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ABSTRACT 

Today’s industrial production plants are complex mechatronic systems. In the course of the production plant 

lifecycle, engineers from a variety of disciplines (e.g., mechanics, electronics, automation) need to collaborate in 

multi-disciplinary settings that are characterized by heterogeneity in terminology, methods, and tools. This 

collaboration yields a variety of engineering artifacts that need to be linked and integrated, which on the technical 

level is reflected in the need to integrate heterogeneous data. Semantic Web technologies, in particular ontology-

based data integration (OBDI), are promising to tackle this challenge that has attracted strong interest from the 

engineering research community. This interest has resulted in a growing body of literature that is dispersed across 

the Semantic Web and Automation System Engineering research communities and has not been systematically 

reviewed so far. We address this gap with a survey reflecting on OBDI applications in the context of Multi-

Disciplinary Engineering Environment (MDEE). To this end, we analyze and compare 23 OBDI applications from 

both the Semantic Web and the Automation System Engineering research communities. Based on this analysis, we 

(i) categorize OBDI variants used in MDEE, (ii) identify key problem context characteristics, (iii) compare 

strengths and limitations of OBDI variants as a function of problem context, and (iv) provide recommendation 

guidelines for the selection of OBDI variants and technologies for OBDI in MDEE. 
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1 INTRODUCTION 

The lifecycle of production systems (e.g., manufacturing 

and power plants) typically involves contributions by 

engineers from a variety of disciplines [7] that 

collaborate in multi-disciplinary engineering 

environments (MDEE). For instance, the engineering of 

a hydro power plant usually involves a main contractor, 

subcontractors, and component vendors [69]. These 

stakeholders cover a variety of engineering disciplines 

(including mechanical, electrical, and automation 

engineering) and make use of various engineering 

software tools, datasets, and terminologies, with limited 

overlap. Collaboration among these stakeholders 

requires synchronizing and exchanging data produced 

by software tools specific to their disciplines. In order to 

overcome the inherent semantic heterogeneity in such 

settings, data integration is a crucial prerequisite for 
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advanced capabilities to support the work of engineering 

teams, such as early defect detection [49] or data change 

management [20]. A key challenge in this context is 

heterogeneous and semantically overlapping models 

[22].  

Currently, engineers conduct data integration with 

software tools such as Microsoft Excel and hard-coded 

data transformers. Integration processes that rely on 

these tools are typically time-consuming and error-prone 

[60]. Researchers and practitioners have therefore 

explored various alternative approaches [14], many of 

which are based on Semantic Web (SW) technologies. 

SW technologies were originally designed to address 

data heterogeneity in web-scale settings that pose 

challenges in terms of data size, heterogeneity, and level 

of distribution [6]. SW technologies are a family of 

knowledge-based approaches that rely on formal, shared 

domain models (i.e., ontologies [30]), which enable a 

broad range of applications [71], such as media 

publishing and manufacturing design [43].  

Ontologies are a key resource for data integration 

with SW technologies. They capture implicit knowledge 

across heterogeneous data sources and create semantic 

interoperability between them [81]. This is known as 

ontology-based data integration (OBDI). In their 

seminal publication, Wache et al. [81] distinguish three 

OBDI variants, based on what kind of ontologies are 

used and how these ontologies relate to each other. 

These variants are (i) the single-ontology, (ii) the 

multiple-ontology, and (iii) the hybrid OBDI. These 

variants were identified by studying OBDI system 

examples from various domains available in 2001.  

In recent years, research on OBDI applications for 

data integration in MDEE has been intensified, e.g., for 

engineering design quality improvement [22, 33, 74], 

for simulation generation and evaluation [18, 76], for 

knowledge representation [52, 63], and for team 

collaboration [53, 72, 82].  

Given the complexity of data integration scenarios in 

MDEE, choosing the most appropriate OBDI variant, as 

well as particular suitable technologies is challenging. 

Appropriate choices are mainly determined by the 

specific characteristics of the problem setting, such as 

data source heterogeneity or mapping complexity 

between the data sources.  

The academic literature provides only limited 

guidance to practitioners in this context, because reports 

on the use of OBDI in MDEE are dispersed across the 

SW and Automation Systems Engineering (ASE) 

research communities, which makes it difficult for 

potential users to gather actionable insights. 

 To address this challenge, we conducted a literature 

analysis  on  OBDI   applications  in  MDEE  developed  

 

within both the SW and the ASE research communities. 

The research questions we address in this paper are:  

 RQ1: What key characteristics of data integration 

scenarios in MDEE affect the choice of an adequate 

OBDI variant? 

 RQ2: Which different OBDI variants have been used 

and what are their strengths and limitations with 

respect to key characteristics of data integration 

scenarios in MDEE? 

 RQ3: What technical alternatives of OBDI elements 

have been implemented in MDEE? 

Our contributions are relevant for two target groups. 

Firstly, to potential users in the engineering domain and 

other domains with similar multi-disciplinary 

characteristics, we provide an overview of OBDI 

variants, describe their respective characteristics, outline 

technology options for OBDI in MDEE, and offer a 

guideline for choosing appropriate OBDI variants and 

suitable technologies based on characteristics of their 

data integration scenarios. To this end, we introduce an 

additional OBDI variant to Wache's typology [81], 

based on patterns that we observed frequently in OBDI 

variants in the engineering domain.  

Secondly, to the SW research community, we 

provide an overview of research on OBDI applications 

for data integration scenarios in MDEE from the 

engineering research community. Further, we report on 

emerging requirements from the engineering domain 

that may shape future SW research challenges. 

The remainder of this paper is organized as follows: 

Section 2 introduces SW technologies and explains the 

key concepts of MDEE and of OBDI. In Section 3, we 

survey relevant papers categorized according to the 

production system lifecycle phases they cover. Section 

4 (RQ1) describes key characteristics of data integration 

scenarios in MDEE. In Section 5 (RQ2), we identify an 

additional OBDI variant and compare the strengths and 

limitations of OBDI variants against a set of MDEE data 

integration scenario characteristics. In Section 6 (RQ3), 

we summarize technology options for OBDI elements in 

MDEE. In Section 7, we discuss our findings and 

Section 8 concludes the paper with an outlook for future 

research. 

2 PRELIMINARIES 

In this section, we introduce the multi-disciplinary 

engineering environments (Section 2.1), Semantic Web 

technologies (Section 2.2), and ontology-based data 

integration (Section 2.3). 
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2.1 Multi-Disciplinary Engineering Environment  

The VDI 3695 guideline [77] for plant engineering 

defines an engineering organization as a set of 

engineering teams that is involved in the planning, 

realization, and commissioning of new technical 

systems and, if necessary, the optimization or 

modernization of existing systems.  

In this context, an engineering organization becomes 

the execution environment of a multi-disciplinary 

engineering process that requires collaboration between 

various engineering disciplines to develop products and 

the associated production systems [7]. A key 

characteristic of this execution environment, referred as 

multi-disciplinary engineering environments (MDEE) is 

the presence of heterogeneous data sources produced by 

diverse software tools from the involved engineering 

disciplines [7], where a key challenge consists in 

obtaining a common view of this data [20]. Current 

developments in the engineering domain, often 

associated with the German term “Industrie 4.0” [5], 

require more flexible production systems that rely on 

strong data integration across various stakeholders and 

engineering disciplines. Furthermore, the desired shorter 

lifecycles and higher variation of products in modern 

production systems requires better integration between 

(i) the life cycles of products and the associated 

production systems, and (ii) the engineering and 

operation phases of these production systems [67].  

Consequently, multi-disciplinary engineering 

processes that create modern and flexible production 

systems have strong needs for data integration, which 

must evolve from current, primarily manual practices 

towards more flexible and knowledge-driven 

technologies. 

2.2 Semantic Web Technologies 

The successful implementation of the World Wide Web 

led to an explosive growth of data available on the web 

[36]. This growth posed challenges for information 

retrieval and one of the proposed solutions was to 

annotate web content with machine-processable 

representations. This idea of applying formal knowledge 

representation on the web started in the 1990s and was 

later associated with the vision of a Semantic Web (SW), 

defined by Tim Berners Lee as “an extension of the 

current Web, in which information is given well-defined 

meaning, better enabling computers and people to work 

in cooperation” [6]. This well-defined meaning would 

be established through semantic descriptions, e.g., 

metadata of web pages.   

                                                           

1 https://www.w3.org/wiki/ConverterToRdf 

In order to make these semantic descriptions 

interpretable by machines and support information 

retrieval from the web, several principles must be 

followed [10]. First, semantic descriptions should 

describe information in terms that impose precise 

meaning and reflect agreement of a wider community. 

A collection of these terms and relations between them 

will form an ontology [30]. Second, semantic 

descriptions should be expressed in a representation 

language that can be parsed and interpreted by computer 

programs. In particular, these languages have to have 

clearly specified semantics that can be leveraged to 

enable computer programs to derive new information, a 

process referred to as inference or reasoning.  

SW technologies were originally developed with the 

aim to implement the vision of SW [34]. The W3C has 

published a number of standards for SW technologies 

that, although they were originally developed for the 

web, can and have been applied in many other areas, for 

instance, integration of genome data and media 

publishing [71][67]. 

The Resource Description Framework (RDF [70]) 

constitutes the foundation of these standards and 

provides a graph-based data model. RDF Schema 

(RDFS [31]) provides a lightweight vocabulary 

description language, whereas the more expressive Web 

Ontology Language (OWL [54]) facilitates specification 

of rich ontologies. To allow querying, the W3C 

standardized the SPARQL protocol and RDF query 

language [32]. Furthermore, the SW research 

community developed technologies, e.g., for acquiring 

data from various sources1, mapping between different 

ontologies (e.g., [50]), improve SPARQL querying 

performance [25, 29], and reducing the efforts of 

ontology implementations [9]. Building on and 

combining these elements, approaches were developed 

to enable data integration and data access, explained in 

Section 2.3. 

2.3 Ontology-Based Data Integration 

Ontology-based data integration (OBDI) refers to the 

use of (potentially several layers of) ontologies that 

capture implicit knowledge across heterogeneous data 

sources to achieve semantic interoperability between 

these sources [81]. Figure 1(1-3) illustrates three OBDI 

variants and their components based on a categorization 

introduced by Wache et al.: single-ontology, multiple-

ontology, and hybrid OBDI. This classification reflects 

the number and type of ontologies used for data 

integration. 
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Figure 1: Three variants of OBDI from [75]: (1) single-ontology, (2) multiple-ontology, (3) hybrid,  

and an additional OBDI variant (4) Global-as-View (GAV). 

(Explanation: Red arrows indicate access from an application to data, black arrows represent transformation/virtual 

access to the data; dotted green arrows represent implicit relations between involved ontologies, and numbered items 

show the sequence of system development. The dotted rectangle refers to the federation of local ontologies. 

Section 5.1 explains the additional OBDI variant (4) Global-as-View (GAV).)

We distinguish among four layers of OBDI 

components as shown in Figure 1: 

[A] Data sources represent the (heterogeneous) local 

data repositories, which need to be integrated.  

[B] The local ontology layer contains so-called “local 

ontologies”, which represent the content of each 

individual data source repository. 

[C] The global ontology layer contains so-called 

“global ontologies”, which are semantically 

sufficiently broad to represent the data from all 

data sources to be integrated.  

[D] The software applications layer represents the 

applications, which access the data integrated with 

OBDI.  

Assuming three data sources A, B and C, their 

integration can be achieved by means of three alternative 

OBDI variants. 

1) The single-ontology OBDI relies on a single global 

ontology to integrate all data sources (cf. Figure 1-1). In 

this approach, the integration process consists of two 

steps: (i) define a single global ontology G and (ii) 

transform source data from A, B, and C into the global 

ontology G. This integration process is typically hard to 

maintain because it is susceptible to changes in each data 

                                                           

2 See [50] for a more comprehensive overview about semantic 

mapping in the engineering domain. 

source. Any time a change occurs in one of the data 

sources, a decision has to be made whether to push the 

change to the global ontology. If so, to ensure 

compatibility, the global ontology as well as all 

mappings to all data sources must be updated. 

2) The multiple-ontology OBDI involves a local 

ontology per integrated data source and an alignment of 

these ontologies with each other using semantic 

mappings2 (Figure 1-2). Examples for this mappings 

include SPIN [48], SPARQL Construct [32], and 

EDOAL3. The integration process consists of three 

steps: (i) create local ontologies LA, LB, and LC for data 

sources A, B, and C, respectively, (ii) transform source 

data of A, B, and C according to their respective local 

ontologies, and (iii) establish semantic mappings 

between related ontologies. The drawback of this 

approach is that semantic mappings among involved 

ontologies are hard to define and maintain due to 

varying granularities of the local ontologies. Also, each 

inclusion of a new data source requires additional 

semantic mappings to all existing local ontologies.  

3) Finally, the hybrid OBDI is similar to the multiple-

ontology OBDI as it is characterized by definitions of a 

local ontology per data source. However, instead of 

independent alignments among local ontologies, this 

3 http://alignapi.gforge.inria.fr/edoal.html 
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approach defines a shared vocabulary (i.e., a set of basic 

terms of a domain, which sometimes is also an ontology 

[78]) to be used and extended within local ontologies, 

i.e., by means of ontology refinements (see Figure 1-3). 

In this approach, the integration process consists of three 

steps: (i) define a shared vocabulary V that contains 

basic terms/concepts of the domain, (ii) create three 

local ontologies LA, LB and LC by using and/or extending 

the shared vocabulary V for data sources A, B, and C 

respectively, and (iii) transform/annotate source data 

from A, B, and C according to local ontologies LA, LB, 

and LC. 

Virtual access versus materialization. The ability to 

integrate data from non-ontology sources is a common 

requirement in the OBDI context. To this end, Ontology-

Based Data Access (OBDA) has been developed as a 

technique to allow virtual data access over data in data 

sources [13]. In contrast to more traditional approaches 

such as ETL (i.e., extract, transform, and load), and 

similar to virtual data access in database schema 

integration [17], it does not necessarily rely on 

materialization. In this paper, we consider both virtual 

access and materialization as implementation options of 

OBDI approaches that will be discussed further in 

Section 6.2. 

3 A SURVEY OF OBDI APPROACHES IN MDEE 

To understand the current landscape of OBDI 

approaches in the overall lifecycle of production 

systems, we conducted a literature study and collected a 

total of 23 OBDI applications from 29 research papers. 

We explain the survey methodology in Section 3.1 and 

group the results along plant lifecycle stages [11]:  

 Planning of assembly and production processes. 
In this phase, plant planners decide on 

manufacturing processes and resources necessary for 

building a plant. 

 Production plant design. In this phase, engineers 

work within their respective domains to build the 

production systems. The phase includes exchange of 

design data among involved engineering disciplines. 

 Virtual and actual start-up. The virtual start-up 

validates the production plant design by 

systematically iterating through planned and 

potential plant operation scenarios. The actual start-

up of a plant involves plant adjustments on the shop 

floor after the plant assembly process. 

 Production and service. Monitoring and 

improvement of the production plant, manufacturing 

execution, predictive maintenance, and plant re-

configuration are examples of tasks in this phase.  

 Table 1 summarizes OBDI applications in MDEEs 

classified along these life-cycle stages. Eleven 

applications focus on the design phases (planning and 

design) for purposes such as design validation, quality 

improvement, simulation generation and evaluation 

(Section 3.2). Six applications focus on the run-time 

phases (startup, production, and service) for system 

monitoring, diagnostic, evaluation and transient data 

integration (Section 3.3). The remaining six applications 

address both design and runtime phases to support tasks 

such as integrated data analysis (Section 3.4). 

3.1 Survey Methodology 

We identified relevant research articles from the SW and 

ASE communities through a systematic literature review 

(SLR) [47, 84] covering the following steps, described 

in more detail in the following subsections: 

1) Keyword-based search on article title published at 

selected conferences. Different sets of keywords 

were used for the two target research communities. 

2) Definition of the inclusion/exclusion criteria. 
Taking into account the inclusion/exclusion criteria, 

we analyzed the paper titles/abstracts/content of the 

retrieved the papers and selected the relevant ones. 

3) Retrieval of further potential articles from 

citations and references of selected papers. 

4) Identification of the final set of OBDI 

applications from selected papers to be further 

analyzed. 

3.1.1 Keyword-based Search 

In our survey, we limit our keyword search to research 

articles published in five main conferences of the SW 

community (ISWC, ESWC, i-Semantics/SEMANTiCS, 

i-KNOW, and EKAW) and three main conferences of 

the ASE community (ETFA, IFAC, and INDIN) 

between 2010 and 2016. 

SLR Step 1: Keywords-based search. We use a 

separate set of keywords for SW and ASE conferences. 

Both sets of keywords omit the “data integration” term, 

as this keyword typically does not appear in the title. For 

SW conferences, we assume that ontology-related 

keywords are unnecessary, as it is implied with the 

article submissions to conferences in this research area. 

Therefore, we focus on keywords related to the domain, 

e.g., engineering or production (cf. Listing 1.A). In 

contrast, for conferences in the ASE domain, we focus 

our search on ontology-related keywords with 

supplementary terms that specify our focus on the 

domain, which are “production system” and “production 

plant” (cf. Listing 1.B).  
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Figure 2: Number of articles and OBDI applications retrieved during literature search 

 

Listing 1: Keywords used for literature search 

We executed the keyword search on all selected 

conferences between 2010 – 2016 using the Scopus 

search engine4, with the exception of the 2016 edition of 

i-KNOW (not indexed by Scopus – skipped) and ISWC 

(metadata did not mention ISWC – manual search). The 

keyword search yielded more than 350 papers (Figure 2, 

Step 1).  

                                                           

4 https://www.scopus.com/ 

3.1.2 Definition of Inclusion/Exclusion Criteria 

We set the following inclusion and exclusion criteria to 

remove irrelevant papers from the papers identified with 

the keyword-based search: 

Inclusion Criteria: 

 Paper contains scenarios or use cases of data 

integration using ontologies in the automation 

system engineering domain. 

 Ontology languages or frameworks used for data 

integration are explicitly mentioned and explained. 

Exclusion Criteria: 

 The reported approach involves only a single data 

source. 

 Non-OBDA relational database or purely Eclipse 

Modelling Framework5-based approaches. 

SLR Step 2a: Inclusion/Exclusion. We applied these 

inclusion and exclusion criteria first on the paper titles, 

which resulted in a set of 88 papers (Figure 2, Step 2a). 

5 http://www.eclipse.org/modeling/emf/ 

Semantic Web

EKAW

ISWC

ESWC

i-KNOW

i-Semantics/
SEMANTICS

ASE

ETFA

IFAC

INDIN

Scan article titles 
based on inclusion/

exclusion criteria

Retrieve and analyse 
papers from citations 

and references

Review abstracts and 
inclusion/exclusion 

criteria

30

53

19

29

22

62

63

73

(Step 2a)

(Step 2b)

(Step 3)

Identify the final set 
of OBDI applications 
from selected papers 

Total number of 
OBDI applications: 

23

(Step 4)

19

10

88

(Step 1)

Review paper 
contents and 

inclusion/exclusion 
criteria

(Step 2c)
28

A. Keywords for SW conferences:  

automation OR engineering OR  

product* OR system OR  

production OR manufacture* OR  

energy OR plant. 

 

B. Keywords for ASE conferences:  
ontology OR semantic OR  

knowledge*base OR  

‘linked data’ OR  

‘production system’ OR  

‘production plant’ 
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Table 1: An overview of OBDI approaches in MDE 

(No shading: OBDI variants; with shading: production 

plant lifecycle phases) 

OBDI approach 

classifications 
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v
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Aarnio et al. [1]   X        X 

Abele et al. [2, 3] X          X 

Brecher et al. [11] X    X X X X 

Dibowski &Kabitzsch [15]   X    X     

Dubinin et al. [18]    X   X     

Ekaputra et al. [20]    X   X     

Feldman et al. [22]  X     X X   

Graube et al. (2013) [28]  X     X X X 

Graube et al. (2016) [27] X          X 

Hennig et al. [33] X      X     

Imran and Young [39]    X   X     

Kovalenko et al. [49]  X     X     

Lee & Kim [51] X          X 

Lin & Harding [53]    X   X     

Natarajan et al. [62] X          X 

Novak and Sindelar [64] X      X X   

ONTO-PDM [26, 65] X          X 

Optique [44, 45, 73]  X     X   X 

Sabou et al. [68] X      X     

Softic et al. [72] X      X     

Strube et al. [74] X      X     

VFF [42, 75, 76] X      X X X 

Wiesner et al. [82]   X    X     

SLR Step 2b: Abstract Analysis. Applying the same 

criteria to the abstracts of the remaining papers, reduced 

the overall set of papers to 28 papers (Figure 2, Step 2b).  

SLR Step 2c: Content analysis. There were cases 

where the abstract did not clearly justify an article’s 

inclusion or exclusion. In these cases, we analyzed the 

content of the paper to take the final decision (Figure 2, 

Step 2c). As a result, we shortlisted 19 papers. 

3.1.3 Retrieving Further Potential Articles and 

Identifying the Final Set of OBDI 

Applications 

SLR Step 3: Retrieval of further potential articles. 
The keyword-based search only covered a limited 

number of publications on the topic. To extend our set 

of considered papers, we conducted an additional search 

based on references and papers that were cited by the 19 

papers from the shortlist we obtained in the previous 

step. As a result, we added ten additional papers (Figure 

2, Step 3) and arrived at set of 29 papers.  

SLR Step 4: Identifying the final set of OBDI 

applications. Some of these papers covered the same 

approaches or extensions thereof. We group these 

papers accordingly and arrived at the final 23 OBDI 

applications (Figure 2, Step 4; Table 1). 

3.2 OBDI in the Design Phases 

Dibowski and Kabitzsch [15] propose an Ontology-

based Device Descriptions approach, which aims to 

provide a formal, unified, and extensible production 

system device specifications using SW technologies. 

This approach uses several layers of ontologies, where 

the top level contains generic domain vocabularies that 

will be reused and extended in lower layers. Their 

approach implements a hybrid OBDI, where the top-

level ontology is comparable to the shared vocabularies. 

Imran and Young [39] demonstrate the potential of 

formal reference ontologies to support interoperability 

with a study case of manufacturing bill of materials. 

They use a Common Logic-based Knowledge Frame 

Language framework to define concepts within 

assembly systems in a multi-layered ontology approach. 

Their approach implements a hybrid OBDI with a 

foundation ontology as shared vocabularies. 

Lin and Harding [53] propose using ontologies to 

support collaboration of engineers involved in a 

manufacturing system engineering process. The 

proposal implements a Global-as View (GAV) OBDI 

(see Section 5.1), where the involved organizations 

develop their independent local ontologies and then map 

these to the global ontology. These mappings serve as a 

semantic bridge to exchange and integrate the data 

across these organizations. 

Wiesner et al. [82] build on their previous work of 

the OntoCAPE ontology [57] to develop an information 

integration approach in chemical process engineering, 

which is called the Comprehensive Information Base 

(CIB). CIB adopts the hybrid OBDI where they derive 

the shared vocabulary from OntoCAPE and develop 

source (local) ontologies for several local data sources 

based on the global ontology. They use a two-layer local 

ontology approach: (i) Import ontologies, which are 

derived directly from data sources (e.g., XML files) 

using (semi)-automatic data transformation, which are 

later transformed into (ii) Document ontologies that are 

conformed to the shared vocabularies. They use F-Logic 

instead of the standard RDF/OWL languages to 

represent all facts, rules, and queries. The authors argue 

that F-Logic is more suitable for defining rules for 

integration and mapping purposes as well as for the 

formulation of expressive queries. 
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Strube et al. [74] propose an approach to combine 

the CAEX data format [38] and SW technologies to 

support re-developments/modernization of plant 

automation. The approach involves integrating several 

CAEX instance files containing plant designs and their 

proposed changes, together with a set of rule definitions 

to validate plant changes. These data are integrated 

using a single-ontology OBDI that is using an adaptation 

of the CAEX data model as a global ontology. They 

define a set of SWRL [35] rules for validating the 

proposed changes in the modernization process of plant 

automation. 

Softic et al. [72] semantically integrate data from 

several data sources to track engineering tasks in an 

automotive product lifecycle within a single-ontology 

OBDI. Their architecture consists of three layers: (1) 

Data layer, where their approach acquires data from 

local data sources, (2) Entities layer, where they store 

and link data, and (3) View layer, where users interact 

with the integrated data. Two different views of data are 

defined in the view layer: (a) project managers’ view 

and (b) engineers’ view, which allow the system to 

provide different focus on the integrated data. 

Dubinin et al. [18] introduce an approach based on 

GAV OBDI for integrating information across data 

sources in the automation domain. Rather than the 

typical local ontologies development based on a shared 

global ontology, they develop the global ontology 

independent of the local ontologies. To transform local 

ontology data into instances of the global ontology, they 

introduce the eSWRL transformation language as an 

extension of SWRL [35] for RDF-to-RDF 

transformation.  

Kovalenko et al. [49] focus on the use of SW 

technologies to detect defects early in the power plant 

engineering process. To this end, they adopt the 

multiple-ontology OBDI to integrate heterogeneous data 

from several engineering disciplines. They cooperate 

with domain experts to define links between data from 

several involved disciplines, i.e., mechanical 

engineering, electrical engineering, and project 

management. Furthermore, they develop a set of 

SPARQL queries to detect defects and validate power 

plant engineering data. 

Ekaputra et al. [20] primarily focus on using SW 

technologies to support data change management within 

MDEE, where data changes in one engineering 

discipline need to be validated and propagated to other 

disciplines. To this end, they adopt a GAV OBDI to 

represent the heterogeneous data as local and global 

ontologies. Similar to Dubinin et al. [18], they develop 

both local and global ontologies independently from 

each other, and they use SPARQL queries to transform, 

                                                           

6 http://data.ifs.tuwien.ac.at/aml/analyzer/ 

validate and propagate changes between several local 

ontologies via the global ontology. 

Hennig et al. [33] propose a SW-based approach to 

improve the semantic validity and the analysis capability 

of the multi-disciplinary engineering/system 

engineering of space systems. To this end, they integrate 

data from various engineering disciplines within the 

space system engineering (e.g., mechanical, electrical, 

instruments, control and software engineering) using the 

ECSS-E-TM-10-23A data exchange standard as a 

common (global) data model in a single-ontology 

OBDI. They focus on the inferencing capability of 

OWL2 to provide advanced analysis in their scenario. 

Sabou et al. [68] develop the AutomationML 

Analyzer6 tool to support engineering of Cyber-Physical 

Production Systems (CPPS) according to the single-

ontology OBDI, where they use an ontology form of the 

AutomationML7 data exchange format as the global 

ontology for integrating and analyzing AutomationML 

data from engineering disciplines. The combined data 

serves as a baseline to provide advanced capabilities to 

engineers, e.g., analysis and visualization of CPPS 

engineering design. 

3.3 OBDI in the Runtime Phases 
 

Aarnio et al. [1] propose an adaptation of a hybrid 

OBDI to support condition-based monitoring in 

automation systems. They conduct a four-steps 

transformation process from local data to RDF:  

 Automatic transformation of source data from 

local source formats to temporary RDF data  

 Transformation of temporary RDF data into 

instances of local ontologies, where the local 

ontologies conform to shared vocabularies 

 Use of the SILK [79] tool to link between data 

from local ontologies 

 Development and execution of rulesets on top of 

local ontologies to infer new information. 

The two-level local ontology approach is similar to 

the approach in Wiesner et al. [82], with the difference 

that they are using the standard RDF/OWL language to 

represent both local and global ontologies with the help 

of SILK. They evaluate their approach with a set of 

SPARQL queries targeting both local and global 

ontologies. 

Abele et al. [3] suggest utilizing SW technologies to 

support monitoring and diagnostic systems (MDS) in 

industrial applications. This approach builds on their 

previous work on the single-ontology OBDI that utilizes 

the Semantic Media Wiki infrastructure, rule ontology 

7 https://www.automationml.org/ 
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and Drools engine [2]. To this end, they integrate both 

static plant artifacts data from the design-time 

engineering and plant component states from run-time 

engineering to provide users with relevant MDS 

information. 

Graube et al. [27] propose a “mixed” solution based 

on a single-ontology OBDI to integrating static data 

(e.g., RDF data) and transient data (i.e., sensor data that 

is coming from web services) based on the URI 

dereferencing feature of SPARQL 1.1. An evaluation of 

the proposed solution offers sufficient performance to 

access transient data as an alternative to the currently 

available solutions (e.g., SSN, SensorML, and Linked 

Sensor Middleware). 

Lee and Kim propose a framework for engineering 

collaboration for distributed product development [51]. 

They use SW technologies to integrate and facilitate the 

exchange of context information from several data 

sources (e.g., Bluetooth, PDA, Etc.). To this end, the 

framework deploys a single-ontology OBDI to model 

engineering contexts (e.g., locations of users and roles) 

and uses it to determine relevant services for 

stakeholders based on context data derived through 

inference. 

Natarajan et al. [61] propose an extension of the 

OntoCAPE ontology [57], which is called OntoSAFE, 

to provide an application-oriented ontology focused on 

process supervision in large chemical plants. Later on, 

they utilize OntoSAFE as a basis for integrating and 

exchanging complex plant supervision data using the 

single-ontology OBDI   [62]. 

Kharlamov et al. [45] explain the underlying OBDI 

approach (OPTIQUE) that can be used in MDEE to 

facilitate data integration using a multiple-ontology 

OBDI and OBDA. Two example applications in MDEE 

based on this approach are: Kharlamov [44] and 

Solomakhina [73]. Kharlamov et al. [44] propose an 

OBDA approach to improve access to large, 

heterogeneous and stream data at a large organization. 

To support the proposed OBDA approach, they develop 

a query repository to store both predictive and reactive 

analysis queries. They evaluate their approach in a large-

scale scenario that involves a combination of static data 

and dynamic data from sensors (> 30GB of new data 

produced every day). Solomakhina et al. [73] propose 

an ontology-based approach to improve the precision 

and recall of statistical data analysis in the domain of 

production systems. They integrate data from three 

different local ontologies that represent power 

generation facilities (i.e., Turbine, Sensor, and 

Diagnostics ontologies) with different OWL2 dialects 

(OWL2-QL and OWL2-DL). They show that their 

integration methods, which combine explicit domain 

models with SW technologies and statistical analysis, 

yield a better result compared to a pure statistical 

analysis. 

Panetto et al. [65] develop an approach to support 

product data interoperability between applications and 

stakeholders involved within manufacturing process 

environments. Their approach implements a single-

ontology OBDI, with their proposed ONTO-PDM 

ontology based on two industry standards (i.e., ISO 

10303 [40] and IEC 62264 [37]) as a common data 

model and mediator between applications during 

manufacturing process lifecycle. They implement the 

ontology in both OWL and relational database, and use 

First Order Logic (FOL) patterns to map between data 

coming from the two industry standards within the 

ONTO-PDM ontology. Giovannini et al. [26] extend 

ONTO-PDM with concepts and rules on sustainability 

principles and technology knowledge. In addition, the 

authors propose a knowledge base system that use 

formalized knowledge for supporting product design 

and process planning. The approach uses SWRL rules to 

infer additional information and conduct analysis related 

to sustainability of products. 

3.4 OBDI in the Overall Plant Lifecycle 
 

Brecher et al. [11] aim for software tool integration in 

production plant lifecycles with SW technologies. Their 

approach implements the single-ontology OBDI. They 

develop an information model as a common ontology for 

production plant lifecycles and connect a set of software 

tools via data interpreter and generic interfaces. They 

use the Globally Unique Identifiers or unique names to 

identify the same objects in different data sources. The 

integrated data is used to navigate through production 

plant lifecycles, including the planning phase of the 

production process and the assembly process. 

 Feldmann et al. [22] introduce an inconsistency 

management approach based on SW technologies. The 

approach integrates two types of data: 

SysML4Mechatronics data that represent the 

mechatronics architecture and Matlab/Simulink data 

representing workpieces throughput of the plant in a 

system that implements a multiple-ontology OBDI. In 

this approach, relations between the two ontologies are 

defined manually by domain experts. They develop a set 

of SPARQL queries to detect inconsistencies in the 

integrated data and successfully retrieve inconsistency 

of the data as intended in their evaluation. 

Graube et al. [28] suggest using linked data to allow 

orchestration of software applications in the production 

system environment. Their approach implements a 

multiple-ontology OBDI, where they represent various 

data sources (e.g., device details, plant structure, report-

and-form information, and live data access) as separate 

local ontologies, and store the information about and the 
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relation among these ontologies in a separate ONT 

ontology. These ontologies are then orchestrated to 

build various applications (e.g., Task-List applications 

and Neighborhood-Browser for data flow explorations) 

related to production systems. 

Novak and Sindelar [64] proposes a single-

ontology OBDI to support simulation design and 

integration of simulation models in industrial 

automation. The authors develop the automation 

ontology that serves as the global ontology of the 

approach that is wrapped in a java-based tool. The tool 

receives input data from engineers (plant designs) as 

well as knowledge about devices in the particular 

industrial plant and available simulation libraries. As 

outputs, it produces executable simulation configuration 

files for simulators based on SPARQL query result on 

automation ontology instances. 

Kádár et al. [42] propose the Virtual Factory 

Framework (VFF), an integrated collaborative 

environment to support the design and management of 

factory entities. VFF initiate a global ontology (Virtual 

Factory Data Model - VFDM) for integrating and 

representing factory objects related to production 

systems, resources, processes, and products, resembling 

the single-ontology OBDI. A Virtual Factory Manager 

builds on top of the VFDM to manage and provide 

access to the VFDM data from various connected tools. 

These tools act both as data providers as well as data 

users. Terkaj and Urgo [76] focuses on integrating 

static data of production systems and their performance 

history, builds on their previously explained VFF. The 

method allows evaluation of a system design by 

simulating its performance based on system and 

simulation logs. Terkaj et al. [75] extends VFF to 

evaluate the impact of planning and maintenance 

decisions during the operation phase of a manufacturing 

system. They report on an application case of roll-shop 

system designs, where they develop a graphical user 

interface and combine it with a Discreet Event 

Simulation tool to evaluate the performance of roll-shop 

system configurations. 

4 CHARACTERISTICS OF DATA INTEGRATION  

SCENARIOS IN MDEE  
 

As discussed in Section 2.1, MDEEs are characterized 

by the involvement of engineers from various 

engineering disciplines. This collaboration results in the 

need for integrating heterogeneous data sources 

produced by domain-specific software tools. We discuss 

characteristics of data integration scenarios in MDEE 

that we identified and generalized in our survey to 

address RQ1: What key characteristics of data 

integration scenarios in MDEE affect the choice of an 

adequate OBDI variant?  

Identifying these characteristics is also the first step to 

establish criteria that practitioners can use to choose 

appropriate OBDI variants for their settings. 

4.1 Data Integration Objectives 

There is a wide range of objectives for data integration 

in multi-disciplinary engineering settings. In this paper, 

we do not directly derive recommendations for OBDI 

variant selection based on these objectives, but focus on 

the relationships between setting characteristics – 

explained in Section 4.2 and 4.3 – and OBDI variants. 

The data integration objectives we compiled from the 

papers are as follows (summarized in Table 2): 

Table 2: Data Integration Objectives for OBDI in MDEE 

(No shading: data-related objectives; light shading: overall-

system objectives; dark shading: collaboration objectives) 

OBDI objectives 
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Aarnio et al. [1]       X       X     

Abele et al. [2, 3]               X     

Brecher et al. [11]     X X             

Dibowski & Kabitzsch 

[15] 
      X           X 

Dubinin et al. [18]             X       

Ekaputra et al. [20] X     X         X   

Feldman et al. [22]       X X           

Graube et al. [28]                   X 

Graube et al. [27]   X X               

Hennig et al. [33]     X   X X         

Imran and Young [39]                     

Kovalenko et al. [49]       X X           

Lee & Kim [51]                   X 

Lin & Harding [53]     X           X   

Natarajan et al. [62]     X         X     

Novak & Sindelar [64]             X       

ONTO-PDM [26, 65]                 X X 

Optique [44, 45, 73]   X X X             

Sabou et al. [68]     X X             

Softic et al. [72]                 X   

Strube et al. [74]         X X         

VFF [42, 75, 76]     X     X X X   X 

Wiesner et al. [82]     X           X   
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Objectives related to data: 

 Data Change Management refers to the process of 

managing local data changes and their effects on the 

overall system [20]. For this particular scenario, 

data integration serves as a foundation to enable 

data change management. 

 Transient Data Integration, such as stream data 

integration, aims to integrate transient data sources 

with combination with non-transient data [27, 44]. 

 Centralized Engineering Repository data 

integration scenarios aim to provide a centralized 

engineering repository [11, 27, 33, 44, 53, 62, 68, 

76, 82].  

 Integrated Data Analysis refers to typical OBDI 

approaches that aim to enable data analysis on top 

of integrated OBDI data [1, 11, 20, 22, 44, 49, 68, 

73].  

Objectives related to the overall system: 

 Design Quality Improvement aims at improving 

the quality of system design in MDEE, e.g., with 

inconsistency management [22] or defect detections 

[33, 49, 74] over a global view of data sources. 

 Design Validation aims to validate system designs 

against a set of validation criteria based on 

integrated data [33, 42, 74, 76].  

 Simulation Generation and Evaluation aim to 

generate [18, 76]) and evaluate [76] system 

simulation in MDEE.  

 System Monitoring, Diagnostic and Evaluation 
aim for system monitoring [1, 3, 62], diagnostic [3] 

and evaluation [42] in MDEE.  

Objectives related to collaborations: 

 Team Collaboration. This goal refers to the use of 

integrated data for supporting team collaborations 

[20, 53, 72, 82]. 

 Software Interoperability. This goal aims to 

provide a “common language” for software partners 

to interact with each other (e.g., for app 

orchestration [28], intelligent service finder [51], or 

data exchange [42]). 

4.2 Data Sources 

In this section, we explain data-source related 

characteristics of MDEE scenarios.  

                                                           

8 https://www.automationml.org 
9 http://www.omgsysml.org/ 

Data types. The primary focus of a multi-

disciplinary engineering process is on the structured 

data. Spreadsheets, XML-based data formats, RDF, 

streaming/sensor data, and relational databases are the 

most common data types in the MDEE as shown in 

Table 3. 

Several scenarios also report the use of specific data 

formats, e.g., AutomationML8 for data exchange, 

SysML9 for plant design, and ECSS-E-TM-10-23A10 for 

space engineering.  

Number of data sources. Due to our focus on OBDI 

approaches in research communities, data integration 

scenarios typically report on the integration of a small 

number (i.e., less than ten) of data sources.  

Size of data. There is a large variety in the size of 

data, ranging from cases with the least amount of tens of 

data points [20] up to those that can handle more than 30 

GB of sensor data daily [44].  

Table 3: Data source types for OBDI in MDEE 

OBDI data source types 
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Aarnio et al. [1] X X  X   

Abele et al. [2, 3]     X  

Brecher et al. [11]      X 

Dibowski & Kabitzsch [15]      X 

Dubinin et al. [18]    X   

Ekaputra et al. [20]  X     

Feldman et al. [22]    X  X 

Graube et al. (2013) [28] X    X  

Graube et al. (2016) [27]     X  

Hennig et al. [33]      X 

Imran and Young [39]      X 

Kovalenko et al. [49]   X X   

Lee & Kim [51]     X  

Lin & Harding [53]    X   

Natarajan et al. [62]     X  

Novak and Sindelar [64] X     X 

ONTO-PDM [26, 65]      X 

Optique [44, 45, 73] X    X  

Sabou et al. [68]   X    

Softic et al. [72]   X    

Strube et al. [74]   X    

VFF [42, 75, 76] X     X 

Wiesner et al. [82]   X    

10 http://ecss.nl/hbstms/ecss-e-tm-10-23a-space-system-data 

-repository/ 
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Data source dynamics. The addition and removal of 

data sources can be crucial for engineering scenarios. 

Several engineering scenarios consider this data source 

dynamics [1, 82], while others do not.  

Data access. Most scenarios need access to the 

integrated data as a whole. Some scenarios, however, 

report on the requirement to access both local and global 

(parts of integrated) data for various reasons, e.g., to 

compare local data from different sources [1, 22, 82] or 

to enable data change propagation [20]. 

4.3 Semantic Heterogeneity 

Semantic heterogeneity reflects differences between two 

or more data sources. The heterogeneity in data 

integration systems varies between individual cases in 

MDEE. As an example, the semantic heterogeneity is 

small in data integration cases where engineers develop 

most of their local data sources according to a data 

standard (e.g., AutomationML [68], CAEX [74], OPC-

UA [27] and ECSS-E-TM-10-23A [33]).  

However, there are cases where local data source 

structures are created independently without prior 

agreement or standard as a basis (e.g., hydropower plant 

UC [20, 49]). In these cases, we cannot assume any prior 

agreement among data owners and must rely on 

mapping definitions of source structures (or between 

data sources and common data structure, depending on 

the chosen data integration approach) to enable 

interoperability. In these cases, the semantic 

heterogeneity is in general considerably higher.  

Mapping complexity reflecting the complexity of 

relations among involved data sources varies across 

scenarios. This characteristic is important due to the 

differences of OBDI variant capabilities to represent 

mappings. 

5 SURVEY RESULT ANALYSIS 

In this section, we analyze the survey result in relation 

with OBDI variants and MDEE data integration scenario 

characteristics. We propose an extension of the OBDI 

classification by Wache et al. in Section 5.1 and the 

analysis in Section 5.2. We conclude with a summary 

table in Section 5.3. 

5.1 Global-as-View OBDI 

Looking back into OBDI categorizations from Wache et 

al. [81] (cf. Figure 1-1, 1-2, and 1-3), we observe that 

there are OBDI applications that are similar (i.e., they 

make use of a global ontology and several local 

ontologies), but do not exhibit all the characteristics of 

hybrid OBDI [18, 20, 53]. Specifically, these 

applications develop local ontologies before the 

definition of the global ontology (cf. Figure 1-4). 

Therefore, the local and global ontologies are 

independent from each other. In this situation, 

interoperability is achieved by transforming local 

ontologies into instances of a global ontology. We refer 

to this approach as Global-as-View (GAV) OBDI due 

to its similarity (i.e., it contains a global schema without 

modifying local schemas) with the GAV approach from 

the relational databases [17]. To differentiate this OBDI 

approach from existing variants, we propose to add 

GAV to the typology (cf. Figure 1-4). 

GAV OBDI requires the definition of one local 

ontology per data source, similar to multiple-ontology 

and hybrid OBDI. In this method, the integration process 

consists of four steps (cf. Figure 1-4): (i) Creation of 

three independent local ontologies LA, LB, and LC (or 

reuse of existing local ontologies) for data sources A, B, 

and C respectively. (ii) Transformation of source data in 

local sources A, B, and C according to local ontologies 

LA, LB, and LC. (iii) Development of a global ontology G 

represents a set of common concepts relevant to 

scenarios, and (iv) Definition of independent mappings 

between a local repository (i.e., LA, LB, and LC) and the 

global ontology G to facilitate data transformation from 

local ontologies to the global ontology. 

Several researchers, e.g., Gagnon [24], Modoni et al. 

[55], and Moser [58, 59] have proposed ideas similar to, 

or having common points with the GAV OBDI without 

differentiating it to existing OBDI variants, while Juarez 

et al. report an adoption of GAV OBDI in a related 

domain of home automation [41]. In this paper, we 

formulate and differentiate GAV from other OBDI 

variants.  

5.2 OBDI Variants Analysis based on the 

MDEE Characteristics  

In this section, we evaluate each OBDI variant (i.e., 

single-ontology, multiple-ontology, hybrid and GAV 

OBDI) against a set of MDEE scenario characteristics 

from Section 4 (i.e., semantic heterogeneity, data 

access, mapping complexity, and data source dynamic). 

Furthermore, we consider ontology implementation 

effort as an additional criterion. 

5.2.1 Single-ontology OBDI  

Single-ontology OBDI is common in MDEE – more 

than half of the papers surveyed belong to this category.  

Semantic heterogeneity. Single-ontology OBDI is 

convenient when data sources are semantically close [3, 

11, 42, 44, 51, 62, 72, 76] or when they can be aligned 

according to a common data standard (e.g., 

AutomationML [68], CAEX [74], OPC-UA [27] and 

ECSS-E-TM-10-23A [33]).  
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 Data access. Software applications built on top of a 

single-ontology OBDI infrastructure can only access the 

global ontology, i.e., they cannot access data that are not 

captured in the global ontology.  

Mapping complexity. Because only a single 

(global) ontology is used, single-ontology OBDI 

typically does not require any mapping definitions. In 

some cases, where semi-automatic global ontology 

acquisition is possible (e.g., [68]), mappings are needed 

to transform intermediate ontology instances (i.e., the 

automatically generated local ontologies from data 

sources) according to the global ontology. 

 Data source dynamics. Changes to the global 

ontology are costly, also because they may affect 

transformation mechanisms from local ontologies. 

Therefore, the single-OBDI approach is more suitable 

for scenarios with infrequent data source additions or if 

addition of a data source does not affect the global 

ontology.  

Ontology implementation effort. Single-ontology 

OBDI requires only the development of a global 

ontology, but no additional inter-ontology mappings.  

5.2.2  Multiple-ontology OBDI  

Semantic heterogeneity. Each data source is described 

independently using a local ontology, without an 

implicit assumption that these local ontologies share 

vocabularies. Therefore, multiple-ontology OBDI is 

suitable in scenarios with high semantic heterogeneity. 

Data access. Each local ontology can be accessed 

independently, an aggregation of local ontologies can be 

made accessible using named graphs [22, 49] or an 

aggregated ontology [28, 44, 73] can be used. In 

principle, the aggregated local ontology could also be 

accessed via SPARQL Federated Queries [66], 

although we did not encounter an implementation of it 

in the survey. 

Mapping complexity. Multiple-ontology OBDI 

requires a set of mappings that define relations among 

the involved local ontologies. We found that most 

applications of multiple-ontology OBDI ([23, 45, 49, 

73]) use RDF property mappings to represent these 

relationships. There is only one exception [28] that uses 

instance mappings instead.  

 Data source dynamics. Each addition of a new data 

source to a multi-ontology OBDI infrastructure requires 

(i) the definition of new local ontology and (ii) mappings 

from the new local ontology to other local ontologies. 

This implies that adding data sources involves 

considerable effort. Most implementations in our survey 

involve a fixed number of data sources and a limited 

number of mappings and do not consider data source 

dynamics. Graube et al. [28] hint at the possibility of 

adding new data sources, but the authors do not explain 

how their application would address such dynamics. 

Ontology implementation effort. The approach 

requires development of a set of local ontologies and the 

definition of a set of mappings among them. This is 

acceptable for scenarios with a limited number of local 

sources and mappings, which were common in our 

survey [23, 45, 49, 73]. For more complex cases, 

however, alternative OBDI approaches are necessary.  

5.2.3 Hybrid OBDI  

Semantic heterogeneity. A central concept in hybrid 

OBDI is the availability of a shared vocabulary that 

facilitates the integration of data sources, not only those 

that have a similar view of a domain (i.e., low semantic 

heterogeneity), but also those with a high level of 

semantic heterogeneity. 

Data access. Hybrid OBDI provides two ways to 

access data: (i) direct access to the (aligned/restructured) 

local ontologies, and (ii) access to the shared 

vocabulary, where the system queries each local 

ontology and merges the results. Aarnio et al. [1] 

demonstrate and evaluate both access methods, and they 

report that direct access to local ontologies is faster than 

access to the shared vocabulary. Wiesner et al. [82] 

focus more on accessing the integrated data via shared 

vocabularies. 

Mapping complexity. Hybrid OBDI defines 

mappings between local and global ontologies using 

semantic relations. To this end, this approach typically 

uses a set of RDF properties as reported in [1] (e.g., 

owl:sameAs and owl:subClassOf). In applications 

that do not rely on SW technologies (but rather, e.g., F-

Logic [82]), authors typically do not report on how 

relationships among involved ontologies are 

established.  

Data source dynamics. Hybrid OBDI makes 

integration of additional data sources easier through the 

shared vocabulary refinement method. Reports on 

hybrid OBDI [1, 82] hint at this capability without 

discussing it in detail or considering dynamics in their 

application.  

Ontology implementation effort. Initial 

development of a hybrid OBDI system involves 

considerable effort. Stakeholders need to reach an 

agreement on the definition of shared vocabularies and 

need to develop (or redesign, if local ontologies are 

already available) local ontologies for each data source 

based on the shared vocabulary. However, these efforts 

then result in aligned local ontologies without need for 

additional mappings.
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Table 4. Characteristics, strengths and limitations of OBDI variants 

(Green: strengths, yellow: slight limitations; red: limitations) 

 Single-ontology Multiple-ontology Hybrid  GAV OBDI 

Semantic 

Heterogeneity 

best applied for data 

sources similar view of 

a domain 

support 

heterogeneous views 

support heterogeneous 

views 

supports 

heterogeneous views 

Data Access 
only allows access on 

global data 

allows access on each 

(original, if any) local 

ontology and the 

aggregated local 

ontologies. 

allows access on each 

(restructured) local 

ontology and the 

global ontology. 

allows access on each 

(original, if any) local 

ontology and the 

global ontology 

Data Source 

Dynamics  

(addition of data 

sources) 

needs for some 

adaptation in the global 

ontology 

needs to provide a 

new local ontology 

and map the new local 

ontology to other 

local ontologies 

only needs to provide 

(or restructure) local 

ontology based on the 

shared vocabulary 

needs to provide a 

new local ontology 

and define mappings 

to the global ontology 

Mapping 

Complexity 
N/A 

supports simple 

mappings (semantic 

relations) 

supports simple 

mappings (vocabulary 

refinement) 

supports simple and 

complex mappings 

(queries and rules) 

Ontology 

Implementation 

Effort 

straightforward costly reasonable rather costly 

5.2.4 Global-as-View OBDI 

Semantic heterogeneity. Similar to the hybrid OBDI 

approach, the availability of a “common view” of a 

global ontology in Global-as-View (GAV) OBDI can 

address various levels of heterogeneity.  

 Data access. GAV OBDI provides access on the 

global and local ontology levels. In line with this 

capability, MDEE data integration scenarios using GAV 

OBDI provide access to both local and global ontologies 

[18, 20, 53].  

Mapping complexity. Mappings between local and 

global ontologies are represented by a set of 

transformation rules or queries. Depending on the 

scenario, the mappings can be one-way (local-to-global, 

e.g., [18, 53]) or two-ways (local-to-global and global-

to-local [20]), with various levels of complexity.  

 Data source dynamics. GAV OBDI requires 

several steps to include an additional data source. First, 

it is necessary to define or reuse a local ontology for the 

new data source. Then, transformation rules to the global 

ontology have to be established. It does not, however, 

require other local ontologies and mappings to change. 

Two reports [20, 53] highlight this as an advantage of 

the approach. 

Ontology implementation effort. The effort 

required to establish the ontologies and their mapping is 

comparable to the effort for hybrid OBDI, albeit with a 

different use of such mapping (i.e., for transforming 

instead of linking RDF data instances). SPARQL 

                                                           

11 http://spinrdf.org/ 

Construct [20], eSWRL (an extension of SWRL rule 

language) [18], and arbitrary transformation code [53] 

are example languages that are used for this kind of 

transformation. TopBraid SPIN11 can also serve as an 

alternative, however, so far none of the approaches has 

been used in an MDEE. 

5.3 Summary of OBDI Characteristics 

Table  4 summarizes comparison results and highlights 

the strengths and limitations of OBDI variants in MDEE 

based on the analysis in Section 5.2.  

Wache et al. [81] consider hybrid OBDI the most 

effective variant. We observe, however, that single-

ontology OBDI is the most popular OBDI approach in 

MDEE due to its simplicity (i.e., it is suitable for 

scenarios where there is no need to preserve local data 

structures). If users need to keep local data source 

structures and compare instances from these sources, 

other OBDI variants are more suitable.  

6 TECHNICAL REALIZATION OF OBDI ELEMENTS 

This section explains technical realization options for 

OBDI elements. We focus our investigation to the OBDI 

elements shown in Figure 3, including (i) Ontology 

Language and Framework, (ii) Data Acquisition, (iii) 

Mapping and Transformation, and (iv) Storage and 

OBDI data access. We report on the results of our 

survey for each of these elements in Sections 0 - 6.4.
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Figure 3: OBDI solution elements (blue texts) 

6.1 Ontology Language and Framework 

In recent years, the Resource Description Framework 

(RDF) for expressing information about resources [32], 

together with RDF Schema as a data modeling 

vocabulary [31], and Web Ontology Language (OWL) 

as an ontology language [80] emerged as the de facto 

standard for representing ontologies on the Semantic 

Web (SW).  Most SW-based OBDI applications use 

these three standards. Abele et al. [3] propose an 

alternative approach on top of the RDF-based Semantic 

Media Wiki12. Several of these approaches use standard 

and custom RDF vocabularies, e.g., SSN and DUL to 

represent sensor data [73], IEC-61499 ontology [18], 

SysML and Matlab/Simulink ontologies [22].  

A few of the surveyed approaches do not use W3C 

standard-based ontology languages/frameworks. 

Wiesner et al. [82] rely on F-Logic [46] to represent all 

facts, rules, and queries. They argue that even though the 

combination of OWL and the rule language SWRL [35] 

can in principle provide the same level of expressiveness 

as F-Logic, it has drawbacks, e.g., the lack of negations. 

F-Logic could define rules for integration and mapping 

purposes as well as formulations of expressive queries. 

Imran and Young [39] use similar arguments for their 

                                                           

12 https://www.semantic-mediawiki.org/ 

selection of Common Logic-based Knowledge Frame 

Language (KFL) and emphasize that KFL is more 

expressive and has more powerful reasoning capabilities 

compared to OWL. Lee and Kim [51] use XML Topic 

Maps13, which were proposed as an alternative to RDF 

at the time of their research. Because W3C standards are 

the dominant approach, the following sections will focus 

on the RDF(S) and OWL. 

6.2 Data Acquisition 

OBDI approaches in the engineering domain typically 

integrate structured data in various formats. Most 

approaches in our survey integrate relational databases 

[1, 28, 42, 44, 73, 76], spreadsheets [1, 20], XML [49, 

68, 72, 74, 82], and RDF graph data [1, 18, 22, 49, 53]. 

Several OBDI approaches also integrate specific or 

legacy data formats, e.g., SysML [22], CAEX [74], web 

services and ECAD [11], and ECSS-E-TM-10-23A 

[33]. 

 Several approaches are possible to integrate non-

ontology data into an ontology graph. The Extract, 

Transform, and Load (ETL) mechanism is one of the 

most used, where OBDI approaches develop custom 

13 http://www.topicmaps.org/ 
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applications to convert data (e.g., [42, 76], [15], [26, 

65]).  

The Extract, Load, and Transform (ELT) 

mechanism represents another method, which may 

involve automatic conversion to an ontology graph (e.g., 

[1, 20, 49, 82]). This mechanism first transforms data 

source instances to an arbitrary ontology graph and then 

transforms the resulting graph into a target ontology 

representation. In comparison to ETL, ELT transforms 

data within a single ontology language. 

The Ontology-Based Data Access (OBDA) method 

allows users to access virtual RDF graphs of non-RDF 

data source instances, mainly from relational databases 

(e.g., [44, 73] use Ontop [12]). RML Mapping Language 

[16] facilitates OBDA for other data sources (e.g., XML, 

JSON, and CSV). However, we have not found an RML 

application in approaches within our survey.  

Graube et al. [27] propose a method to acquire 

transient data (e.g., web services that contain sensor 

data) as part of their OBDI implementation. They adapt 

the URI dereferencing functionality of SPARQL 1.1 

Service Description [83] to retrieve web services data 

during SPARQL query executions.  

Due to the preliminary nature and the small amount 

of data involved, Hennig et al. [33], Dibowski and 

Kabitzsch [15], and ONTO-PDM [26, 65] used manual 

data acquisition/transformation of source data to RDF. 

6.3 Semantic Mapping and Transformation 

We observe that most OBDI approaches in our survey 

rely on either a single or one method of the following 

combinations of methods for mapping definitions: RDF 

property mapping, Globally Unique Identifier (GUID) 

matching, a combination of both RDF property mapping 

and GUID matching, or property value matching.  

 RDF property mapping relies on a set of RDF 

properties to link classes, properties and instances 

of different ontologies, e.g., owl:sameAs, 

rdfs:subClassOf, rdfs:subPropertyOf, 
owl:equivalentClass and custom RDF 

properties [22, 44, 49, 53],[1, 73]. 

 URI/GUID matching links instances of ontologies 

with identical URIs [11, 20, 27, 28, 33, 68, 74, 82], 

[1, 73], [15], [64]. The approach rests on the 

assumption that individuals will be assigned a 

unique identifier across different local ontologies in 

the acquisition process. 

                                                           

14 http://www.hermit-reasoner.com/ 
15 https://github.com/stardog-union/pellet 
16 http://www.jessrules.com/ 
17 https://virtuoso.openlinksw.com/ 

 Property value matching is another method used 

for instances mapping, where two or more objects 

in different ontologies are considered the same if 

certain property values of these instances are the 

same [18], [26, 65]. 

To define these mappings and create the actual 

relations, OBDI applications employ RDF to RDF 

transformation methods and tools, such as SILK [79] 

(e.g., [1]), SPARQL construct queries (e.g., [20]) and 

arbitrary transformation code based on RDF APIs 

(e.g., [27]). Within these tools, algorithms for finding 

links among these ontologies are deployed, e.g., string 

matching or custom user-defined rules.  

An alternative to the transformation methods and 

tools are reasoners and rule engines. We found a 

number of them in our survey, e.g., Wiesner et al. [82] 

use the OntoBroker [4] rule engine to define rules for 

mapping, Natarajan et al. [62] use the Hermit reasoner14 

to improve the querying process, and ONTO-PDM [26, 

65] use first order logic (FOL) to define instance 

relations based on property values. Hennig et al. [33] use 

Pellet15 and Strube et al. [74] use SWRL with Jess16 to 

derive implicit knowledge.  

6.4 Storage and OBDI Data Access 

In our survey, we identify three RDF-based storage 

options: RDF triplestore, in-memory store and relational 

databases. Wiesner et al. use the OntoBroker storage 

system for their F-Logic based ontologies.  

 RDF triple stores (e.g., Virtuoso17, Jena TDB18, 

StarDog19 or RDF4J20) allow users to store large 

RDF data as triples [1, 22, 49, 68, 72, 76], [15], [26, 

65]. Cf. [56] for a comparison of selected RDF store 

solutions in MDEE. 

 The in-memory store [20, 53], [39], [64] is often 

used for smaller-scale data, e.g., for prototypes or 

proof-of-concepts. 

 The use of relational databases via an OBDA layer 

are also common [44, 73]. Despite efforts from the 

SW community, the capabilities of RDF triple-

stores are still lacking behind relational databases. 

Relational databases with an OBDA layer are often 

used in scenarios that need to cope with large 

amounts of data.  

 

18 https://jena.apache.org/documentation/tdb/ 
19 http://www.stardog.com/ 
20 http://rdf4j.org/ 



Table 5. Technology options for OBDI elements and their adoptions in MDEE 

(“X” indicates adoption; “-” indicate that no clear information available in the paper) 

OBDI Approach in MDEE 

OBDI Variant Language and Framework Data Acquisition Mapping Transformation Data Storage Data Access 
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Aarnio et al. [1]   X  X X       X    X X  X    X    X    

Abele et al. [2, 3] X    X     X  X      X  - X  X  X X   

Brecher et al. [11] X    X X      -  X    X  -  X   

Dibowski and Kabitzsch [15]   X  X  X     X      X    X  X    X    

Dubinin et al. [18]    X X X      -   X    X  X   - 

Ekaputra et al. [20]    X X X       X     X   X    X    X   

Feldman et al. [22]  X   X X      X     X     X  X    X    

Graube et al. (2013) [28]  X   X X      X      X    X  X    X    

Graube et al. (2016) [27] X    X X         X   X    X  X    X   X 

Hennig et al. [33] X    X  X         X  X    X X  X   - 

Imran and Young [39]    X       X     X -   X   X    X   

Kovalenko et al. [49]  X   X X       X    X     X  X    X    

Lee & Kim [51] X        X   X     -   X  -  X   

Lin & Harding [53]    X X X           X     X   X   - 

Natarajan et al. [62] X    X  X     - -    X -   X  

Novak and Sindelar [64] X     X      X      X    X   X    X   

ONTO-PDM [26, 65] X    X  X         X   X    X X    X    

Optique [44, 45, 73]  X   X  X       X   X   -   X  X  X  

Sabou et al. [68] X    X X       X     X    X  X    X    

Softic et al. [72] X    X X      X     - - X      X  

Strube et al. [74] X    X X       X     X     X -  X   

VFF [42, 75, 76] X    X X      X     -   X  X     X X  

Wiesner et al. [82]   X     X     X     X     X    X  X   
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The three most widely used mechanisms to access 

OBDI data from software applications are SPARQL 

endpoints (e.g., [1, 22, 28, 49, 68], [15], [26, 65]), API-

based services (e.g., [20, 42, 74, 76, 82], [39], [64]), and 

custom-build GUIs (e.g., [62, 72, 75]). Furthermore, 

extensions of SPARQL endpoints are being developed 

to allow access to streaming data [27].  

Table  5 summarizes technology options used as part 

of OBDI approaches on papers within our survey.  

7 DISCUSSION 

In this section, we discuss our findings for each of the 

three investigated research questions.  

RQ1: What key characteristics of data integration 

scenarios in MDEE affect the choice of an adequate 

OBDI variant? 

Based on our survey, we identified key 

characteristics for data integration in MDEE (see the 

detailed explanations in Section 4). We selected these 

characteristics based on the following criteria: (i) 

relevancy to the MDEE domain, which is reflected in the 

occurrence of these characteristics in published papers, 

(ii) effects on the choice of different OBDI variants, and 

(iii) their variance across engineering scenarios (e.g., we 

do not consider the number of data sources because it is 

similar across all the papers surveyed). The selected 

characteristics are: 

 Semantic heterogeneity refers to the degree to 

which the structure of local data sources differs. 

Semantic heterogeneity varies across OBDI 

scenarios.  

 OBDI data access refers to the expected type of 

access to OBDI data, e.g., several scenarios only 

require access to global ontology data to perform 

their analysis [68], while other cases need to access 

both local ontologies and the global ontology for 

performing data change management [20]. 

 Data source dynamics captures whether the 

addition of data sources is considered important or 

necessary in the scenario. 

 Mapping complexity characterizes the complexity 

of relations that can be established between 

ontologies. Simple mappings can be represented 

using RDF properties, whereas more complex 

relations may occur in MDEE scenarios that require 

other means of representation. 

RQ2: Which different OBDI variants have been used 

and what are their strengths and limitations with respect 

to key characteristics of data integration scenarios in 

MDEE? 

Single-ontology OBDI. In this OBDI variant, the 

shared vocabulary of all the data sources that need to be 

integrated is defined in a single global ontology. Data 

from various data sources are transformed into instances 

of the global ontology to achieve the data integration.  

The approach is convenient to use when various data 

sources are semantically close or when data sources can 

be transformed into a “common language” of the domain 

(e.g., AutomationML). If such semantic closeness or a 

“common language” are not available, any addition or 

removal of data sources may require adaptation of the 

global ontology to avoid loss of information. Our survey 

revealed, however, that this approach appears to be 

sufficient for most MDEE scenarios: more than half of 

the studied cases adopt this approach. We assume that 

this popularity is due to the low implementation effort it 

requires (e.g., only one ontology needs to be built, no 

ontology mapping/alignment is required). 

Multiple-ontology OBDI. Each data source in a 

multiple-ontology OBDI is described using its local 

ontology. We cannot assume that these local ontologies 

share any joint vocabulary. Mappings are established 

between the local ontologies.   

The advantage of this approach is that there is no 

commitment among local ontologies to shared 

vocabularies or a global ontology; however, this is also 

the most significant disadvantage due to the difficulties 

of relating content in different local ontologies. To 

overcome this drawback, inter-ontology mappings 

between local ontologies have to be added. However, 

these mapping definitions become more difficult when 

more data sources are being introduced to the system, 

since local ontologies have to be mapped to each other, 

which constitutes an exponential problem. The multiple-

ontology OBDI is hence more suitable for scenarios 

where there are a limited number of data sources and 

therefore a manageable number of inter-ontology 

mappings is needed. For more complex data integration 

scenarios, other OBDI variants are more appropriate. 

Hybrid OBDI is characterized by the availability of 

a shared vocabulary that contains basic terms of a 

domain that local ontologies should build on via 

vocabulary/ontology refinement.  

The shared vocabulary allows linking and comparing 

instances from multiple local ontologies, which are 

relevant for multiple data integration scenarios in 

multidisciplinary environments. This approach reduces 

the effort required to define inter-ontology mappings 

among local ontologies. However, this approach has its 

drawback: it forces re-development of local ontologies 

– including their mappings to local data sources – in 

order to comply with the shared vocabulary. As such, the 
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Figure 4 The OBDI approach recommendation tree 

 

hybrid OBDI is less suitable for MDEE cases where 

local ontologies are already established (e.g., in a 

brownfield OBDI scenario) or they can be automatically 

generated from data sources.  

Global-as-View (GAV) OBDI. The central concept 

of the GAV approach lies in the global ontology 

definition, which is similar to the hybrid OBDI. GAV 

OBDI, however, does not require re-development of 

existing local ontologies due to inter-ontology 

transformation definitions between local and global 

ontologies similar to those used in the multiple-ontology 

OBDI. In this way, existing local ontologies can be 

preserved and mapping definitions can be added to allow 

comparison among local ontologies. Furthermore, data 

sources can be added with moderate effort (i.e., 

mappings between the local ontology representing the 

new data source and the global ontology). Additionally 

more complex relations beyond ontology representation 

capabilities are possible (e.g., to represent complex 

engineering mappings from [50]).  

OBDI Recommendation Tree. We developed the 

OBDI approach recommendation tree (Figure 4) based 

on the OBDI characteristics (cf. Table  4) in MDEE 

scenarios, the OBDI comparison table by Wache et al. 

[81], and our analysis result in Section 5.2. The tree 

summarizes our discussion of RQ2 considering several 

factors (i.e., semantic heterogeneity, resource 

limitations, mapping complexity, local data 

access/preservation, and data source dynamics) and can 

serve as a guideline for practitioners and researchers in 

selecting the most suitable OBDI approach for the 

characteristics of their scenario. 

RQ3: What technical alternatives of OBDI elements 

have been implemented in MDEE? 

In Section 6, we report on a set of technical 

realizations of OBDI elements in MDEE. We categorize 

our observations into the following four groups:  

 Language and Framework. Most OBDI adoptions 

in MDEE use the RDF framework for their 

implementation. Two alternatives are reported: 

Topic Maps and F-Logic. The main reason of using 

F-Logic is its capability to accommodate data and 

rules (e.g., constraints, custom inferences). OWL 

on its own does not have such a capability. This 

capability can only be achieved with additional rule 

languages, such as SWRL [82] or the Jena rule 

language. At present, however, there are no W3C 

recommendations to define such rules.  

(Low) Semantic H eterogeneity
- Local data sources contain similar views of the domain
- Local “views” of data are not important
- A common/exchange data standard is available

Resource Limitations
- Limited manpower and time
- The data integration goal is a feasibility evaluation / quick prototype

Recommendation: 
Single-ontology OBDI

(H igh)  M apping Complexity
- Relation between ontologies goes beyond ontology framework (e.g., 
RDF) representation capabilities (e.g., RDF properties)

Recommendation: 
GAV OBDI

Recommendation: 
H ybr id OBDI

Recommendation: 
GAV OBDI

Local Data Access
- Legacy ontology exists (or can be generated automatically) AND
- Preserving existing local ontology structures is important

Data Source Dynamics
- The number of data sources and mappings are high OR
- The addition of new data sources in OBDI cases is important 

Recommendation: 
M ultiple-ontology 
OBDI

yes no

yes

no

yes

no

yes

no
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 Data Acquisition. We identified three mainstream 

approaches for acquiring data from local sources, 

namely ETL, ELT, and OBDA. We also found a 

unique (and potential) approach for data acquisition 

that tries to integrate transient data with a SPARQL 

extension [27] as well as manual acquisition [33].  

 Mapping and Transformation. To define 

mappings between ontology classes and 

individuals, URI matching and RDF properties 

(either from standard, e.g., owl:sameAs, or custom 

RDF properties) are mainly used. In order to 

achieve this, transformation methods and tools are 

used. In some cases, manual mapping and 

transformation processes are conducted due to the 

limited number of data that does not warrant the 

effort of developing dedicated automated mapping 

methods. 

 Data Storage and OBDI Data Access. In several 

scenarios, the native RDF triple-store is not 

sufficient [44, 73], and therefore, relational 

databases with OBDA appear to be the only viable 

alternative. Hybrid storage solutions combining 

elements of the traditional approach (i.e., a 

relational database) and SW solutions [33] have 

also been proposed. We also explained several data 

access methods for OBDI data, namely SPARQL 

endpoints, custom APIs and GUIs and SPARQL 

extensions (see Section 6.4 for more details).  

Threats to Validity:  

As with every empirical study, there are threats to 

validity that may introduce bias and, therefore, need to 

be considered and addressed. For this study, we see the 

following most relevant threats to validity and the 

countermeasures we took. 

Selection of literature sources. The survey may 

miss important papers outside of the selected scope. As 

a countermeasure, we chose a comprehensive scope and 

include the major conferences in the SW and ASE 

research communities. We expect these conferences to 

be representative of the target research communities. In 

addition, we went through citations listed in the papers 

we identified in our structured survey and included 

additional relevant papers outside of these conferences.  

Researcher bias. Researcher bias may be 

introduced by personal bias and oversight, particularly 

if only a single researcher is involved. To mitigate the 

risk of researcher bias, we followed a well-structured 

standard process [47, 84] and involved several 

researchers in each stage in order to achieve a balanced 

view. 

Limited information on technical OBDI elements. 
Another limitation we found was the unavailability of 

data on some technical aspects for several approaches 

(see Table 5). However, we consider the current set of 

collected data as representative with respect to the 

overall target scope of OBDI applications in MDEE. 

8 CONCLUSIONS 

In this paper, we report on a review of Ontology-Based 

Data Integration (OBDI) approaches in multi-

disciplinary engineering environments (MDEEs). Our 

survey covers both the Semantic Web (SW) and 

Automation Systems Engineering (ASE) research 

communities.  

 Based on the papers identified in a systematic 

literature review, we derived a set of data integration 

characteristics in the MDEE domain, proposed an 

extension to the classification of OBDI conceptual 

approaches, and evaluated the suitability of different 

OBDI variants against the derived characteristics. Our 

proposed classification will be useful not only in the 

multi-disciplinary engineering domain, but also in other 

domains with similar characteristics, e.g., scholarly data 

[8, 21]. 

Furthermore, we identified an additional OBDI 

variant not considered in prior categorizations, the so-

called Global-as-View (GAV) ontology approach. We 

differentiate the GAV from other OBDI approaches and 

discuss the strengths and limitations of various OBDI 

variants. One of the main advantages of the GAV 

approach is its ability to preserve existing local ontology 

structures for analysis purposes. 

We observed technology options for OBDI elements 

from the selected papers. We find that most of their 

implementations are using W3C standards of SW 

technologies (i.e., RDF-based approachs). There are, 

however, several approaches using alternative 

technologies, due to their maturity for industrial uptake, 

e.g., F-Logic as an alternative of RDF [82]. We also 

observed feedback from the engineering community 

with regards to their adoption of SW technologies in 

their domain, e.g., inadequate storage performance [33], 

high-learning curve [49], and the unavailability of rules 

and transformation standards [18, 20]. 

Directions for future work include extending our 

survey beyond the engineering domain to verify and 

generalize our findings w.r.t OBDI scenario 

characteristics, conceptual classifications, and their 

adoptions. In this future survey, additional criteria (e.g., 

ontology reuse and publishing) and quantitative 

comparisons (e.g., the number of mappings and 

ontologies) can be added.  

Another line of future work is research on the 

expressiveness of the ontology framework. Several 

OBDI approaches use non-SW ontology frameworks 

(i.e., KFL and F-Logic), arguing that SW technologies 
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are not sufficiently expressive for their data integration 

needs. However, the limitations of SW technologies 

have not been systematically investigated in this 

context.  

Finally, we also plan to build upon knowledge 

gathered in this survey to develop an OBDI-based data 

change management approach to improve the 

effectiveness of multi-disciplinary engineering 

processes by reducing the amount of necessary manual 

work [19].  
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