
c© 2016 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Semantic Web (OJSW)
Volume 3, Issue 1, 2016

http://www.ronpub.com/ojsw
ISSN 2199-336X

A Semantic Question Answering Framework
for Large Data Sets

Marta Tatu, Mithun Balakrishna, Steven Werner, Tatiana Erekhinskaya, Dan Moldovan

Lymba Corporation, 901 Waterfall Way, Bldg 5, Richardson, Texas 75080, USA,
{marta, mithun, steve, tatiana, moldovan}@lymba.com

ABSTRACT

Traditionally, the task of answering natural language questions has involved a keyword-based document retrieval
step, followed by in-depth processing of candidate answer documents and paragraphs. This post-processing uses
semantics to various degrees. In this article, we describe a purely semantic question answering (QA) framework for
large document collections. Our high-precision approach transforms the semantic knowledge extracted from natural
language texts into a language-agnostic RDF representation and indexes it into a scalable triplestore. In order to
facilitate easy access to the information stored in the RDF semantic index, a user’s natural language questions are
translated into SPARQL queries that return precise answers back to the user. The robustness of this framework is
ensured by the natural language reasoning performed on the RDF store, by the query relaxation procedures, and the
answer ranking techniques. The improvements in performance over a regular free text search index-based question
answering engine prove that QA systems can benefit greatly from the addition and consumption of deep semantic
information.

TYPE OF PAPER AND KEYWORDS

Regular research paper: RDF, SPARQL, unstructured data, large datasets, question answering (QA), reasoning,
ontology

1 INTRODUCTION

The explosion of available knowledge makes the task of
finding information by hand too expensive and complex.
Aiming at returning brief answers from large data
collections as responses to natural language questions,
robust and precise question answering (QA) systems are
widely regarded as one of the next major contributions
to the information technology world. Traditionally, they
have been developed on top of free text search indexes as
information retrieval (IR) systems enhanced with natural
language processing (NLP) mechanisms with varying
processing depth. Despite these IR-based approaches to
QA, there is no easy way to perform a federated search
over both structured databases and unstructured text

documents, including articles, manuals, reports, emails,
blogs, and others. There is no easy way to enable more
intelligent applications over such diverse data sources
without considerable time and effort spent in system and
data model customization by experts.

With the recent emergence of commercial grade
Resource Description Framework (RDF) [22] triple
stores, it becomes possible to merge massive amounts of
structured and unstructured data by defining a common
ontology model for the DBMS schemas and representing
the structured content as semantic triples. However,
technology gaps exist. More specifically, there are no
efficient and accurate algorithms and tools to transform
unstructured document content into a rich and complete
semantic representation that is compatible with the

16

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojsw

M. Tatu et al.: A Semantic Question Answering Framework for Large Data Sets

RDF standard. There are no methods for accessing
information to enable intelligent applications while
hiding the underlying complexity of the voluminous
semantic data being searched.

In this paper, we describe new methods to (1)
transform unstructured data into a structured format,
(2) merge it with other ontologies and structured data
into a consolidated RDF store, and (3) offer a natural
language QA interface for easy use. To make the QA
robust, we propose various natural language reasoning
methodologies, query relaxation procedures, and an
answer ranking technique.

This novel framework operates on the semantics of
the natural language text and is, therefore, language-
independent. It is also highly flexible, allowing a
system designer to tailor its various components to
a particular task and/or document collection as well
as giving them the liberty to choose from the many
available triplestores.

The specific implementation described in this article
was developed on top of Oracle 12c Spatial and
Graph [19] and makes use of Lymba’s knowledge
extraction capabilities [24]. We evaluated and measured
its performance on a variety of questions about illicit
drugs. However, we show the impact of the QA
framework’s various modules on three different data
sets. And, although parts of the framework detailed
below have been introduced in our Semantic Question
Answering on Big Data article [25], the customization
of the framework for different domains or needs is novel
along with the description of our answer ranking module
and the many examples and details added to various
sections of the original article.

1.1 Related Work

In a recent survey [4], Bouziane et al. divide QA systems
into:

1. QA for web of documents and text that follow
three main distinct subtasks: Question Analysis,
Document Retrieval, and Answer Extraction [16]
to process natural language questions and retrieve
precise answers from textual documents.

2. QA for web of data that apply Named Entity
Recognition, Syntactic Parsing, Question
Classification, and SPARQL Generation on
natural language questions and retrieve precise
answers from Linked Data.

Development of QA for web of documents and text
has been the center of research in the IR and NLP
communities for several decades. Such QA systems
have been developed, hardened, and evaluated under

several government funded programs including National
Institute of Standards and Technology (NIST) TREC QA
competition from 1999 until 2007 [29, 6]. These QA
systems rely on shallow, named entity based indexing
to retrieve a small set of candidate answer documents
from large collections. The candidate answer documents
undergo deep semantic analysis in a post-processing
phase to retrieve the final answers. The TREC QA
competitions have revealed that the systems perform
very well on processing and retrieving precise answers
for factoid questions that mainly query for date, time,
location, person, and organization named entities but do
not perform well on list and definition questions [18, 17].
The lack of semantic knowledge being indexed and
queried in the document retrieval phase results in low
coverage of answer candidate sentences/documents for
further analysis and processing, and thus leads to non-
optimal performance on certain types of questions.

QA for web of data has lately drawn the attention of
many researchers and has resulted in the development
of several QA systems for Linked Data such as
Aqualog [15], PowerAqua [14], NLP-Reduce [11] and
FREyA [5]. The advent of several competitions in
this arena including the Open Challenge on Question
Answering over Linked Data [28] has helped in data
sharing and development of robust systems. Most
approaches to QA for web of data use dependency or
syntactic parsing to extract and represent a question’s
semantics as a set of triples and then build a SPARQL
query. The solutions differentiate themselves mainly on:
(1) the linguistic processing tools and their performance,
(2) usage of knowledge bases, and (3) the ease of
adaptation to newer domains.

Unger et al. [27] focused on applying aggregation and
filter constructs to resolve SPARQL query generation
related issues. The authors proposed a template-based
approach to SPARQL query generation and handle
constructs that are not captured using semantic triple
representation. The SPARQL templates specify the
query’s select clause, its filter and aggregation functions,
as well as the number and form of the semantic triples.
The semantic triples are represented appropriately by
variables and data elements from the natural language
question. The subject, predicate, and object of a triple
are variables, some of which stand proxy for appropriate
URIs. The main assumption of template generation is
that the overall structure of the target SPARQL query
is (at least partly) determined by the syntactic structure
of the natural language question and by the occurring
domain-independent expressions.

Yao et al. [34] focused on answering natural language
questions using the Freebase knowledge base. Their
solution compares an artificial intelligence (AI) approach
against an information extraction (IE) approach. The

17

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

AI based approach focuses on understanding the intent
of the question, via shallow or deep forms of semantic
parsing (e.g., the lambda calculus), and then mapping
extracted semantics to database queries. The AI
module’s performance is thus bounded by the accuracy
of the original semantic parsing and the well-formedness
of resultant database queries. The IE based approach
first performs relatively coarse information retrieval as
a way to triage the set of possible answer candidates,
and then attempts to perform deeper analysis to retrieve
the correct answer. The deeper analysis includes use of
inference to match Freebase relation types with words in
the question (e.g., brother and male sibling) and answer
candidates. The authors show that relatively modest
IE techniques when paired with a webscale corpus can
outperform sophisticated approaches by roughly 34%
relative gain.

Recently, joint approaches have been applied to solve
several related and dependent tasks in QA. Yahya [33]
used an integer linear program to jointly solve: the
segmentation of questions into phrases; the mapping of
phrases to semantic entities, classes, and relations; and
the construction of SPARQL triple patterns. CASIA
system [13] uses Markov Logic Networks (MLNs) [23]
for learning a joint model for phrase detection, mapping
phrases to semantic items, and grouping semantic items
into triples. Markov logic clauses are used to describe
conflict resolution rules for disambiguation. Hard
clauses represent mutual exclusivity constraints between
items and the relations that they partake in. The soft
constraints describe: 1) association between phrases
and semantic items; 2) association between dependency
tags in the dependency pattern path of two phrases
and the relationship types between the phrases’ mapped
semantic items; 3) influence of other features on the
disambiguation decision. The CASIA system uses
DBpedia [7] as its knowledge base.

Another Markov logic-based approach [12]
investigates three ways of applying MLNs to the
QA task. First, the approach extracts science rules
directly as MLN clauses and exploits the structure
present in hard constraints to improve tractability.
Second, it interprets the science rules to describe
prototypical entities, and this results in a drastically
simplified but brittle network. Lastly, the approach uses
MLNs to align lexical elements as well as define and
control how inference should be performed in this task.

One more relevant research direction related to QA is
the creation of natural language interfaces for querying
structured information loaded in databases [20]. Given a
natural language question, the PRESISE system [20] first
determines if the question is relevant to the structured
information loaded in a database and whether a tractable
SQL can be generated. The database is then queried

using the automatically generated SQL to retrieve
answers. The problem of mapping the natural language
question represented by a set of tokenized concepts to a
set of database elements is reduced to a graph matching
problem, which is solved with a max-flow algorithm.

The framework presented in this paper bridges
QA approaches for a web of textual documents and
structured data content. We describe the means
to represent the knowledge extracted from textual
documents and structured data as RDF triples, and
then convert users’ natural language questions into
SPARQL [31] for querying and retrieving answers from
the RDF store. The goal of the described framework
is to perform high precision QA on large heterogenous
data sets containing both structured and unstructured
knowledge.

2 TRIPLE-BASED QUESTION ANSWERING

Our semantic question answering (SQA) framework
leverages an existing natural language processing (NLP)
module. This suite of tools pinpoints the semantics
of both the document collection as well as the user’s
input question. In the Document Indexing phase, the
semantic information derived from document content
is represented in an RDF format that facilitates its
storage into a semantic triple store. At query time, the
user’s natural language question is parsed to identify
its meaning. This is then automatically converted
into a SPARQL query that will be used to retrieve
precise answers from the already populated RDF store
(Figure 1). All methodologies described in this article
are language agnostic.

The Knowledge Extraction module and the Question
Processing tool must share the NLP engine to ensure
that the semantics extracted from both the document
collection as well as the input question are similar and
can be represented using the same set of triples.

Since the goal of this article is to detail the means
of answering natural language questions using an RDF-
triple-based framework, we will omit the description
of the NLP module, which can be any suite of
NLP tools that identifies named entities, word senses,
coreferring entities, and semantic relationships between
concepts from the content of a document. A detailed
description of one such knowledge extraction engine
can be found in [24]. We emphasize the required
degree of semantic processing (deep NLP), which goes
beyond identification of named entity types and/or word
senses alone (shallow NLP). All these highly semantic
components are required to capture the meaning of the
input, to create a faithful semantic representation of the
input documents and questions, and to produce accurate

18

M. Tatu et al.: A Semantic Question Answering Framework for Large Data Sets

Question processing

RDF store

User
question

Precise answer

Input
documents

Semantics to SPARQL

Knowledge extraction Deep NLP

Semantics to RDF

Figure 1: Overview of the semantic question answering framework

answers for input questions.

2.1 RDF Store

In this section, we detail the novel steps of the document
indexing phase of our proposed SQA framework (the
complete step-by-step process shown below). More
specifically, we present the RDF representation of the
input document content as well as the various types of
entailment rules that can be used on an RDF store to
generate additional triples.

Input: Document collection
Output: RDF semantic index

1 for each input document:
1.1 Deep NLP of document content
1.2 RDF representation of its semantics

2 load document RDF triples in RDF store
3 load custom/domain ontology/WordNet in
triplestore
4 define entailment rules for reasoning
on the RDF store
5 generate new triples using already
defined entailment rules

Having extracted various semantic knowledge from
the input documents (step 1.1), and, therefore, having
created a more structured dataset from the unstructured
input text, we define a robust RDF representation (step
1.2), which when translated into triples, can be stored
within an RDF semantic index (step 2). This store can
then be accessed, visualized, queried, or integrated with
already available structured data. For this purpose, any
scalable triplestore may be used. For the implementation
evaluated in this paper, we use Oracle 12c Spatial and
Graph, which can efficiently index and access large
amounts of RDF triples [19].

We note that, in addition to the RDF representation
of the input document collection (described below in
Section 2.1.1), the RDF store may contain triples that
define a domain ontology or even WordNet [9, 32]
(step 3)1. For these knowledge resources, we store any
concept information that they provide (part-of-speech,
1 The loading of ontological triples into the RDF store is a one-time

process. The triples can be shared by different semantic models.

sense number, named entity class, if available) as well
as any semantic relationships identified between the
ontological concepts. All RDF XML files are translated
to triples using Apache Jena [26].

2.1.1 RDF Representation

The available knowledge extracted from the document
content includes: (1) lexical knowledge (sentence
boundaries, token information, including part-of-speech
tag, start and end positions, and lemma), (2) syntactic
information (head-of-parse-phrase flags for tokens, and
syntactic phrase dependencies), as well as (3) semantic
knowledge (named entity labels, WordNet word senses,
coreference chains, and semantic relations). However,
storing all this information in an RDF store creates
a large number of RDF triples, which proves to
be intractable for large collections of textual data
(for instance, 6.3MB of unstructured plain text can
produce 13,314,886 triples or 1.03GB of RDF XML).
Fortunately, not all this linguistic knowledge is needed
for a reliable QA system.

The semantic information is the most valuable to
an end consumer of the knowledge conveyed by the
input text. Therefore, we reduce the set of linguistic
knowledge translated to RDF to include: (1) only
concepts that participate in semantic relationships, and
(2) the semantic relations linking these concepts. More
specifically, for named entities, we store only their
entity type, lemma, synset information (if available),
and reference sentence. For temporal and locative
expressions, we make use of their normalized values
when setting the concept’s properties (e.g., 2008-05-
20 is the lemma for both May 20th of 2008 and
May 20, 2008). For all other concepts, we keep
only their surface form, lemma, synset information, a
boolean is-event flag, and reference sentence. Each
semantic relation is represented as an additional triple
for its left-hand-side argument URI, which points to
its right-hand-side argument URI. These include any
coreference links identified during the NLP process.
This reduced representation, which is semantically
equivalent to the schema that represents all available
linguistic knowledge, reduces the size of the RDF store

19

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

ly:isAgentOf

ly:inSentence

rdf:type

ly:inSentence

rdf:type

ly:synsetIdly:synsetId

ly:isEvent

ly:text
ly:text

ly:lemma

ly:hasCountryName

“201065094”

“true”

“win”

“won”

“108444912”

“russia”

“Russia”

<URL/7a1c9e82/Token/7_9><URL/7a1c9e82/Token/0_5>

<URL/terms/v1.0/Token>

<URL/7a1c9e82/S/0_53>

Figure 2: Sample RDF graph generated using the RDF representation proposed in this article

by 50%, while still maintaining the source sentences
and the document of origin for a concept or relation.
However, if additional information is required for the
presentation of the answer to the user (e.g., highlight
the exact answer of a question within its sentence), this
RDF representation can be augmented accordingly with
non-semantic information (e.g., include start/end offset
properties for all concepts).

The following sample RDF XML describes tokens
Russia and won as well as their semantic link
AGENT(Russia,won) as identified within the sentence
Russia won 397 medals at the Summer Olympic Games:

<rdf:Description rdf:about="URL/7a1c9e/Token/0_5">
<rdf:type rdf:resource="URL/terms/v1.0/Token"/>
<ly:inSentence rdf:resource="URL/7a1c9e/S/0_53"/>
<ly:text>Russia</ly:text>
<ly:hasCountryName>russia</ly:hasCountryName>
<ly:synsetId>108444912</ly:synsetId>

</rdf:Description>
<rdf:Description rdf:about="URL/7a1c9e/Token/7_9">

<rdf:type rdf:resource="URL/terms/v1.0/Token"/>
<ly:inSentence rdf:resource="URL/7a1c9e/S/0_53"/>
<ly:text>won</ly:text>
<ly:lemma>win</ly:lemma>
<ly:isEvent>true</ly:isEvent>
<ly:synsetId>201065094</ly:synsetId>

</rdf:Description>
<rdf:Description rdf:about="URL/7a1c9e/Token/0_5">

<ly:isAgentOf rdf:resource="URL/7a1c9e/Token/7_9"/>
</rdf:Description>

where ly is defined in the XML
namespace attribute xmlns, e.g., <rdf:RDF

xmlns:ly="URL/terms/v1.0/">; URL may be
http://www.lymba.com/rdf or the RDF generator’s
URL and 7a1c9e is a sample hash value which uniquely
identifies the document containing this sentence within
the input collection, thereby ensuring the uniqueness of
these URIs within the RDF store. In Figure 2, we show
this sample representation in graphical form.

We note the representation of the named
entity information as a predicate (URI
ly:hasCountryName "russia" as apposed to
URI ly:hasNamedEntityType "country", which
may require an additional triple pattern when queried
using SPARQL, e.g. URI ly:text "Russia").

2.1.2 Reasoning on the RDF Store

Our deep semantic QA engine uses various types of RDF
entailment rules to augment the semantic information
extracted from textual content (Figure 3). Inferences
are necessary for answering any non-trivial questions
by deriving implicit relationships and making the data
smarter. They complete the knowledge extracted from
textual content and lead to shorter queries and fast
response times. The creation of these entailment rules
is a one-time process, which is independent of the RDF
store chosen for this task. The resulting axioms can
be loaded in the RDF store using the specific triple
store’s set of available commands for this purpose. The
reasoning process is performed as soon as the triples
capturing the documents’ meaning are indexed in the
RDF store.

The first variety of RDF rules involves the generation
of inSynset triples between a document token and its
corresponding ontological concept/WordNet synset.
We note that by assigning word senses to each noun,
verb, adjective, and adverb in our input documents,
each of these tokens can be easily mapped to their
corresponding WordNet synsets. The entailment rule
that creates the inSynset triples is (?tok ly:synsetId

?sid) (?syn wn:synsetId ?sid) → (?tok

ly:inSynset ?syn).
Another type of RDF rules involves the generation

of owl:sameAs predicates as coreferring entities
within- as well as across-documents (e.g., all
mentions of Russia refer to the same entity). Once
these new triples are created, an OWLPrime [30]
entailment will cluster all URIs of coreferring
tokens, thus, gathering their corresponding semantic
properties to a single URI. A sample rules used
here is (?tok1 ly:hasCountryName ?name)

(?tok2 ly:hasCountryName ?name) → (?tok1

owl:sameAs ?tok2).
Semantic Calculus [3] rules are also converted into

their corresponding RDF axioms to combine two
semantic relation triples that share an argument. For

20

M. Tatu et al.: A Semantic Question Answering Framework for Large Data Sets

Document
semantics

owl:sameAs

OWLPrime

Semantic closure

Custom ontology +
WordNet

Semantic closure

Lexical chains

ly:inSynset

Figure 3: RDF store content after the reasoning step

instance, LOCATION(x, y) & PART-WHOLE(x, z) →
LOCATION(z, y) can be defined as an RDF entailment
rule (?tok ly:isLocationOf ?lhs) (?rhs

ly:isPartOf ?tok) → (?rhs ly:isLocationOf

?lhs) to generate new LOCATION instances from
existing LOCATION and PART-WHOLE triples. We note
that these combinations of semantic relations can be
applied to semantic links identified within the document
content as well as semantic relations defined within
domain ontologies or WordNet between concepts. These
semantic combinations derive new information from a
sentence such as The country’s finance minister, Ashraf
Ghani, made the announcement at an international
conference in Berlin, saying almost $4.5 billion has been
promised for this year alone, where a semantic parser
may have already identified AGENT(finance minister,
made), LOCATION(international conference, made), and
LOCATION(Berlin, international conference). With these
relations alone one cannot directly answer the question
Where is the finance minister? (LOCATION(finance
minister, x)). However, by combining these semantic
relationships and generating new LOCATION triples
(e.g., LOCATION(international conference, finance
minister), LOCATION(Berlin, finance minister), and
even LOCATION(Germany, finance minister)), the
question can be answered with several degrees of
specificity (Berlin or even Germany, by exploiting the
PART-WHOLE relationship between these two concepts
from WordNet). Other examples of Semantic Calculus
axioms include the transitivity of HYPERNYMY, PART-
WHOLE, or KINSHIP relationships. For a more formal
description of these axioms as well as methodologies on
how to generate them, please refer to [3].

Last, but not least, lexical chains2 of WordNet

2 A WordNet lexical chain [8] is defined as a weighted path between

relations can be translated to RDF entailment rules
that generate new triples between semantically-
linked concepts. For instance, victim:n#1 ← IS-A ←
martyr:n#1 → DERIVATION → martyr:v#1 → IS-A →
kill:v#1 links victim and kill and enables the extraction
of It was reported that a Gulf Cartel member killed a top
Zeta lieutenant named Victor Mendoza. as an answer
for Which Zeta lieutenant was a victim of the Gulf
Cartel? Therefore, all lexical chains of maximum size
3 (up to 3 semantic links) are pre-computed and added
to the RDF store as part of the ontological semantic
model3. A sample lexical chain entailment rule is (?a
wn:hyponym ?b) (?b wn:derivation ?c) (?d

wn:hyponym ?c) → (?a ly:isNearSynonymOf

?d).

We note that this new body of knowledge is
seamlessly blended into the RDF semantic index and
is made available at query time. It greatly impacts
the size and types of SPARQL triple patterns. It
not only reduces the size of the SPARQL query
and, thus, increasing the speed of returning an
answer4, but it also greatly improves the robustness
of the SPARQL queries. More specifically, with
no isNearSynonymOf triples, one would have to
“guess” the semantic links between the question
concepts in the answer documents. For instance, with
no isNearSynonymOf for ?victim ly:inSynset

?syn . ?syn ly:isNearSynonymOf

wn:synset-victim-noun-1, the answer-yielding
SPARQL query would have to include ?victim

ly:inSynset ?syn . ?syn wn:hyponym ?s1 .

?s1 wn:derivation ?s2 . ?s2 wn:hypernym

wn:synset-victim-noun-1, which is a set of triple
patterns very difficult to come by even for a human
without having prior knowledge about the answer
sentence. Furthermore, a single isNearSynonymOf triple
accounts for up to three WordNet relation triples.

This RDF reasoning step (step 5), which employs
all these types of axioms and completes the knowledge
explicitly conveyed by the document content, finalizes
the collection indexing phase of our SQA process.

two synsets, where the path consists of a sequence of two or more
synsets connected by relations in WordNet.

3 Each lexical chain has an associated weight, denoting the strength of
the lexical chain, which is computed based on the type and direction
of the chain’s relations; e.g., (IS-A, IS-A) chain is stronger than a
(IS-A, IS-A−1) one, which is stronger than a (IS-A, PART-OF) chain.

4 Despite having additional triples in the RDF store, large SPARQL
queries take significantly longer to return an answer when compared
to shorter ones. Also, if desired, certain triples can be removed from
the RDF store once the reasoning process is completed in an effort to
reduce the size of the triplestore.

21

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

2.2 Natural Language to SPARQL

Given our RDF-based QA framework, the question
answering phase of the QA process must generate
SPARQL queries semantically equivalent to input
questions and use these queries to interrogate the RDF
store. In order to ensure the system’s robustness,
we implemented several query relaxation procedures
to be used when no answers are found in the RDF
store. If competing answers are identified, a ranking
module is used to create the system’s final response.
More specifically, the NL to SPARQL algorithm can be
summarized as follows:

Input: Natural language question
Output: Precise answer

1 question understanding
1.1 Deep NLP of input question
1.2 answer type/answer type term

detection
2 SPARQL query formulation
3 query the RDF store
4 if answer(s) found, then 4.1, else 4.2

4.1 return answers sorted by
confidence

4.2 relax SPARQL query and go back
to 3

We note that, in order to be able to generate SPARQL
queries that may identify answers within the RDF store,
the NLP tools used to process the input question must
aim to identify the same type of knowledge identified
within input documents (in Figure 1, the Knowledge
extraction and Question processing modules share the
NLP). However, the NL to SPARQL procedure can
be also employed for an existing RDF store, where
the indexed document collection is not represented
using the same set of semantic relations as the one
identified within the input question. For all such
cases, the question’s semantic graph (as returned by
the NLP tools) must be mapped to the documents’
set of triple predicates, prior to its conversion to a
SPARQL graph. For this purpose, semantic rules
must be defined that combine the relations identified
within the question to identify the types of relations
stored for the document content. For instance, if
the RDF store contains ARRESTED AT triples, which
cannot be extracted natively by the NLP tools from the
question input, a semantic rule similar to THEME(x,y) &
LOCATION(l,y) & IS-A(y,arrest) → ARRESTED AT(x,l)
would bridge a question’s semantics to the RDF store
predicates. The new question semantic graph, which
makes use of the store’s predicates, can be accurately
converted into the correct SPARQL query.

2.2.1 Question Processing

The first step (Step 1) in this process is to derive the
semantic representation of the input question. In addition
to processing the question text using the deep NLP
engine employed for the document content (Step 1.1),
more information about the question’s expected answer
must be derived (e.g., human or organization for a
who-question, date or time for a when-question, etc.)
as well as its answer type term(s) (e.g., cartel for which
cartel-questions) (Step 1.2). We use a hybrid system,
which takes advantage of precise heuristics as well as
machine learning algorithms for ambiguous questions.
A maximum entropy model was trained to detect both
answer type terms and answer types. The machine
learner’s features for answer type terms include part-
of-speech, lemma, head information, parse path to WH-
word, and named entity information. Answer type
detection uses a variety of attributes such as additional
answer type term features and set-to-set WordNet lexical
chains, which link the set of question keywords to the set
of potential answer type nodes [17, 18].

2.2.2 SPARQL Query Formulation

SPARQL queries are not easy to write even when
one is knowledgeable about the content of the RDF
store, especially for complex queries. Therefore,
we developed a natural language (NL) to SPARQL
conversion module that generates SPARQL queries
equivalent to a question’s semantic representation.

For a given question, the answer type and answer
type term information is used to decide which SPARQL
variables are to be SELECTed and returned by the query.
Furthermore, the set of semantic relations identified
within the question text describe the SPARQL query’s
WHERE constraints – the triple patterns that must be
satisfied by the retrieved answers. In Figure 4, we
show a sample conversion of the question’s semantics to
SPARQL triple patterns that pinpoint the desired answer
URI. We note that, for a complete SPARQL query,
additional triple patterns must be added to identify the
answer’s lemma, sentence, or document information.

More specifically, in order to generate a SPARQL
query, a unique SPARQL variable name is associated
with each question token that is linked to the answer
variable through a chain of semantic relationships. The
answer variable is included in the SELECT clause of
the SPARQL query along with variables that denote the
text of the sentence which contains that answer or the
path of the answer’s source document (e.g., SELECT
?answer ?sentence ?path).

The WHERE clause of the SPARQL query contains
the semantic triples that must be satisfied by the indexed

22

M. Tatu et al.: A Semantic Question Answering Framework for Large Data Sets

isThemeOf
hasOrganizationName

isAgentOf inSynset
?answer

cartel

?name

?trade

?gun

subClassOf

inSynset

THEME
trade

AGENT
cartel guns

illegally

MANNER

trade

gun

?illegally illegally
inSynset

isMannerOf

Figure 4: Semantics to SPARQL example

knowledge. First, the answer’s semantic constraints are
added:

1. Answer type filtering (e.g., for an organization
answer type: ?ans ly:hasOrganizationName

?answer – which forces the answer to be
an organization named entity; if no answer
type is identified, the query contains ?ans

wn:hasLexeme ?answer),

2. Answer type term tests (e.g., for the cartel
answer type term: ?ans rdf:subCassOf

wn:synset-cartel-noun-1 . ?ans

ly:text ?answer – which constrains the
answer to hyponyms of the answer type term
cartel), and

3. Sentence/document information (?ans
ly:inSentence ?sent . ?sent ly:text

?sentenceText or ?ans ly:inDocument

?doc . ?doc ly:path ?path).

The semantic relation constraints follow. For
each semantic relation, one to three triple patterns
are created. The first is mandatory and describes
the relation (e.g. ?ans ly:isAgentOf ?trade

for AGENT(who,trade); ?gun ly:isThemeOf

?trade for THEME(gun,trade); ?illegally

ly:isMannerOf ?trade for MANNER(illegally,
trade)). The other two describe the variables involved
if not described already (e.g., ?trade ly:inSynset

wn:synset-trade-verb-1).
Using this SPARQL generation procedures, the

question Which cartels trade guns illegally? is converted
into

SELECT ?answer ?sentence ?path
WHERE {

?ans rdf:subCassOf wn:synset-cartel-noun-1 .

?ans ly:isAgentOf ?tr .
?tr ly:inSynset wn:synset-trade-verb-1 .
?gun ly:isThemeOf ?tr .
?gun ly:inSynset wn:synset-gun-noun-1 .
?il ly:isMannerOf ?tr .
?il ly:inSynset wn:synset-illegally-adverb-1 .
?ans ly:text ?answer .
?ans ly:inSentence ?sent .
?sent ly:text ?sentence .
?ans ly:inDocument ?doc .
?doc ly:path ?path

},

which can efficiently identify the correct answer from the
RDF store.

2.2.3 Query Relaxation

We note that the query generated using the information
extracted from the user’s question includes inSynset
links to concepts chosen by the user. However, these
may not be identical to the concepts of the correct answer
that are indexed in the RDF store. Therefore, if no rows
are selected for this initial SPARQL query, we relax its
constraints to allow for hyponyms, parts, derivations
as well as near synonyms of the question terms to be
matched by the RDF reasoning engine. For instance,
?trade ly:inSynset wn:synset-trade-verb-1

is replaced with ?trade inSynset ?syn . ?syn

ly:isNearSynonymOf wn:synset-trade-verb-1,
which allows ?trade to be matched by any hyponym of
trade such as traffic, import, export, etc.

Furthermore, if no answers are identified using these
relaxed queries, further relaxations to the set of WHERE
constraints are made: variable-describing triples and
semantic-relation-definition triples are dropped, starting
with the variables that have the smallest impact on the
answer variable. For the example shown above, these
include ?illegal and ?gun (in this order); ?trade
is semantically linked to the desired answer and will not
be relaxed.

Future research must be conducted to identify the
optimum relaxation path, e.g., the optimal order in which
query terms are to be replaced by their hyponyms or
meronyms as well as the best order in which semantic
relation triples are to be dropped from the automatically
generated SPARQL query. Regardless, the relaxation
criteria described in this section produces encouraging
results as shown in Section 3.2.

2.2.4 Answer Ranking

By relaxing the original SPARQL query, if needed, the
system is more likely to return more than one possible
answer. Thus, an answer set ranking procedure is
required before the results are presented to the user.

In order to understand why, an SQA system may
return more than one answer to a single question, we

23

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

note that, for instance, the semantic relations that we
index in the RDF data store may have originated from
the content of the queried documents or may have been
inferred from the original set of relations when they
were combined using the Semantic Calculus entailment
rules (Section 2.1.2). Thus, the triple patterns of a
SPARQL query may find a match within each of these
sets of relations. For instance, given the question
What is the area of operation for the Gulf Cartel?,
the SQA system extracts several LOCATION answers
from the passage It is also strong in Reynosa. Both
cities are located in the Mexican state of Tamaulipas,
which has become a bloody battleground between the
Zetas and the Gulf Cartel. These are: Reynosa,
Tamaulipas, and Mexico, where LOCATION(Reynosa,
Gulf Cartel) is identified in the content of the
passage, and LOCATION(Tamaulipas, Gulf Cartel)
and LOCATION(Mexico, Gulf Cartel) relations are
derived from combinations with LOCATION(Tamaulipas,
Reynosa)5 and PART-WHOLE(Tamaulipas, Mexico)6,
both also extracted from the input text. Although
the returned LOCATION relations are correct, they are
not equally informative and, thus, should be ranked
accordingly.

However, given the built-in architecture of triple-
based RDF stores, the answers returned for a given
SPARQL query are not sorted in any particular order.
Even when multiple searches of the RDF store use
the same query, the same answer set is returned in a
completely different order. This impacts the overall
quality of the responses returned by the SQA engine.
To overcome this issue, we implemented an answer
ranking module, which allows us to both sort and trim
the returned results based on confidence scores.

The ordering of the answers to be returned is done at
query time by the RDF store’s internal retrieval engine
by including an ORDER BY clause in our automatically
generated SPARQL queries. The value used to sort
the returned answers is the confidence of the semantic
relation that links the answer concept to the rest of the
question (e.g., LOCATION(x,Golf Cartel) for What is the
area of operation for the Gulf Cartel?). However, in
order for the RDF store to access the relation confidence
information, this must be indexed in the data store
when it is generated by the document indexing process.
Therefore, the RDF representation of a semantic relation
instance is changed to include the confidence assigned
to it by the semantic parser. More specifically, the

5 LOCATION(x, y) & LOCATION(y, z) → LOCATION(x, z); in this
case: LOCATION(Tamaulipas, Reynosa) & LOCATION(Reynosa, Gulf
Cartel)→ LOCATION(Tamaulipas, Gulf Cartel).

6 LOCATION(x, y) & PART-WHOLE(x, z) → LOCATION(z, y); here:
LOCATION(Tamaulipas, Gulf Cartel) & PART-WHOLE(Tamaulipas,
Mexico)→ LOCATION(Mexico, Gulf Cartel).

triple used to represent the semantic relation SR(x, y),
?x ly:sr ?y is augmented with ?sr uri ly:type

‘‘sr’’; ?sr uri ly:lhs ?x; ?sr uri ly:rhs

?y; ?sr uri ly:confidence confidence. For
instance, given the sample RDF representation shown
in Section 2.1.1, the RDF XML is generated to also
include:

<rdf:Description rdf:about="URL/7a1c9e/SR/0_5-7_9">
<rdf:type rdf:resource="URL/terms/v1.0/SR"/>
<ly:type>isAgentOf</ly:type>
<ly:confidence>0.856003</ly:confidence>
<ly:lhs rdf:resource="URL/7a1c9e/Token/0_5"/>
<ly:rhs rdf:resource="URL/7a1c9e/Token/7_9"/>

</rdf:Description>

For semantic relations extracted directly from text, the
confidence value is the one assigned by the semantic
parser. The confidence associated with a semantic
relation generated by Semantic Calculus rules depends
on the corresponding values of the relations that are
being combined (the minimum confidence value of the
input relations is assigned to the resulting relation). If
R1(x, y)&R2(y, z)→ R3(x, z),

conf(R3) = min(conf(R1), conf(R2)).

Optionally, each Semantic Calculus rule can be
associated with its own confidence score, proportional
with its accuracy of predicting the correct semantic
relation on a large corpus [3]. The formula to compute
the confidence of a resulting semantic relation will then
become

conf(R3) = conf(rule) ∗min(conf(R1), conf(R2)).

We note that, with this triple scoring scheme, there
is a preference towards relations identified in text or
relationships derived from text relations within one or
two inference steps because the reasoning process will
propagate any errors of the semantic parser as well as
any inaccuracies of the Semantic Calculus axioms.

The confidence values of the isNearSynonymOf triples
is inversely proportional to the weight of the lexical chain
that generated it. All sameAs and inSynset triples are not
modified – are considered to have maximum confidence.

This change in the RDF representation of the semantic
relations also prompts several modifications from the NL
to SPARQL conversion module, which now makes use
of the confidence values associated with the semantic
relations of the answer. For the example shown in
Section 2.2.2, the query changes to

SELECT ?answer ?sentence ?conf
WHERE {
?ans rdf:subCassOf wn:synset-cartel-noun-1 .
?sr ly:type "isAgentOf"ˆˆxsd:string .
?sr ly:lhs ?ans .
?sr ly:rhs ?tr .
?sr ly:confidence ?conf .

24

M. Tatu et al.: A Semantic Question Answering Framework for Large Data Sets

?tr ly:inSynset wn:synset-trade-verb-1 .
?gun ly:isThemeOf ?tr .
?gun ly:inSynset wn:synset-gun-noun-1 .
?il ly:isMannerOf ?tr .
?il ly:inSynset wn:synset-illegally-adverb-1 .
?ans ly:text ?answer .
?ans ly:inSentence ?sent .
?sent ly:text ?sentence

},
... ORDER BY conf DESC

where the boldface triples have replaced the ?ans

ly:isAgentOf ?tr triple pattern to include the
confidence value of the isAgentOf relation, which will
be used to order the query’s answers.

However, this new representation increases the size
of the RDF store as well as the length of generated
SPARQL queries (by 3 additional triple patterns; from
an average of 5.33 triples to 8.16 for the experimental
data described below, since only the confidence of the
answer’s semantic relation is used; all other semantic
triple patterns remain unchanged). Nonetheless, there
are two different types of triples within a SPARQL
query: (1) Semantic triples that must be satisfied
by an answer URI – they define the semantic graph
to be matched within the RDF store (e.g., triples 1
through 10 in the SPARQL query shown above) and
(2) Triples that identify the human-readable information
about the answer URI that will be returned to a
user (e.g., triples 11 and 13 in the same SPARQL
query). In order to shorten the generated queries,
we split the triple patterns into two different SPARQL
queries: The first query retrieves the ranked list of
answer URIs, and the second one requests each URI’s
lemma/sentence/document information, which is needed
for display purposes. For instance,

SELECT ?ans ?conf
WHERE {

?ans rdf:subCassOf wn:synset-cartel-noun-1 .
?sr ly:type "isAgentOf"ˆˆxsd:string .
?sr ly:lhs ?ans .
?sr ly:rhs ?tr .
?sr ly:confidence ?conf .
?tr ly:inSynset wn:synset-trade-verb-1 .
?gun ly:isThemeOf ?tr .
?gun ly:inSynset wn:synset-gun-noun-1 .
?il ly:isMannerOf ?tr .
?il ly:inSynset wn:synset-illegally-adverb-1

},

is the initial SPARQL query, which is followed by

SELECT ?answer ?sentence ?path ?conf
WHERE {

?ans ly:text ?answer .
?ans ly:inSentence ?sent .
?sent ly:text ?sentence .
?ans ly:inDocument ?doc .
?doc ly:path ?path

},
... ORDER BY conf DESC

where the ?ans and ?conf values are the ones returned
by the first SPARQL query.

3 EXPERIMENTS AND RESULTS

3.1 Data Sets and Triple Store Statistics

For the development and evaluation of our SQA
system, we used a collection of documents about
the Illicit Drugs domain: 584 documents, including
Wikipedia articles about drugs as well as web documents
regarding illicit drug trade, production, usage, and
related violence, including cartel information for use
in law enforcement [1, 2]. The size of this collection
is (1) 6.3MB of plain unstructured text, (2) 650MB
of NLPXML – a structured format used to encode the
rich body of semantic information derived from the
documents’ content, and (3) 546MB of RDF XML
for a total of 6,729,854 RDF triples (when storing the
semantic relation confidence values) or 3,840,980 triples
for the simplified representation.

We also made use of a custom ontology generated for
this domain, which includes 13,901 concepts and 33,359
semantic relations between these concepts [1, 2]. Its
RDF representation consists of 232,585 triples.

Other data sets that were used to ensure the robustness
of our proposed RDF representation includes (1) the
NIST TREC QA, a readily available open domain
collection with known questions and answers (343 New
York Times articles from June 1998 to September 2000;
a total of 1.78MB of unstructured text; 172 articles
contain the answers to 184 factoid questions used during
the Question Answering (QA) Track of the 2006 Text
REtrieval Conference (TREC) [17]; examples include:
How many people died in the tourist massacre at Luxor
in 1997?, Who is the creator of The Daily Show?,
What U.S. state is the highest avocado producer?,
Where was the 1999 Sundance Film Festival held?,
etc.), and (2) the LDC Gigaword collection provided
by IARPA’s Knowledge Discovery and Dissemination
(KDD) program [10] (2,979 documents pertaining to the
programs’s tasks; 8.56MB of unstructured text; example
questions: Find associates of Abderraouf Jdey., Find
locations of suicide bombings in 2005., Find people born
in Mosul, Iraq.).

For all these data sets, we tracked the various
number of triples generated by the reasoning methods
proposed in this paper (Section 2.1.2). In Table 1,
we show these values for all document collections.
We note that the Semantic Calculus inferences did not
complete on the Illicit Drugs data set. Individual
rule evaluations were performed to determine inaccurate
rules. However, the process of generating new semantic
relations using one entailment rule at a time does
not provide a clear understanding of how the rules
interact when used together, especially on a large data
set. The task became tractable on the TREC QA

25

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

Table 1: RDF store content/size for various data sets

RDF Store Illicit Drugs TREC QA LDC Gigaword LDC Gigaword w/
relation confidence

Basic model 3,840,980 1,934,115 8,807,032 16,035,706
sameAs links 761,139 217,362 107,162

(cross-document) (cross-document) (within-document only)
Coreference model 3,693,153 1,703,262 7,924,644 15,432,526
Semantic Calculus - 222,978 (not-required)

inSynset triples 229,427 94,375 387,149
WordNet 1,814,641

Illicit Drugs ontology 232,585 (not applicable) (not applicable)
Lexical Chains 1,604,112 (length < 3); 40,837,911 (length < 4)
Final model 7,573,918 5,439,368 11,730,546 19,238,428

RDF store, where only 222,978 semantic relations
with a confidence greater than 0.6 were generated
and, therefore, retained in the RDF store. For the
Phase 2 of the KDD program, the semantics of interest
were limited to several very specific domain relations,
which were defined by combining the core semantic
relations (e.g., AGENT, THEME, LOCATION, IS-A, PART-
WHOLE, KINSHIP, etc.) using Semantic Calculus
rules prior to the RDF representation of the input,
which was modified to store only the set of custom
relationships (e.g., COLLEAGUE, RELATED EVENT,
HAS SKILL, LEADS GROUP, etc.), which are the focus
of the questions for this data set. Another characteristic
of this data set is its high frequency of name mentions
across documents, which caused the cross-document co-
reference resolution procedure to fail to terminate. For
the LDC Gigaword data set, there are 27,594,179 sameAs
triples between all its concepts. Additionally, we show
in Table 1 the impact on the size of the RDF store
that the changes in the RDF representation of semantic
relations have when retaining the relation’s confidence
value information.

In summary, the contents of the RDF store can be
highly customized depending on the task at hand as well
as the nature of the data collection. The base model can
be trimmed to include only the semantics of interest.
The OWLPrime entailment step can be omitted if too
many sameAs triples are generated. But, despite having
to disable certain modules for various data collections,
the type of inferences listed in Section 2.1.2 complement
each other and become vital to the semantic question
answering process.

We also note that the SQA system was also applied to
monitoring treatment efficiency reported in biomedical
papers from PubMed [21]. It stores the full semantic
representation of 7 million documents and provides real-
time QA for this collection of biomedical articles. No

formal quality evaluation is currently available for this
data set.

3.2 Results

The mean reciprocal rank (MRR) is the common metric
used for QA systems that produce a list of possible
responses ordered by probability of correctness. Used
to score systems participating in the NIST TREC
evaluations [29, 6], it is the average of the reciprocal
ranks of results for a question set. More specifically, for
a set of questions Q,

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
,

where ranki is the rank of the first correct answer for
question i.

If none of the returned answers are correct, we use a
mean reciprocal rank of 0. For questions with multiple
correct answers in the result set (e.g., list questions), we
use the rank of the first correct answer.

3.2.1 Question Answering

For the 344 questions we created for the Illicit Drugs
collection, we measured a 65.82% MRR score for our
SQA engine. This is a 19.31% increase in performance
when compared to the 46.51% MRR achieved using a
free text-search index alone. This baseline result was
obtained by using PowerAnswer [17, 18].

The set of questions used to evaluate the SQA system
varies in complexity. In addition to factoid questions
(e.g., Who are the leaders of the Juarez Cartel?), which
make up 49% of the question test set, we used definition
questions (e.g., What are tweezes?) – about 34% of
the test set, and yes/no questions (e.g., Is the Cartel
of Los Zetas active in the US?), list questions (e.g.,

26

M. Tatu et al.: A Semantic Question Answering Framework for Large Data Sets

What are some effects of using Methamphetamines?),
and few procedural questions (e.g., How is cocaine
manufactured?).

Our system performed well on factoid questions
(85.46% MRR), definition questions (78.19%) and list
questions (68.02%). It found one or more answers for
only 87.2% of the 344 questions. Our query relaxation
procedures preserve certain semantic constraints within
a SPARQL query. However, at the extreme, a SPARQL
query could be relaxed to return all sentences that
include the question’s key terms and an entity that
matches the question’s answer type, with no other
semantic restrictions. Within this setting, the SQA
system becomes similar to a free-text search index-based
system, which bases its passage retrieval on keywords
and named entity types. Alternatively, the SQA engine
can back-off to return the results of a free-text search
index, when no answer can be retrieved using semantics.

3.2.2 NL to SPARQL

In order to evaluate the text-to-SPARQL conversion
module, we manually converted into SPARQL queries
34 questions (10%) randomly selected from our test
set. While creating these gold annotation queries, we
followed the same guidelines with respect to SPARQL
variable naming (e.g., use the concept’s lemma as its
corresponding variable name, if not already assigned to
another concept) and SPARQL triple pattern ordering
in order to make the comparisons to the queries
automatically generated by our SQA engine easier.

Given the transformation procedure described in 2.2.2,
the SELECT clauses of SQA queries are identical to
their corresponding clauses of gold queries for 85.29%
questions. The SELECT clause is rather simple and only
in few cases it requires additional variable names.

The accuracy of the WHERE clause generation process
is 67.64% at the question level (an automatically
generated WHERE clause is marked as correct if it
matches the gold annotation in its entirety, i.e., all
triple patterns are correct; order is not important). At
the triple pattern level, the WHERE clause generation
module has a precision of 78.20%, creating correctly 122
triple patterns out of the 156 produced by the human
conversion of the questions into SPARQL queries. We
note that this evaluation process was performed for the
SPARQL queries generated directly from the natural
language question with no relaxation of the queries.

The SPARQL query relaxation module was employed
during the processing of 68.54% of the questions. It
is vital to the robustness of our SQA system. The
relaxation of initial query terms only (inSynset relaxation
to isNearSynonymOf) was sufficient for 30.98% of the
test SPARQL queries. For remaining queries, one or

more semantic relation triple patterns were dropped from
the SPARQL query in an effort to identify an answer
within the RDF store.

3.2.3 Error Analysis

Given the complexity of our SQA engine, we analyzed
the errors it made and their sources in order to
determine the systems shortcomings and possible future
improvements. For this purpose, an answer set is deemed
inaccurate if the correct answer is not among the top five
results.

The system relies heavily on the semantic relations
identified within the content of analyzed documents as
well as relationships identified within input questions.
Semantic parsing is a high level NLP processing step
affected by errors propagated from other NLP tools.
For instance, when processing the question What over-
the-counter drug is used as a recreational drug?, if
the collocation identification module fails to recognize
over-the-counter as a multi-word adjective, the syntactic
parser creates a prepositional phrase with over as its
syntactic head and an incorrect LOCATION(counter,
drug) semantic relation is derived. The answer type term
(drug) is one of its argument. Therefore, this semantic
relation will not be dropped during the SPARQL query
relaxation process and no answers are returned from the
SQA system.

72.7% of the errors made by our SQA engine were
caused by faulty or missing semantic relations within
the answer passage and/or the input question. These
relationships also affect the quality of the semantic
relations derived using the semantic closure axioms.
They also influence the correctness of the SPARQL
queries automatically generated from natural language
questions. We include in this percentage value the errors
made when the SQA system failed to find any answers
in the RDF data store.

16.3% of the errors were caused by the NL to
SPARQL conversion module. New strategies must be
implemented for an accurate transformation of yes/no
questions and procedural questions. Furthermore, this
conversion process depends heavily on the correctness
of the question processing module, which determines
the question’s answer type and answer type term. The
performance of the system drops to 53.16% MRR
when we disable the answer ranking module. All
errors caused by incorrect SPARQL queries due to
inaccurate/missing semantic relations were included in
the previous category of system mistakes.

Last but not least, the addition of three Semantic
Calculus entailment rules would have closed the
semantic gap between concepts that, otherwise, matched
the corresponding SPARQL queries of five test

27

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

questions. Without these rules, the system was not able
to identify the correct answers.

4 CONCLUSIONS

In this paper, we describe a language-independent RDF
triple-based semantic question answering framework.
Within this framework, the rich semantic structures
identified in unstructured data sources are stored into
scalable RDF stores. Furthermore, this framework
facilitates easy access to the stored knowledge by
allowing its users to ask natural language questions
that are automatically converted into SPARQL queries
and used to interrogate the RDF semantic index. We
present an optimal RDF representation for the extracted
semantic information as well as various natural language
reasoning methodologies for the generated RDF store.
We detail, not only the means to automatically create
robust SPARQL queries, but also query relaxation
procedures and an answer ranking technique, which
are vital when dealing with the imperfect semantics
identified by a machine. We show how the SQA
framework can be employed for various tasks and
domains without a loss in capabilities. This semantic
approach to question answering yields more accurate
results when compared with a free-text search index-
based question answering engine.

ACKNOWLEDGEMENTS

We would like to thank GRAPHIQ (www.graphiq.com/),
which sponsors the open-access publishing of this paper.

REFERENCES

[1] M. Balakrishna and D. Moldovan, “Automatic
Building of Semantically Rich Domain Models
from Unstructured Data,” in Proceedings of
the Twenty-Sixth International Florida Artificial
Intelligence Research Society Conference (FLAIRS
2013), St. Pete Beach, Florida, May 22-24, 2013.

[2] M. Balakrishna, D. Moldovan, M. Tatu, and
M. Olteanu, “Semi-Automatic Domain Ontology
Creation from Text Resources,” in Proceedings of
the Seventh International Conference on Language
Resources and Evaluation (LREC 2010), Valletta,
Malta, May 17-23, 2010.

[3] E. Blanco and D. I. Moldovan, “Unsupervised
Learning of Semantic Relation Composition,” in
Proceedings of Human Language Technology,
2011, pp. 1456–1465.

[4] A. Bouziane, D. Bouchiha, N. Doumi, and
M. Malki, “Question Answering Systems: Survey

and Trends,” Procedia Computer Science, vol. 73,
pp. 366 – 375, 2015.

[5] D. Damljanovic, M. Agatonovic, and
H. Cunningham, “FREyA: An Interactive Way of
Querying Linked Data Using Natural Language,”
in Proceedings of 8th Extended Semantic Web
Conference, 2012, pp. 125–138.

[6] H. T. Dang, D. Kelly, and J. Lin, “Overview
of the TREC 2007 Question Answering Track,”
in Proceedings of The Sixteenth Text REtrieval
Conference, 2008.

[7] “DBpedia,” http://wiki.dbpedia.org/, accessed:
June 16, 2016.

[8] T. Erekhinskaya and D. Moldovan, “Lexical Chains
on WordNet and Extensions,” in Proceedings of
the Twenty-Sixth International Florida Artificial
Intelligence Research Society Conference
(FLAIRS 2013), C. Boonthum-Denecke and
G. M. Youngblood, Eds. AAAI Press, 2013.

[9] C. Fellbaum, Ed., WordNet: An Electronic Lexical
Database. Cambridge, MA: MIT Press, 1998.

[10] IARPA, “Knowledge Discovery and Dissemination
(KDD),” https://www.iarpa.gov/index.php/
research-programs/kdd, accessed: June 16,
2016.

[11] E. Kaufmann, “Talking to the Semantic Web?
Natural Language Query Interfaces for Casual
End-users,” Ph.D. dissertation, University of
Zurich, February 2009. [Online]. Available: http:
//www.ifi.uzh.ch/pax/web/uploads/pdf/publication/
1202/Dissertation Esther Kaufmann.pdf

[12] T. Khot, N. Balasubramanian, E. Gribkoff,
A. Sabharwal, P. Clark, and O. Etzioni, “Markov
Logic Networks for Natural Language Question
Answering,” Computing Research Repository
(CoRR), vol. abs/1507.03045, 2015.

[13] K. Liu, J. Zhao, S. He, and Y. Zhang,
“Question Answering over Knowledge Bases,”
IEEE Intelligent Systems, vol. 30, no. 5, pp. 26–35,
2015.

[14] V. Lopez, M. Fernndez, E. Motta, and N. Stieler,
“PowerAqua: Supporting users in querying and
exploring the Semantic Web.” Semantic Web,
vol. 3, no. 3, pp. 249–265, 2012.

[15] V. Lopez, V. Uren, E. Motta, and M. Pasin,
“AquaLog: An Ontology-driven Question
Answering System for Organizational Semantic
Intranets,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 5, no. 2, 2007.

28

http://wiki.dbpedia.org/
https://www.iarpa.gov/index.php/research-programs/kdd
https://www.iarpa.gov/index.php/research-programs/kdd
http://www.ifi.uzh.ch/pax/web/uploads/pdf/publication/1202/Dissertation_Esther_Kaufmann.pdf
http://www.ifi.uzh.ch/pax/web/uploads/pdf/publication/1202/Dissertation_Esther_Kaufmann.pdf
http://www.ifi.uzh.ch/pax/web/uploads/pdf/publication/1202/Dissertation_Esther_Kaufmann.pdf

M. Tatu et al.: A Semantic Question Answering Framework for Large Data Sets

[16] V. Lopez, V. Uren, M. Sabou, and E. Motta, “Is
Question Answering Fit for the Semantic Web?: A
Survey,” Semantic Web, vol. 2, no. 2, pp. 125–155,
Apr. 2011.

[17] D. Moldovan, M. Bowden, and M. Tatu,
“A Temporally-Enhanced PowerAnswer in
TREC 2006,” in Proceedings of Text REtrieval
Conference, 2006.

[18] D. Moldovan, C. Clark, and M. Bowden, “Lymba’s
PowerAnswer 4 in TREC 2007,” in Proceedings of
Text REtrieval Conference, 2007.

[19] Oracle, “RDF Semantic Graph Prerequisites,
and Advanced Performance and Scalability for
Semantic Web Applications,” 2014.

[20] A.-M. Popescu, O. Etzioni, and H. Kautz,
“Towards a Theory of Natural Language
Interfaces to Databases,” in Proceedings of
2003 International Conference on Intelligent User
Interfaces (IUI’03), 2003, pp. 149–157.

[21] “PubMed,” http://www.ncbi.nlm.nih.gov/pubmed,
accessed: June 16, 2016.

[22] RDF Working Group, “Resource Description
Framework (RDF),” http://www.w3.org/RDF/,
2014.

[23] M. Richardson and P. Domingos, “Markov Logic
Networks,” Mach. Learn., vol. 62, no. 1-2, pp. 107–
136, Feb. 2006.

[24] M. Tatu, M. Balakrishna, S. Werner,
T. Erekhinskaya, and D. Moldovan, “Automatic
Extraction of Actionable Knowledge,” in
Proceedings of IEEE Tenth International
Conference on Semantic Computing, 2016.

[25] M. Tatu, S. Werner, M. Balakrishna,
T. Erekhinskaya, and D. Moldovan, “Semantic
Question Answering on Big Data,” in Proceedings
of International Workshop on Semantic Big Data
(SBD 2016), 2016.

[26] The Apache Software Foundation, “Apache Jena -
A free and open source Java framework for building
Semantic Web and Linked Data applications,” http:
//jena.apache.org/, accessed: June 16, 2016.

[27] C. Unger, L. Bühmann, J. Lehmann, A.-C.
Ngonga Ngomo, D. Gerber, and P. Cimiano,
“Template-based Question Answering over RDF
Data,” in Proceedings of WWW ’12, 2012, pp. 639–
648.

[28] C. Unger, C. Forascu, V. Lopez, A.-C. N.
Ngomo, E. Cabrio, P. Cimiano, and S. Walter,
“Question Answering over Linked Data (QALD-
5),” in Cross-Language Evaluation Forum

CLEF (Working Notes), ser. CEUR Workshop
Proceedings, L. Cappellato, N. Ferro, G. J. F.
Jones, and E. SanJuan, Eds., vol. 1391, 2015.

[29] E. M. Voorhees, “The TREC-8 Question
Answering Track Report,” in Proceedings of
the Eighth Text REtrieval Conference, 1999, pp.
77–82.

[30] W3C, “Oracle OWLPrime,” www.w3.org/2007/
OWL/wiki/OracleOwlPrime, Jan 24, 2008.

[31] W3C, “SPARQL Query Language for RDF,” http:
//www.w3.org/TR/rdf-sparql-query/, January 15,
2008.

[32] “WordNet RDF,” http://wordnet-rdf.princeton.
edu/, November 7, 2013.

[33] M. Yahya, K. Berberich, S. Elbassuoni,
M. Ramanath, V. Tresp, and G. Weikum, “Natural
Language Questions for the Web of Data,” in
Proceedings of the 2012 Conference on Empirical
Methods on Natural Language Processing and
Computational Natural Language Learning
(EMNLP-CoNLL ’12), 2012, pp. 379–390.

[34] X. Yao, J. Berant, and B. Van Durme, “Freebase
QA: Information Extraction or Semantic Parsing?”
in Proceedings of ACL Workshop on Semantic
Parsing, 2014.

APPENDIX: ADDITIONAL NL TO SPARQL
EXAMPLE

The conversion from NL to SPARQL for the input
natural language query Find people who have met with
Abu Khabab in Afghanistan. is graphically shown in
Figure 5. This LDC Gigaword query makes use of
custom semantic relations (e.g., MEETS-WITH), which
are generated before attempting to create the SPARQL
query. We note that the core AGENT, and THEME
relationships are used to generate new instances of
semantic relations (dashed blue lines in Figure 5).
However, they do not produce semantic triple patterns
for the SPARQL query. We note that, for Arabic names,
a normalized value is used, more specifically, the name’s
phonetic representation (e.g., Al Qaeda, al-Qaida, and
al-Qaida are all normalized to al kaida).

The resulting SPARQL query is:

SELECT ?answer ?sentenceText
WHERE {

{ ?ans rdf:subCassOf wn:synset-people-noun-1 }
UNION { ?ans ly:hasHumanName ?answer } .
?ans ly:meetsWith ?abu .
?abu ly:hasHumanName "abu kabab"ˆˆxsd:string .
?ans ly:atLocation ?afghan .
?afghan ly:inSynset wn:synset-afghanistan-noun-1 .
?ans ly:sentence ?sentenceText

}.

29

http://www.ncbi.nlm.nih.gov/pubmed
http://www.w3.org/RDF/
http://jena.apache.org/
http://jena.apache.org/
www.w3.org/2007/OWL/wiki/OracleOwlPrime
www.w3.org/2007/OWL/wiki/OracleOwlPrime
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://wordnet-rdf.princeton.edu/
http://wordnet-rdf.princeton.edu/

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

LOC

THM

MEETS-WITH

meet
THM AGT

Find people Abu Khabab Afghanistan

LOC

hasCountryName

?country

Afghanistan

?answer

synset-people ?name

?human

Abu Khabab

atLocation

hasHumanName
hyponymOf

inSynset hasHumanName

meetsWith

Figure 5: Semantics to SPARQL example for the KDD dataset

AUTHOR BIOGRAPHIES

Marta Tatu received her PhD
in Computer Science from
The University of Texas at
Dallas in 2007. As a research
scientist at Lymba Corporation,
she focuses on applying
knowledge extraction and
question answering technologies
to various unstructured data
sources such as contracts,
scientific proposals, and
research publications. She has

been instrumental in the development of Lymba’s state-
of-the-art question answering system, PowerAnswer,
which topped NIST TREC QA evaluations for seven
years. As the PI of an NSF award, she has focused
on developing a solution to process large amounts of
unstructured data. By aligning the extracted knowledge
against a common ontology, the solution provides
customized semantic search to intelligence analysts.

Mithun Balakrishna received
his PhD in Computer Science
from The University of Texas
at Dallas in 2007. His academic
research focused on extraction
and application of high-
level linguistic knowledge
to improve spoken language
recognition and understanding.
He currently leads Lymba
Corporation’s research and
business thrusts in the area

of Knowledge Engineering and Management. His
research is focused on the development of tools to
automatically build semantically rich knowledge
models for specific domains using relevant unstructured
data. He has been the PI on several enterprise and
government projects, including Spoken Dialog Question
Answering, Automatic Extraction of Biographical
Profiles, Ontologies for Education, and Antibiotic
Resistance Knowledge Extraction.

30

M. Tatu et al.: A Semantic Question Answering Framework for Large Data Sets

Steven Werner received his
bachelor’s degree in Computer
Science in 2013 from The
University of Texas at El Paso.
His research as a member
of the Interactive Systems
Group at UTEP focused on
unsupervised techniques for
spoken information retrieval.
He joined Lymba Corporation
in May 2014. He has focused
his efforts on classification

projects for the Customer Relationship Management
vertical, as well as knowledge extraction projects for
multiple domains, including intelligence, medical,
financial, and retail. He has expertise in semantic search
and natural-language querying. His current research
interests include deep semantic processing, Linked Data
and ontologies.

Tatiana Erekhinskaya studied
Mathematics at the Nizhniy
Novgorod State University,
Russia. She worked at Dictum
Ltd focusing on natural language
processing of the Russian
language. The key projects
include syntactic parser robust
to spelling mistakes and opinion
mining using dependency
parsing. She received her MBA
degree in 2010. She received

her PhD in Computer Science from The University of
Texas at Dallas in 2014. Her dissertation focused on
probabilistic models for text understanding. Today,
she is a research scientist at Lymba Corporation. Her
primary areas of research are: deep semantic processing
with special focus in medical domain and big data.

Dan Moldovan received his
diploma degree in Engineering
in 1969 from the Polytechnic
Institute of Bucharest, Romania.
He received his PhD in
Computer Science in 1978
from Columbia University,
New York. He is a Professor
of Computer Science at the
University of Texas at Dallas
and the co-Director of the

Human Language Technology Research Institute
at UTD. Previously he held faculty positions at
the University of Southern California and Southern
Methodist University in Dallas. He was a Program
Director at NSF while in sabbatical from USC. He is the
Founder and Chief Scientist of Lymba Corporation, a
Texas based company specializing in Natural Language
Processing products and solutions. His current research
interests are in lexical semantics, in particular studying
the representation and reasoning of explicit and implicit
text knowledge, and transforming unstructured data into
semantic triples.

31

	Introduction
	Related Work

	Triple-Based Question Answering
	RDF Store
	RDF Representation
	Reasoning on the RDF Store

	Natural Language to SPARQL
	Question Processing
	SPARQL Query Formulation
	Query Relaxation
	Answer Ranking

	Experiments and Results
	Data Sets and Triple Store Statistics
	Results
	Question Answering
	NL to SPARQL
	Error Analysis

	Conclusions

