by employees without IT background, is of major
interest for our business.

3 CONNECTED MACHINES AT BOSCH

At Bosch plant in Salzgitter, printed circuit boards
for control units are manufactured. Manufacturing
such control units includes placement and soldering of
electronic components on the boards This process is
called surface-mounting technology (SMT).

A modern SMT line consists of machines to

implement the SMT processes. These are mainly
a machine for each sub-step: solder paste printing
(SPP), solder paste inspection (SPI), surface mounted
device (SMD), reflow soldering (RFL), and solder
joint inspection (SJI). A product passes through these
machines via a conveyor belt. The entire SMT process is
largely automated.

During this automatic process, machines
communicate with each other via a network. This
communication results in a message flow. One message
contains information about the finished process step.
The data of an SMD machine contains, e.g. the placed
components. An SJI machine propagates information
about possible erroneous solder joints. These relevant
process parameters are of interest, since analyzing
them helps to improve product quality and enhance
internal processes. During ongoing manufacturing
and especially when configuring and adding new
machines or lines, it must be ensured that these relevant
parameters are correctly collected (C5). Therefore,
we aim to validate the machine data to identify and
eliminate inconsistencies. In particular, we are interested
in inconsistencies that are currently unknown.

The following requirements result from the scenario
and earlier work [16]:

R1 Simplify the step of constraint creation. The
main intention of this work is, to make it easier for
a user to create constraints and thus, validate the
machine data stream.

R2 Identify as much inconsistencies as for manually
created queries. With our new approach, we do
not want to deteriorate in terms of inconsistency
detection.

R3 Identify unknown inconsistencies. As an
intensification to the previous requirement, we
would like to reveal both known and unknown
inconsistencies.

R4 Reduce overhead while generating queries. In
total, we aim to not increase the computational
overhead by comparing our framework against
manually created queries. By computational
overhead, we refer to execution time and memory
resources of the overall algorithm. If we
are able to decrease resource consumption, our
algorithm becomes more sustainable in context of
environmental impact.

R5 Parallel query generation. We want to ensure that
our algorithm is scalable and will work for multiple
parallel consistency checks. This requirement is an
extension of R9 from [16].
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R6 Expandability. In order to adapt to changes
in manufacturing environment and to apply our
approach in related domains, we have to ensure that
our framework and especially, the query generation
step, is expandable.

R7 Automatic creation of correct queries. The
simplified language supports the user in the creation
of constraints. In conjunction with the automated
generation of SPARQL queries, this eliminates the
error-proneness that exists with the manual creation
of constraints.

To justify our constraint generation approach, it is
mandatory that the framework is not only applicable
to a few inconsistencies. In particular, we strive for
the applicability of the approach to other manufacturing
areas within and outside the Bosch group.

4 SPARQL CONSTRAINTS FOR DATA
VALIDATION

In our scenrio, consistency checking is the step of
validating a continuous data stream, which emerges
from the communication of connected machines By
performing this step, we aim to identify inconsistent data
to sustainably improve the overall data quality. To meet
challenges C1 to C4 and our requirements R1 to R6, we
have to handle the following three tasks:

T1 Building a query. In previous work [16], we
compared SPARQL-ASK1 queries and SHACL2

shapes as semantic web technologies to validate
consistency of messages from connected machines
in manufacturing scenarios. Due to the fact that
we had to include SPARQL queries in our SHACL
shapes, we decided to solely use SPARQL-ASK for
building up our constraints.

T2 Optimizing the created query. In order to fulfill
requirement R3, we optimize the initially created
query, e.g. to remove unnecessary parts from the
query and adapt the triple patterns.

T3 Execute the query. The final task is to execute our
optimized query. By executing the query, we check
our constraint against available machine data. As
a result, we receive an answer whether our data is
consistent or not.

Figure 2 shows our architecture for consistency
checking. We separately collect data from the processes
of an SMT line. Machines send their data in
JSON format. The data of each process is stored
1 https://www.w3.org/TR/sparql11-query/
2 https://www.w3.org/TR/shacl/

Figure 2: Data pipeline for consistency checking

in one container, allowing to draw conclusions about
individual process steps in further analyses. To identify
inconsistencies, we require a product based view, as
inconsistencies refer to the data of a single product.

As discussed in [16], our overall architecture is
scalable and can handle a continuous data stream.
This ability is given through the layered architecture.
Furthermore, heterogeneous data sources do not pose
a difficulty due to semantic data access. Thus, we
address the challenges C1 to C3. This section, focusses
on enhancing our data quality (C4), especially under
consideration of new machine and line deployments, as
well as, changes in manufacturing environment.

4.1 Validating Consistency

In [16], the authors already present a definition of
consistency. The four main aspects of consistency are:

1. Completeness. A single data set contains all
expected messages. Expected messages depend on
the current situation.

2. No additional messages. Receiving multiple
messages of the same manufacturing step may
indicate an error in a line.

3. Correct content. The content of a single message
should not contain discrepancies.

4. Without contradictions. Messages referring to
one product are consistent in their content.

As can be derived from the above definition, some
consistency constraints refer to the overall data set
(category 1,2, and 4), other constraints focus on a single
message (category 3). The definition is based on the
consideration of existing inconsistencies. Each of the
inconsistencies presented below can be assigned to one
of the above categories.

For the first category, the absence of an entire message
can be cited. As already mentioned, the completeness
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of a data set is based on the respective current situation.
Messages can be missing for different reasons. These
can be, among other things, that a machine does
not function correctly, the communication network is
disrupted, or a product is prematurely removed from the
manufacturing line because, for example, errors occurred
during production. In the first two cases, the data set
must be considered inconsistent according to the above
definition, since not all expected messages are present.
In the third case, the data set is consistent, as all possible
messages are contained. For constraint creation, we need
to make various case distinctions at this point, which
quickly makes a constraint complex.

The second category deals with multiple messages of
a process. At this point, it is also not possible to make a
general decision as to whether a data record is consistent
or inconsistent. If duplicate messages originate from
the value-adding processes (SPP, SMD, RFL), they can
generally be regarded as inconsistent. In the case of
the inspecting processes (SPI, SJI), it must be checked
whether the messages refer to the same inspection or
whether a new inspection has taken place.

For the third and fourth category, we validate the
content of the messages. In the former, consider
the messages separately from each other. Possible
inconsistencies are duplicated contents or wrong labeling
of the contents. In SMD process it has happened
that within the messages several components have been
placed at the same position. At this point it must be
ensured that the multiple placed components do not
affect the real product. Also in the SMD process a wrong
labeling of the placed components occurred. Unlike
before, the components are correctly placed according
to the data, but the area on the printed circuit board is
incorrectly labeled.

When comparing the messages of a data set with
each other (category 4), multiple identifiers or incorrect
processing times were noticed, among other things.
In the most frequent cases, the cause of these
inconsistencies was software adjustments and changes in
machine locations.

In [16], the authors already defined SPARQL and
SHACL constraints, to automatically detect some
known inconsistencies. The created constraints become
complex and thus, error-prone, due to various case
distinctions. Thus, we decided to enhance this
manually creation process to further improve consistency
checking. The following section describes our approach
to automatically generate SPARQL queries from our
simple definition of consistency.

Figure 3: Current approach vs. automatic query
generation. With our new approach, we are able to
include additional process knowledge and user input.

4.2 Automatically Generating Constraints

With our approach of automatically generating SPARQL
queries, we aim to simplify data validation. Figure 3
compares our previous consistency checking with the
new approach. The left side of the figure shows the
creation and execution so far: Creating the constraint is
done manually. The constraint so created contains all
triple patterns, to be able to query all information from
the collected machine data. In addition, it includes all the
case discrimination necessary to recognize the situations
presented in Subsection 4.1. The long and complex
query is executed on the data stream and gives us a
result whether the checked data contains inconsistencies.
Thus, we already fulfill task T1 and T3 and enhance the
data quality (C4). Furthermore, we can execute multiple
queries in parallel on stream (C1 and C2). Integrated
into our existing architecture, we are thus able to meet
all challenges in principle.

Problems arise when taking a closer look at the
previous constraints. Since the SPARQL query has a
complex structure, customizations are difficult. The
query is also specifically designed for a few known
inconsistencies. Thus, we do not meet the requirements
R3 and R6. Furthermore, the manually created query
contains many unnecessary triple patterns and FILTER
operations (not fulfill T2)

The right side of Figure 3 shows this approach. In
a first step, we generate an initial query, by extracting
the relation triple patterns from our ontology. The
generation of the query causes the error-prone structures
to be created automatically. At this point, the query
still contains unnecessary triple patterns. To optimize
our initial query, we include user input and process
knowledge. The additional process knowledge simplifies
the validation of categories 1 and 2 in particular by
determining which messages are to be expected and
from which processes multiple messages will arrive. In
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. . .

? e v e n t r d f : t y p e smt : smdEvent .
?event rdf:type smt:rflEvent .
?event rdf:type smt:sjiEvent .
. . .
? processedComps smt : s ingleComp ?smdComp .
?smdComp smt : smdPosX ?smdPosX .
?smdComp smt : smdPosY ?smdPosY .
?smdComp smt:smdErrorCode ?errorCode .
?smdComp smt:componentMatId ?compMatID .
. . .

Listing 1: Except from initial query. The red marked
lines represent unnecessary triple patterns. We can
eliminate them due to incorporating knowledge.

this way, the previous complex case distinctions are
eliminated. The user can define in advance via input
of logical expressions for which properties a data set
should be validated. The input of logical expressions
requires only little knowledge about the structure of the
constraint (e.g. elements from the logical expression
must correspond to node names of the semantic models).
Internal complexity is thus hidden from the user. Process
knowledge and user input modify the initial query so that
the optimized query contains only relevant triple patterns
and FILTER expressions. The final step is the execution
of our optimized query. As a result, we receive, as
before, whether there are inconsistencies in a data set.

In the following, we exemplify our approach. In a first
step, we use already existing triple pattern templates. We
put these patterns together to create an initial query. The
resulting query is shown in Listing 1.

Afterwards, we incorporate current process
knowledge, for example to find out which messages are
to be expected. In our example, we get the information
that messages RFL and SJI are missing. This means,
we do not have to query for RFL and SJI properties.
Further, we know that an SMD message is available.
Thus, we check the data set, among others, for multiple
components placed on a single position. With this
constraint, we check whether at most one component
(e.g. resistor, port) is placed on each position on a
printed circuit board. We can formalize this constraint
by using a logical expression:

((smdPosX1 = smdPosX2)

∧ (smdPosY 1 = smdPosY 2))

⇒ (smdComponent1 = smdComponent2)

This logical expression is internally transformed into
a valid SPARQL query. During the transformation
process, unnecessary triple patterns are also removed

. . .
FILTER NOT EXIST {

? e v e n t r d f : t y p e smt : smdEvent .
. . .
? processedComps smt : s ingleComp ?smdComp1 .
?smdComp1 smt : smdPosX ? smdPosX1 .
?smdComp1 smt : smdPosY ? smdPosY1 .

? e v e n t 2 r d f : t y p e smt : smdEvent .
. . .
? processedComps smt : s ingleComp ?smdComp2 .
?smdComp2 smt : smdPosX ? smdPosX2 .
?smdComp2 smt : smdPosY ? smdPosY2 .

. . .
FILTER ( ? smdComp1 != ?smdComp2 )
FILTER ( ? smdPosX1 = ? smdPosX2 )
FILTER ( ? smdPosY1 = ? smdPosY2 )

}
. . .

Listing 2: Except from final constraint for mulitple
placement inconsistency.

from the query. In our example, these are the highlighted
lines from Listing 1. The result of this transformation
process is depicted in Listing 2. The red marked
redundant triple patterns (see Listing 1), which for
example ask for properties of the remaining processes,
are removed in the transformation step.

A multistage generation, as in our approach, leads to
a division of tasks into separate modules. Due to this
division, it is possible to generate independent queries
depending on the current state. This characteristic forms
the first step to develop a state machine as described in
[16]. In such a machine, a constraint is split into small
lightweight queries, which are executed one after the
other. As soon as an inconsistent state is reached, the
state machine terminates. In the event of an error, this
enables faster intervention.

In summary, it can be stated that the described way
allows to check all inconsistencies known so far (R2
fulfilled). The additional user input also allows to
specify various logical expressions. On the one hand,
an existing query can be extended by further known
inconsistencies (R6). In addition, the logical expressions
can be generalized, so that a verification of previously
unknown inconsistencies is possible (R3). In particular,
the simplified language, as shown above, supports the
user in creating complex constraints. Due to the correct
automatic generation of queries from simple logical
expressions, the error rate during the creation process
is reduced (R7). The fulfillment of requirement R7
has a decisive impact on challenge C5. Since the
overall architecture is designed for parallel operation, it
is still possible to execute the presented steps in parallel
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and to execute multiple generated queries in parallel
(R5). The following experimental results will provide
information about the overhead of query generation and
show whether requirement R4 is fulfilled. In any case,
the query creation process is simplified, which leads to
the fulfillment of R1.

5 EXPERIMENTAL RESULTS

In our first experimental results, we compare the
automatically generated queries with our manually
created ones. Doing this, we aim to determine the
overhead which results from the generation.

We perform our evaluation on a local computer
with 16 GB main memory and 11th generation Intel
i5 processor. The program code for the generation
as well as the execution of the queries is written in
Python. We use the python package rdflib3 for both
the manually created and the generated queries. This
provides comparability between the approaches. For
resource monitoring we use tracemalloc4 . For the
manually created query, we use a slightly modified query
than the one described in [16].

Table 1 illustrates our results. We compare the runtime
and memory overhead of the newly generated queries
against the manually created ones. To illustrate the
overhead, we choose four different situations:

(1) No inconsistency: In this scenario, all messages are
available. There is no inconsistency in the format of
our definition (see beginning of Section 4.1).

(2) Missing message, no inconsistency: In our data
set for this scenario, messages for RFL and SJI
processes are missing. As discussed in Subsection
4.1, not every missing message leads to an
inconsistent data set.

(3) Inconsistency in single message: This scenario
includes an inconsistency in an SMD message. We
exemplify the overhead for our multiple placement
check (see example in Section 4.2).

(4) Inconsistency due to missing message: In this
scenario, an SMD message is missing. our data set
contains messages from the remaining processes,
the data set is inconsistent.

For the evaluation, we use pre-collected datasets that
have the required properties of our scenarios. At this
point, we do not test the stream capability and overhead
of our overall architecture. The resulting overhead

3 https://pypi.org/project/rdflib/
4 https://docs.python.org/3/library/tracemalloc.html

Table 1: Comparison of constructed against
generated constraints. The values in the brackets
represent the overhead for manually creating or
automatically generating the queries.

Case Runtime Memory
(1) No inconsistency
- Constructed 0.57 s (1 h) 9.93 MB
- Generated 0.55 s (0.75 s) 9.64 MB

(12.48 MB)
(2) Missing message

no inconsistency
- Constructed 0.51 s 9.92 MB
- Generated 0.49 s (0.84 s) 9.52 MB

(12.49 MB)
(3) Inconsistency in

single message
- Constructed 0.92 s 9.94 MB
- Generated 0.87 s (0.76 s) 9.64 MB

(12.47 MB)
(4) Inconsistency due
to missing message

- Constructed 0.53 s 9.92 MB
- Generated 0.42 s (0.92 s) 9.29 MB

(12.49 MB)

is identical in both applications and can therefore be
neglected for our evaluation.

Table 1 contains the mean values of 20 measurements
for each of the four scenarios. As can be seen in the
table, runtime and memory overhead for the execution
of the constructed query are very close to each other in
the four scenarios. Individual runtime differences can for
example be explained by different case executions. The
time required for the manual creation of our constraint
is very high compared to the creation effort of the
generated queries. Since we use the same query for all
scenarios, this effort is only required at the beginning or
after changes. In particular, the time includes finding and
arranging the required triple patterns.

For the generated queries, we consider separately the
overhead of execution and that of generation (shown in
the brackets). As the table shows, the memory overhead
of execution is reduced compared to the manually
generated query. Only very small differences can be
observed between the scenarios. However, in the case
of the generated queries, the optimization overhead is
added. Since the optimizations must be accomplished
however only once at the beginning and then in each case
with changes of the constraints, the memory overhead
is accepted. The same applies to the run times of
the optimization steps. Regarding the overhead of the
optimization steps, it can be stated that the more steps
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Table 2: Number of triple patterns and expressions
in manually constructed and automatically generated
SPARQL query.

Case Triples Expressions
(1) No inconsistency
- Constructed 74 61
- Generated 67 48
(2) Missing message

no inconsistency
- Constructed 74 61
- Generated 47 41
(3) Inconsistency in

single message
- Constructed 74 61
- Generated 67 48
(4) Inconsistency due
to missing message

- Constructed 74 61
- Generated 21 32

have to be performed, the higher it is.
When looking at the execution times, it is noticeable

that the executions of the optimized queries are lower
than those of the manually created queries. Due to the
optimizations within the queries, some case distinctions
are already omitted in scenarios one and three. For
scenarios two and four, specific checks and the triple
patterns of missing messages are omitted. In all four
scenarios, the optimization steps make the queries leaner
and thus faster to execute.

Table 2 gives an overview of the size and thus
the complexity of our created and generated SPARQL
queries. Column expressions shows FILTER, BIND,
and UNION expressions, as well as case distinctions
(IF-ELSE) in sum. The expressions for the manually
created queries are divided into 16 FILTER, 14 BIND,
18 UNION, and 7 IF-ELSE. Since this created query
remains unchanged for all four scenarios, the number of
triple patterns and expressions do not change either.

For the generated queries, we can generally observe
that the number of triple patterns and SPARQL
expressions is reduced. Since we know which messages
to expect, all case distinctions can be eliminated.
Especially in scenarios two and four, large differences
to the manually generated query are visible. The reason
for this is that there are no RFL and SJI messages in
scenario two. For this reason, both the specific checks
for these messages and the corresponding triple pattern
in the remaining checks are omitted. In scenario four,
many specific checks are omitted due to the missing
SMD message. This massively reduces the number of
triple patterns and the required SPARQL expressions,

which results in a shorter query runtime (see Table 1).

6 DISCUSSION

There are two primary points we want to discuss in this
section. These are: (1) adaptability of the approach and
(2) overhead of the application.

In our new approach, the user has the possibility to
specify constraints via logical expressions. The logical
expressions result from the definition of a property to be
checked. The approach thus no longer only allows to
check known inconsistencies, but to create a definition
of a consistent data set via logical expressions. Our
application enables to internally generate valid SPARQL
queries from user input. This generation eliminates
the error-prone part of triple pattern construction. The
simplified process can help to identify errors in current
production as well as new lines, thus improving data
quality and processes (C4 and C5). The used ontologies
and query templates are interchangeable, so that the
approach can be applied in diverse domains. With regard
to a heterogeneous production landscape, as it exists at
Bosch, this property is of high importance and impact.

Currently, however, our generation approach is limited
to a restricted domain vocabulary, as the expressions
must contain the identifiers from the used ontology.
Logical expressions that do not fulfill the naming
conventions are ignored so far. In order to give the
user more freedom and to reduce the required prior
knowledge, an NLP-based approach is conceivable at
this point. Evaluations must show how well such an
approach performs in our manufacturing scenario.

However, the current experimental results have shown
that the resource consumption of our newly developed
approach is lower than when running our manually
constructed query. This is due to the elimination of
case distinctions or entire constraints through integrating
additional process knowledge. In addition, there is
the effort to generate the optimized queries. Our
evaluaion has shown that these steps are cost intensive
with regard to runtime and memory usage. However,
these optimization steps need to be done only once
after constraints have been changed. Afterwards the
generated queries can be used directly without having
any additional costs of optimization. By defining
consistency, we assume that in the future our approach
will be able to detect not only already known but also
unknown inconsistencies in the data. Thus, changes to
the constraints are usually not needed frequently. If
changes are incorporated, the runtimes pay off after
ten to 40 checks, depending on the scenario. Taking
into account that the queries can in principle be used
in all plants worldwide, we achieve resource savings
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after only a few minutes of running production. The
generated queries themselves can be further optimized
by rewriting SPARQL queries with general optimization
transformation rules as e.g. given in [6]. For our
application scenario, however, the reduced complexity of
the constraint creation process is of primary importance.
In this way, a separation of responsibility takes place
depending on the expert. Domain experts can thus
concentrate completely on the definition of consistent
states. Deeper knowledge of SPARQL and other
languages is not necessary.

One aspect we need to address in future work is to
further optimize our approach to reduce runtime and
memory overhead. To reduce the runtime, a state
machine is a good choice. In such a machine, a new
state is reached based on incoming messages. The state
machine is then able to determine for each state whether
there is still consistency or whether a consistent state
can be reached at all. With this ability, the machine
offers the possibility to detect inconsistencies at an early
stage so that appropriate interventions can be initiated.
Hardware-accelerating [24] [8] [7] [14] the state machine
might further help to meet latency constraints. One
disadvantage of the state machine is that the memory
overhead is expected to increase. Our future task is
now to optimize our queries, and in particular our query
generation algorithm, to the point where we get a good
tradeoff between latency and memory overhead.

7 CONCLUSION

This paper presents an approach for the automatic
generation of SPARQL constraints. With the help of
these constraints, data streams can be validated and data
quality can be improved. As our experimental results
show, the pure executions of our generated queries
have lower runtime and memory overhead, compared
to our manually created queries. The effort to generate
the queries occurs once after adjusting the constraints.
Considering our goal of simplifying constraint creation,
this overhead is not significant.

In summary, our approach already improves
consistency checking by allowing domain experts
with less semantic know-how to validate data (streams).
However, further simplifications are necessary so that
optimal SPARQL queries can be generated from a
simple and general definition of consistency. As already
discussed in the previous section, NLP based approaches
may lead to an improvement. The focus of our future
work is on the one hand this simplification. On the other
hand, we would like to investigate the aforementioned
creation of a state machine in more detail. Such a
machine would allow earlier interventions in case of

errors.
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