

Y. Pandey, S. Bansal: A Semantic Safety Check System for Emergency Management

35

A Semantic Safety Check System

for Emergency Management

Yogesh Pandey, Srividya K. Bansal

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University,

Mesa, AZ 85212, USA, {ypandey, srividya.bansal}@asu.edu

ABSTRACT

There has been an exponential growth and availability of both structured and unstructured data that can be

leveraged to provide better emergency management in case of natural disasters and humanitarian crises. This

paper is an extension of a semantics-based web application for safety check, which uses of semantic web

technologies to extract different kinds of relevant data about a natural disaster and alerts its users. The goal of

this work is to design and develop a knowledge intensive application that identifies those people that may have

been affected due to natural disasters or man-made disasters at any geographical location and notify them with

safety instructions. This involves extraction of data from various sources for emergency alerts, weather alerts,

and contacts data. The extracted data is integrated using a semantic data model and transformed into semantic

data. Semantic reasoning is done through rules and queries. This system is built using front-end web development

technologies and at the back-end using semantic web technologies such as RDF, OWL, SPARQL, Apache Jena,

TDB, and Apache Fuseki server. We present the details of the overall approach, process of data collection and

transformation and the system built. This extended version includes a detailed discussion of the semantic

reasoning module, research challenges in building this software system, related work in this area, and future

research directions including the incorporation of geospatial components and standards.

TYPE OF PAPER AND KEYWORDS

Regular research paper: data integration, emergency management, earthquake alerts, weather alerts, linked

data, semantic computing, semantic data.

1 INTRODUCTION

You can never tell when a disaster is going to strike

you. In times of crisis, web is one place where one can

turn for help. The web provides an easy way to

disseminate large amounts of information to large

groups of people very quickly and efficiently [54]. In

this work, we develop a semantic safety check system,

which can be deployed a web application or a mobile

application (as shown in Figure 1). With the real-time

updates on what is going on, the safety check system

can help people to stay safe and well-informed in the

times of crisis. Our system for safety check identifies

people that may get affected due to natural disasters

such as earthquakes, floods, droughts, storms,

cyclones, hurricanes, landslides, volcanic eruptions,

disease outbreak and provides important information

about the crisis, e.g., what areas are affected, what is

the extent of the disaster, when is it safe to go back,

and where to find shelter. The google public alerts is

used in our system to get thus information before,

during and after a disaster.

Google Crisis Response Public Alerts service [22]

is an online notification service owned by Google.org,

which publishes safety alerts, including weather

watches, warnings, advisories, safety instructions. As

Google also mentioned in a blog post [52]: “By

providing useful, accurate, early-warning information,

 Open Access

Open Journal of Semantic Web (OJSW)

Volume 4, Issue 1, 2017

www.ronpub.com/ojsw

ISSN 2199-336X

© 2017 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

36

Figure 1: The semantic safety check system

we want to do our part to help people prepare. More

information won’t stop natural disasters from

occurring, but it can go a long way to keeping people

safe, and in some cases, could even save lives.”

The second main aspect of this system is to utilize

increasing role of social media in an emergency

management tool. In the last few years, the popularity

of social media has grown exponentially. As a

significant number of people are using social media

websites such as Facebook, Twitter, LinkedIn, we can

utilize these mediums to gather the latest information

about the people, issue emergency warnings, receive

victim requests for assistance and conduct emergency

communications [33]. Keeping these things in mind,

we have developed our semantic-based system for

safety check and targeted people on social media

websites as shown in Figure 1.

The primary research question that this work

attempts to answer is: How can we utilize the power of

semantic computing and kinked data to develop an

emergency management system? This paper is an

extension of the work presented at SDB@SIGMOD

2017 [42]. It presents the design and implementation

of a safety check system based on semantic

technologies. This system uses an underlying semantic

data model, which offers greater capabilities for data

integration and extensibility over traditional

approaches to detect and make information available

about natural disasters. The extensions include a

discussion of the data integration approach, details of

the semantic reasoning module, research challenges in

building this software system, related work that

reviews the state-of-the-art and a comparison of this

work with other tools and approaches for disaster

management, and future research directions including

the incorporation of geospatial components and

standards. Feedback was obtained from users regarding

the usability and functionality of this system. This

feedback provided directions for future research, which

are also presented in this paper.

The rest of this paper is structured as follows.

Section 2 introduces the background of this work.

Section 3 gives an overview of our semantic safety

check system. Section 4 describes the large-scale data

integration in the system, including a semantic data

model, reference rules, and queries. Section 5 provides

details of the client-side implementation of the system.

Subsequently, we discuss related work and compare

our semantic-based safety check system with the

Facebook’s safety check feature in Section 6.

Challenges faced during the design and development of

a semantic safety check system and future research

directions are presented in Section 7. Finally, we

concludes this work in Section 8.

2 BACKGROUND

Semantic web [4][9] is the next generation web, which

allows much more advanced knowledge management

by organizing knowledge into conceptual spaces

according to its meaning. Semantic web uses

automated tools and reasoners for supporting

knowledge maintenance by checking inconsistencies

and extracting new knowledge from existing

knowledge bases. With the growing need of integration

of Big Data, we need to find ways that computers can

comprehend documents on the web. The semantic web

aims to convert the current web, dominated by

unstructured and semi-structured documents, into a

“Web of Data”, by encouraging the inclusion of

semantic data on the internet. The ultimate goal is to

enable computers to do more useful work and to

develop systems that can support trusted interactions

over the network.

 The foundation of the semantic web was laid by Sir

Tim Berners-Lee (inventor of the World Wide Web

and director of the W3C) along with James Hendler

and Ora Lassila. He articulated it at the very first

World Wide Web Conference in 1994 and later coined

the term “Semantic Web” in 1998. To support this

vision, the W3C has developed a set of standards and

tools to enable human readable and computer-

interpretable representation of the concepts, terms, and

relationships within a given knowledge domain, which

can be illustrated by semantic web technologies.

Semantic web technologies are best suited to handle

data with high volume, velocity and variety.

 Big Data is transforming science, engineering,

medicine, healthcare, finance, business, and ultimately

society itself. Massive amounts of data are available to

be harvested for competitive business advantages,

government policies, and new insights into a broad

variety of applications (including genomics, healthcare,

Y. Pandey, S. Bansal: A Semantic Safety Check System for Emergency Management

37

Figure 2: The semantic safety check system: High level architecture

biomedicine, energy, smart cities, transportation).

However, most of this data is inaccessible to users, as

users need technology and tools to find, transform,

analyze, and visualize the data in order to make it

consumable for decision-making [27]. Big data

challenges are not only in storing and managing a

variety of data but also extracting and analyzing

consistent information from it [24]. Data management

in a schema-less and complex big data web brings new

challenges. The Linked Open Data (LOD) community

effort has led to a huge data cloud with 31 billion RDF

triples [24]. Some efficient approaches like [23] have

been developed to manage large RDF datasets. LOD is

the method of connecting and publishing structured

data on the web, and can be used in a number of Web

and mobile applications. A comprehensive survey on

big data in the cloud is given in [38].

 Various recent studies have focused on the use of

semantic technologies to build emergency management

systems. This is because disaster data are extremely

heterogeneous both structurally and semantically. This

creates a need for data integration and ingestion in

order to identify and associate semantically

corresponding concepts in the data [25]. The meaning

of data must be fully comprehensible by machines so

that the whole process can be automated. Through the

use of ontologies, the semantics of data can be made

explicit and therefore machine-processable. In the

emergency management domain, the use of ontologies

promotes data interoperability among systems and can

assist the emergency management officials in rapid

disaster recovery [44]. Based on these studies, we

decide to build an emergency management system

based on semantic web technologies and linked data. A

high level architecture of the proposed system is shown

in Figure 2.

3 SYSTEM OVERVIEW

In this work we use semantic technologies for

connecting, linking, and making data from different

data sources and domains available through the linked

open data cloud. The approach allows for large-scale

data integration using a semantic Extract Transform

Load process (shown in Figure 3) and involves the

following phases:

Phase I (Big Data): This phase gathers data from

multiple sources and in various formats.

Phase II (Data Ingestion): This phase extracts and

cleans the data obtained in Phase I. It also processes

and translates the data into RDF/XML format. To

continuously add and update data, there is automate

update cycle between Phase I and II.

Phase III (Semantic Graph): This phase builds

semantic graphs from the data from Phase II. The

semantic graphs semantically connect multiple datasets

from different domains with Linked Open Data (LOD)

cloud.

Phase IV (Semantic Reasoning): This phases

discovers or infers new facts by using a semantic

reasoner, which operates on the semantic graphs and

inference rules. These inferred facts also get added into

the semantic graphs.

Phase V (Safety Check Application): This phases

uses the data obtained in Phase IV to predict, discover,

or find impacted people and inform them accordingly.

 Traditionally Data Integration has been defined as

the problem of combining data residing at different

sources, and providing the user with a unified view of

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

38

Figure 3: The semantic safety check system: Semantic-based large-scale data integration

these datasets [31]. The first step is to understand the

terminology of the datasets and get familiarized with

them by exploring in an unstructured fashion. The

second step is to create a mediated or global schema

that provides mapping between various source

schemas. A data integration system exposes to its users

a schema for posing queries. This schema is typically

referred to as a mediated schema (or global schema).

To answer queries using the various information

sources the system needs mappings that describe the

semantic relationships between the mediated schema

and the schemas of the sources.

Definition 1 (Mediator Schema): Let S1, …, Sn be the

local schemas on n pre-existing data sources. Assume

for brevity of presentation each local schema Si is made

of single relation also denoted as Si. The relations S1, …,
Sn are called the local relations. Global schema G

consists of global relations G1, …, Gm. Semantic

mappings between local and global relations is of the

form: v(S1, …, Sn) C v’(G1, …, Gm), where v and v’ are

query expressions called views. Given an instance I of

{S1, …, Sn}, v(I(S1), …, I(Sn)) C v’(J(G1), …, J(Gm)), where J
is an instance of the global schema.

 Schema mapping is done using an approach called

global-as-view that requires the global schema to be

expressed in terms of the data sources [31], [16], [17].

Definition 2 (Global-as-View): The semantic

mappings are of the form: Vi(S1, …, Sn) C Gi , where

each Vi is a view over the local schema, i.e., a query

built on local relations.

 The high-level architecture of the semantic safety

check system has been shown in Figure 2. We have

developed two client-side applications for different

platforms: one is a Web Application and another one is

an Android Mobile Application. Both make use of the

restful-web services exposed by our system. We are

using Apache Jena (or Jena in short), an open source

Java framework for building semantic web and Linked

Data applications [35], and serialize the triples into

RDF/XML formats [45]. RDF (resource description

framework) [55] is a framework for creating statements

about Semantic Web resources in a form of ‘subject-

predicate-object’ triples.

Jena also provides Ontology APIs to work with

models, RDFS (RDF Schema) [46] and OWL (Web

Ontology Language) [41] to add extra semantics to

RDF data. RDFS is intended to structure RDF

resources by providing a basic vocabulary for RDF.

The OWL is a W3C standard for representing domain

knowledge. It allows the representation of domain

knowledge as a set of RDF and provides sematic-based

integration of data. We use TDB [38], a high-

performance triple store, to store our data, and use

Jena’s ARQ, a SPARQL [50] compliant engine, to

Y. Pandey, S. Bansal: A Semantic Safety Check System for Emergency Management

39

Figure 4: Ontology – the data model of the semantic safety check system

query RDF models. SPARQL is the standard Semantic

Web query language to retrieve and manipulate RDF

data. Jena also has a built-in support for many

reasoners. We use Jena’s inference APIs to reason over

the data to expand the content of our triple store, and

Fuseki Server [14] to query and serve RDF data over

HTTP.

4 SEMANTIC-BASED LARGE-SCALE DATA

INTEGRATION

The semantic safety check system utilizes information

from various domains and sources like people, cities,

coordinates, earthquakes and weather alerts. Different

approaches were taken to extract data for each dataset:

 People data was collected using Facebook’s Graph

APIs. A client program was developed that uses

our access tokens to get friends and family

member information.

 To gather important information about major cities

like latitude, longitude, area and population, web

crawlers were implemented that gathered data in

CSV format.

 To collect information on earthquakes and weather,

we subscribed to Google Public Alerts. Google’s

Alert Hub implements PubSubHubbub [1], which

is a simple, open, server-to-server protocol of

publishers and subscribers. Publishers send their

alert feeds to Alert Hub, which pushes those

updates to our server.

The data collected had to be cleansed specifically for

completeness, consistency, and uniformity. For data about

contact records of persons with incomplete information or

inaccurate location information had to be removed to

ensure that the data fits our semantic data model.

Location information was obtained in the form of latitude

and longitude for all contact persons to ensure the

uniformity of data. For data about different regions, web

crawlers were written based on our data model. Rules

were incorporated into the web crawler to maintain the

completeness, consistency, and uniformity of data. A

similar process was followed for alerts obtained from

Google Alerts. An alert is associated with an impacted

region as opposed to a location in case of the other two

datasets. After all of the data is gathered, the data is

cleansed and then translated into RDF instances.

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

40

4.1 SEMANTIC DATA MODEL - ONTOLOGY

In order to model the data obtained, we develop an

ontology using OWL ontology language. The data

model defines classes and properties of the data and the

constraints and relations among them. For example, the

impacted region is defined as a region class in our data

model. Figure 4 visualizes the ontology data model. In

the figure, the classes are shown as blue circles,

properties are shown as green boxes and their domains

are shown as yellow boxes. Each record represents an

instance of these classes. This OWL ontology has been

created using a software called Protégé [28], which is a

free, open source ontology editor and a knowledge

acquisition system.

In our ontology, we define four classes: Alert,

Person, Region, and Point. The Alert class is a super

class for all types of alerts. In our implementation, so

far we have two subclasses of Alert class: Earthquake

and Weather. In the future, as we extend the support for

other types of alerts, we will implement more

subclasses. When an alert is obtained from google

public alerts service, based on the alert’s topic URL the

alert is either transformed into an instance of

earthquake or weather alert. Information on major

cities has also been translated as individuals of Region

class. And we used the friends’ information from

Facebook to create instances of Person class. We have

also kept “isFriendOf” property to maintain

information about who is friend of whom. In the future,

this information will be useful to notify a person if

his/her friend(s) are impacted by a disaster. We have

also defined a Point class that holds coordinates

(Latitude, Longitude) of a location.

4.2 Inference Rules

Semantic Reasoners work on the ontology and

reference rules to derive additional facts on the

modeled concepts [3]. A reasoner creates new RDF

graphs containing asserted and derived tuples. These

inferred graphs can be queried in the same way as other

RDF graphs. The reference rules enable advanced

ontology-based inferences. The rules extend the

expressivity of ontology with formal rule

representation languages. We used the built-in

OWL/RDFS reasoner of Jena and develop a set of logic

inference rules. Using these rules, we programmed

logic into our system and integrated data store, leading

to significantly simpler software system with greater

interoperability. The logic reference rules are written in

the Jena’s rule language and are presented here.

Rule 1: This rule links persons with their regions based

on “locationName” attribute. The inferred knowledge

(RDF graphs) provides the coordinate location of a

person. The rule snippet is shown below:

[rule1:

 (?person rdf:type sc:Person)

 (?region rdf:type sc:Region)

 (?person sc:hasLocation ?ploc)

 (?region sc:hasRegionName ?rloc)

 regionMatch(?ploc, ?rloc) ->

 (?person sc:locatedAt ?region)

]

Rule 2: This rule is to identify all persons who may

have been impacted due to an earthquake. It uses

earthquake’s information like magnitude, epicenter and

people coordinate locations to infer who may have

been impacted. The radial distance, over which the

effects of an earthquake should be felt by people, has

been estimated using McCue Radius of Perception

Calculator [35]. The rule snippet is shown below:

[rule2:

 (?earthquake rdf:type sc:Earthquake)

 (?person sc:locatedAt ?region)

 (?earthquake sc:hasMagnitude ?mag)

 (?earthquake sc:hasArea ?epoint)

 (?epoint sc:hasLatitude ?elat)

 (?epoint sc:hasLongitude ?elong)

 (?region sc:hasPoint ?rpoint)

 (?rpoint sc:hasLatitude ?rlat)

 (?rpoint sc:hasLongitude ?rlong)

 eqImpactMatch(?elat, ?elong, ?rlat,

?rlong,?mag) ->

 (?person sc:isImpactedBy ?earthquake)

]

Rule3: This rule is to identify all persons who may

have been impacted by a weather alert. This rule

checks if person’s location (or coordinates) lies inside

polygon region of the weather alert and if it does, it

adds an inferred fact that the person is impacted by the

weather alert. The rule snippet is shown below:

[rule3:

 (?weather rdf:type sc:Weather)

 (?weather sc:hasPolygon ?wpoly)

 (?person sc:locatedAt ?region)

 (?region sc:hasPoint ?rpoint)

 (?rpoint sc:hasLatitude ?rlat)

 (?rpoint sc:hasLongitude ?rlong)

 weatherImpactMatch (?wpoly, ?rlat,

 ?rlong) ->

 (?person sc:isImpactedBy ?weather)

]

4.3 Custom Built-ins for Matching

Jena provides some builtin primitives. These primitives

are called by rules to test if a rule matches or not. Jena

also supports extending the set of procedural builtins

[47]. A custom builtin should implement the Builtin

interface. The way it has been done is by creating a

subclass of BaseBuiltin and defining a name

(getName), the number of arguments expected

(getArgLength) and one or both of bodyCall and

headAction. The bodyCall method is used when the

Yogesh Pandey, Srividya Bansal: Semantic Safety Check Application for Emergency Management

41

builtin is invoked in the body of a rule clause and

should return true or false according to whether the test

passes. Once a builtin has been defined then an

instance of it needs to be registered with

BuiltinRegistry for the bulitin to be seen by the rule

parser and interpreter. In our system, we have

developed several custom builtins, “regionMatch”,

“eqImpactMatch”, and “weatherImpactMatch”, to

check if a person or a region is impacted by a disaster,

e.g. earthquake. These custom built-ins are used as

functions in the rules discussed in Section 4.2.

Function for Region Matching:

The RegionMatch function checks the location of a

person against the impacted region of an alert. The

location of a person is represented using the latitude

and longitude, which map to the coordinates of Point

class. Impacted region on the other hand is represented

as a polygon, i.e., a collection of points. This function

checks if the coordinates of a person’s location fall

inside the polygon area of the impacted region and

returns a true or false. The code snippet of the function

is shown in Listing 1 in Appendix.

Function for Weather Impact Matching:

This WeatherImpactMatch function takes as input

parameters a polygon representing the region and the

coordinates of the region being matched against. A

code snippet of the function is shown in Listing 2 in

Appendix.

Function for Earthquake Impact Matching:

Earthquake impact region is obtained by computing the

radius of the earthquake using its magnitude. McCue

Earthquake Perception Radius Calculator [36] is used

for this purpose. The code snippet of the function is

shown in Listing 3 in Appendix.

EarchquakeRadius =
(Magnitude − 0.13)

1.01

4.4 Semantic Querying

We develop several SPARQL queries. With these

queries, our semantic safety check system can obtain

needed data (like people, disasters, and geographical

location) from various data sources, and find those

people that may have been affected by a disaster

occurring at a certain geographical location and notify

them with safety instructions.

Query to get all earthquake instances:

This query retrieves all instances of earthquakes along

with the information about the earthquake such as its

magnitude, location, time of occurrence, and

description. The results of this query can be filtered

based on magnitude, time, or region. The SPARQL

query is shown below:

select ?earthquake ?point ?lat ?lon ?mag

 ?time ?desc ?areaDesc

where {

 ?earthquake rdf:type sc:Earthquake.

 ?earthquake sc:hasMagnitude ?mag.

 ?earthquake sc:hasAreaDescription

?areaDesc.

 ?earthquake sc:hasArea ?point.

 ?point sc:hasLongitude ?lon.

 ?point sc:hasLatitude ?lat.

 ?earthquake sc:atTime ?time.

 ?earthquake sc:hasDescription ?desc

}

Query to get all weather alerts:

This query retrieves all instances of weather alerts

along with the information about the alert such as its

severity, location, time of occurrence, and description.

The results of this query can be filtered based on

severity, time, or region. The SPARQL query is shown

below:

select ?weather ?areaDesc ?sev ?time ?desc

(GROUP_CONCAT(?lat) AS ?lats)

(GROUP_CONCAT(?lon) AS ?lons)

where {

 ?weather rdf:type sc:Weather.

 ?weather sc:hasSeverity ?sev.

 ?weather sc:hasAreaDescription

?areaDesc.

 ?weather sc:hasArea ?area.

 ?area rdfs:member ?point.

 ?point sc:hasLongitude ?lon.

 ?point sc:hasLatitude ?lat.

 ?weather sc:atTime ?time.

 ?weather sc:hasDescription ?desc

}

GROUP BY ?weather ?areaDesc ?sev

 ?time ?desc

Query to get all persons impacted by an alert:

This query retrieves all persons impacted by a specific

alert based on the location of the person and region of

the alert. Information about the person and his/her

location in terms of latitude and longitude are retrieved.

The SPARQL query is shown below:

select ?person ?name ?location ?region

 ?point ?lat ?lon

where {

 ?person sc:isImpactedBy

 <http://www.semanticweb.org/

 ontologies/2015/10/

 SafetyCheck#20005hxx>.

 ?person sc:hasName ?name.

 ?person sc:hasLocation ?location.

 ?person sc:locatedAt ?region.

 ?region sc:hasPoint ?point.

 ?point sc:hasLatitude ?lat.

 ?point sc:hasLongitude ?lon.

}

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

42

5 CLIENT-SIDE IMPLEMENTATION

Since the semantic safety check system is deployed as

a RESTful web service, it is very easy to develop

client-side software for different platforms. We have

implemented two clients in our system: a web

application and an android mobile application.

A Web Application:
This web application is hosted on the webpage

(http://imod.poly.asu.edu:8080/SafetyCheckWeb/), and

the source code is available on GitHub at

https://github.com/yogeshpandey009/SafetyCheck.

This web app provides alerts about earthquakes and

weather. Figure 5 and 6 are screenshots of the

webpage, which list captured earthquake and weather

alerts. If you double click a weather alert or an

earthquake alert, the website navigates to another page

that lists the persons that may have been impacted by

that alert. Furthermore, there is two other webpages:

one lists all persons who are currently being monitored

by our system, and another lists all regions information

that we have gathered for our system.

An Android Mobile Application:
The mobile application is hosted on the webpage

(https://github.com/yogeshpandey009/SafetyCheckAnd

roidApp). This Android mobile application has some

additional features in comparison with the web

application. As shown in Figure 7, 8, 9 and 10, this

application can list and even show earthquake alerts

with its impacted region on the world map. It also has a

background service to pull new alerts from our

application and provides notification to the users. It

also shows all people that may have been impacted by

an earthquake on the map. We are currently working on

adding similar functionality for weather alerts in this

mobile application.

6 RELATED WORK

One of the popular approaches to data integration has

been Extract-Transform-Load (ETL) [53]. This work

described taxonomy of activities in ETL and a

framework that uses a workflow approach to design

ETL activities. It used a declarative database

programming language called LDL to define the

semantics of ETL activities. Similarly there are other

research contributions that have used various other

approaches such as UML and data mapping diagrams

for representing ETL activities [51], quality metrics

driven design for ETL [34], and scheduling of ETL

activities [48]. The focus in all of these papers has been

on the design of ETL workflow and not about

generating meaningful or semantic data.

Data integration efforts have been towards fixed data

sets. However, there are some applications that require

temporal data, data that varies over time. A related

work in this area uses a preference aware integration of

temporal data [2]. The authors have developed an

operator called PRAWN (preference aware union),

which is typically a final step in an entity integration

workflow. It is capable of consistently integrating and

resolving temporal conflicts in data that may contain

multiple dimensions of time based on a set of

preference rules specified by a user.

Ontologies have been used as a formal tool for

sophisticated querying and expressing the domain level

knowledge at a high-level of abstraction [43]. A

number of approaches have developed for automatic

generation [7] and evolution [11] of ontology. [11]

introduces the technique of ontology templates to

automatically evolve ontologies. The automatic

ontology generation could be classified as convertors

or translators, mining-based techniques, and

applications using external knowledge. Convertors or

translators involved mapping data from specific format

such as XML, XSD, UML into an ontology

[12][20][21][32]. Text was annotated with formal

ontologies using various mining-based techniques

[10][15][26][37]. There were also frameworks built

that used external knowledge or domain-knowledge to

produce ontologies [28]. Clio [49] is an approach that

uses SQL schemas alone to generate the ontological

mappings.

 [5] is a research contribution to building natural

disaster data and information management systems that

provide contingency in disaster situations [5]. But this

work does not use linked data and ontology

technology. Another related work involves emergency

situation awareness using Twitter feeds and mining

twitter messages [13]. This work does not involve data

integration from different sources but instead relies on

mining social media data. A case study of Haitian

earthquake showed how US government used social

media such as wikis and collaborative workspaces as

the main knowledge sharing mechanism in providing

assistance [56]. Our work is to provide integration of

datasets relevant to emergency management in a way

that is extensible in the future through the use of

semantic web technologies, ontologies, and linked data.

Yogesh Pandey, Srividya Bansal: Semantic Safety Check Application for Emergency Management

43

Figure 5: A screenshot of earthquake alerts of the web client in the semantic safety check system

Figure 6: A screenshot of weather alerts of the web client in the semantic safety check system

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

44

Figure 7: The map of earthquake alerts of the android mobile application with impacted regions

Figure 8: The map of person locations of the android mobile application impacted by an earthquake

Yogesh Pandey, Srividya Bansal: Semantic Safety Check Application for Emergency Management

45

Figure 9: List of all earthquake alerts from the

android mobile application

6.1 Comparison with Facebook’s Safety Check

In October 2014, Facebook introduced the Safety

Check feature [18]. It allows people to quickly share

with friends and families that they are safe and helps

them connect with other people they care about. There

are some key differences when compared to our

semantic-based safety check system (shown in Table

1):

 Facebook’s Safety Check feature relies solely on

its own databases for people information, whereas

our Semantic Safety Check system uses linked

data, so it can easily be integrated to use data from

other social media websites or government

agencies to identify people who may have been

affected by a crisis.

 Facebook’s Safety Check feature is only activated

for some major disasters. Facebook works with the

local authority to determine what constitutes an

emergency, whereas our system automatically

responds to all received alerts. Moreover, using

linked data our system can easily be extended to

support new types and sources of alerts.

 The main feature of Facebook’s Safety Check is

for Emergency Check-In to notify friends and

families that they are safe, whereas our semantic-

based system supports more features. It provides

early-warning information and other important

safety instructions that can save lives of the

Figure 10: New earthquake alert notification from

the android mobile application

people. This system is on the lookout for people

who may be impacted in order to provide

appropriate assistance.

7 CHALLENGES AND FUTURE WORK

7.1 Challenges

In the development of this system, we identify some

challenges, which may provide insights for the

development of other semantic-based safety check

systems.

 As the datasets used for thus system comes from

various sources, it has a mixed bag of structured,

semi-structured and unstructured data. This

requires a different approach or implementation to

extract data from each data source.

 As major data of cities are crawled from multiple

websites, there were some records, which had

missing information (or fields) or sometimes are

even improperly formatted. So this needs an extra

step of data cleansing after extraction.

 Writing custom builtins for matching of rules

requires an understanding of the internals of

Apache Jena framework.

 Integrating datasets from the different sources

requires a good understanding of each domain and

source. Without the domain knowledge of the data,

coming up with an integrated semantic data model

is extremely challenging.

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

46

Table 1: Comparison of Facebook’s safety check feature with our semantic safety check system

Feature Facebook Safety Check Semantic Safety Check

Semantic computing

approach
Not used

Used. It allows an extension to other types

of data sources

People Information DB Uses Facebook’s DB

Uses linked data from the web, and has

possibilities to connect to other social

media sites

Emergencies
Activated for major disasters

determined by Facebook

Any emergency notified by the Google

Alerts service

Notification
Allows affected persons to inform

their friends and families

Notifies all registered persons when any of

their contacts is in an emergency

7.2 Future Work

Our web application and android mobile application

were presented to various users within our institution

and at conferences. The received feedback provided

insights into future directions.

The use of geospatial information that is available

and integrating with GIS components and geo

ontologies is one future research work. This will

involve creation of geospatial Linked data that can be

queried using GeoSPARQL [39] specifically designed

for this purpose. In order to incorporate geospatial

linked data, the semantic data model and

transformation phase of the work will have to be

revised to incorporate the classes and properties

provided by GeoSPARL query language. For the

reasoning part of the system the custom built-in

functions to check if a person’s location is within an

impacted region of a disaster will be replaced with

GeoSPARQL constructs that can check for this. The

use of geospatial linked data and GeoSPARQL also

allows integration of data from other GIS data sources

as well. Smid’s research team has presented integration

and querying techniques over heterogeneous geospatial

data sources [49]. As part of future research we will

look into various heterogeneous data sources that can

be used in our semantic safety check system.

 Another useful feedback received was with respect

to the temporal properties of an emergency event and

how they change over time. For example, a natural

disaster such as an earthquake occurs, and later on

some aftershocks may occur that might change the

emergency situation or the status of a person impacted

by the earthquake. So it is important to include

temporal properties and track how the event unfolds

over time. We will look into semantic spatiotemporal

RDF store such as Strabon [30], which uses a data

model called stRDF and a query language called

stSPARQL [8]. This data store is useful to store

geospatial data that changes over time. This will

involve tracking the alerts of emergencies and their

change over time, and transforming temporal properties

into the linked data. Querying the spatiotemporal data

can then be done using stSPARQL.

8 CONCLUSIONS

In this work, we develop a semantic-based safety check

system, which trace emergencies and help people well-

informed in the times of crisis. Based on semantic

technologies, our system offers greater compatibilities

for data integration, extensibility and interoperability

over traditional approaches. It provides accurate,

reliable, and timely information, which is vital for

public safety before, during, and after a crisis.

Currently, the system monitors natural disasters like

Earthquakes and Weather alerts. However, our system

is a knowledge intensive system and it provides great

opportunity to extend this support to humanitarian

crises like major accidents, riots, conflict, wars,

terrorist attacks and radiological accidents. The

personal information used in our system is currently

only from Facebook. We plan to gather more data from

other social media websites like Twitter, Linkedin, and

integrate with other emergency management

organizations to reach more people. In the future, we

also plan to support personalization based on user

profiles and notify them (over email or SMS) instantly

once a disaster or crisis is detected (or predicted) that

may impact them or their friends and families. This

will also provide possibilities for people to reply if they

are safe or otherwise simply send a smoke signal when

they need help.

Yogesh Pandey, Srividya Bansal: Semantic Safety Check Application for Emergency Management

47

REFERENCES

[1] P. Alexandre, and P. N. Mendes. “sparqlPuSH:

proactive notification of data dpdates in RDF

stores using PubSubHubbub”, in SFSW, 2010.

[2] B. Alexe, M. Roth, and W.-C. Tan, “Preference-

aware integration of temporal data,” VLDB

Endow., 8(4), pp. 365–376, 2014.

[3] A. Ameen, R. K. Khaleel, and B. P. Rani.

“Reasoning in semantic web using

Jena”, Computer Engineering and Intelligent

Systems, 5(4), pp. 39-47, 2017.

[4] G. Antoniou, F. vanHarmelen, “A semantic web

primer”, MIT Press, 2004

[5] H. Assilzadeha, and S. B. Mansora. "Natural

disaster data and information management

system." University Putra Malaysia: Institute of

Advanced Technology, 2004.

[6] A. Azzini and P. Ceravolo, “Consistent process

mining over big data triple stores,” IEEE

International Congress on Big Data, 2013.

[7] I. Bedini and B. Nguyen, “Automatic ontology

generation: State of the art,” PRiSM Laboratory

Technical Report. Univ. of Versailles, 2007.

[8] K. Bereta, P. Smeros, and M. Koubarakis,

“Representation and querying of valid time of

triples in linked geospatial data,” European

Semantic Web Conference, 2013.

[9] T. Berners-Lee, J. Hendler, and O. Lassila. “The

semantic web”, Scientific American, 84(5), pp.

28–37, 2001.

[10] B. Biebow, S. Szulman, and A. J. Clément,

“TERMINAE: A linguistics-based tool for the

building of a domain ontology,” Knowledge

Acquisition, Modeling and Management, 1999.

[11] M. Blasko, P. Kremen, and Z. Kouba: "Ontology

evolution using ontology templates", Open

Journal of Semantic Web (OJSW), 2(1), pp. 16-

29, 2015. [Online]: http://nbn-

resolving.de/urn:nbn:de:101:1-201705194898

[12] H. Bohring and S. Auer, “Mapping XML to

OWL ontologies.,” Leipziger Informatik-Tage,

vol. 72, pp. 147–156, 2005.

[13] M. Cameron, R. Power, B. Robinson, and J. Yin.

"Emergency situation awareness from twitter for

crisis management", International Conference on

World Wide Web, 2012.

[14] J.J. Carroll, I. Dickinson, C. Dollin, and D.

Reynolds, A. Seaborne, and K. Wilkinson, K.

“Jena: Implementing the semantic web

recommendations”, International Conference on

World Wide Web, 2004.

[15] Y. Ding, D. Lonsdale, D. W. Embley, M. Hepp,

L. Xu: “Generating ontologies via language

components and ontology reuse,” Natural

Language Processing and Information Systems,

2007.

[16] A. Doan, A. Halevy, and Z. Ives, "Principles of

data integration", Elsevier, 2012.

[17] X. L. Dong and D. Srivastava, “Big data

integration,” Synthesis Lectures on Data

Management, 7(1), pp. 1–198, 2015.

[18] Facebook Safety Check http://www.facebook.

com/about/safetycheck, [Accessed: 20-Aug-

2017].

[19] R. Fagin, L. M. Haas, M. Hernández, R. J. Miller,

L. Popa, and Y. Velegrakis : “Clio: Schema

mapping creation and data exchange,”

Conceptual Modeling: Fndns & Apps, 2009.

[20] M. Ferdinand, C. Zirpins, and D. Trastour,

“Lifting XML schema to OWL,” Web

Engineering, 2004.

[21] R. Ghawi and N. Cullot, “Building ontologies

from XML data sources.,” DEXA, 2009.

[22] Google, Inc. Google Crisis Response.

https://www.google.org/publicalerts/, [Accessed:

20-Aug-2017].

[23] S. Groppe, D. Heinrich, C. Blochwitz, and T.

Pionteck: "Constructing Large-Scale Semantic

Web Indices for the Six RDF Collation Orders",

Open Journal of Big Data (OJBD), 2(1), pp. 11-

25, 2016. [Online]: http://nbn-

resolving.de/urn:nbn:de:101:1-201705194418

[24] P. Hayes and B. McBride, “Resource description

framework (RDF),” 2004. [Online]. Available:

http://www.w3.org/TR/rdf-mt/, [Accessed: 20-

Aug-2017].

[25] V. Hristidis: “Survey of data management and

analysis in disaster situations”, Journal of

Systems and Software, 83(10) , pp. 1701-1714,

2010.

[26] H. Hu and D.-Y. Liu, “Learning owl ontologies

from free texts,” International Conference on

Machine Learning & Cybernetics, 2004.

[27] E. Kandogan, M. Roth, C. Kieliszewski, F.

Ozcan, B. Schloss: “Data for all: A systems

approach to accelerate the path from data to

insight,” Congress on Big Data, 2013.

[28] H. Knublauch, et al. “The Protégé OWL plugin:

An open development environment for semantic

web applications.” International Semantic Web

Conference, 2004.

[29] H. Kong, M. Hwang, and P. Kim, “Design of the

automatic ontology building system about the

http://nbn-resolving.de/urn:nbn:de:101:1-201705194418
http://nbn-resolving.de/urn:nbn:de:101:1-201705194418

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

48

specific domain knowledge,” Conference on

Advanced Communication Technology, 2006.

[30] K. Kyzirakos, M. Karpathiotakis and M.

Koubarakis. Strabon, “A semantic geospatial

DBMS,” International Semantic Web

Conference, 2012.

[31] M. Lenzerini, “Data integration: A theoretical

perspective,” ACM SIGMOD symposium on

Principles of database systems, 2002.

[32] J. X. W. Li, “Using relational database to build

OWL ontology from XML data sources,”

Computational Intelligence, 2007.

[33] B. R. Lindsay, “Social media and disasters:

Current uses, future options, and policy

considerations,” Media Telecommun, 2011.

[34] S. Luján-Mora, P. Vassiliadis, and J. Trujillo,

“Data mapping diagrams for data warehouse

design with UML,” Conceptual Modeling–ER,

2004.

[35] B. McBride, “Jena: A semantic Web toolkit,”

IEEE Internet Computing, 6(6), pp. 55-59, 2002.

[36] McCue Earthquake Perception Radius Calculator,

http://www.cqsrg.org/tools/

perceptionradius/, [Accessed: 20-Aug-2017].

[37] D. I. Moldovan and R. Girju, “Domain-specific

knowledge acquisition and classification using

WordNet.,” Florida Artificial Intelligence

Research Society Conference, 2000.

[38] P. C. Neves, and J. Bernardino: “Big data in the

cloud: A survey", Open Journal of Big Data

(OJBD), 1(2), Pages 1-18, 2015. [Online]:

http://nbn-resolving.de/urn:nbn:de:101:1-

201705194365

[39] Open Geospatial Consortium GeoSPARQL: A

geographic query language for RDF Data, 2012.

www.opengeospatial.org/standards/geosparql,

[Accessed: 20-Aug-2017].

[40] A. Owens, A. Seaborne and N. Gibbins.

“Clustered Tdb: A clustered triple store for Jena.”

International World Wide Web Conference, 2009.

[41] OWL Web Ontology Language Reference, World

Wide Web Consortium, http://www.w3.

org/TR/owl-ref, 31 Mar. 2003..

[42] Y. Pandey and S. K. Bansal. “Safety check – A

semantic web application for emergency

Management”, The Second International

Workshop on Semantic Big Data (SBD 2017) in

conjunction with 2017 ACM SIGMOD conference

in Chicargo, USA, 2017.

[43] A. Poggi, D. Lembo, D. Calvanese, G. De

Giacomo, M. Lenzerini, et al., “Linking data to

ontologies,” Journal on data semantics, 2008.

[44] K. R. Ratnam, and D. D. Karunaratne.

“Application of ontologies in disaster

management”, Conference on Advances in ICT

for Emerging Regions, 2016.

[45] RDF Primer. W3C Recommendation.

http://www.w3.org/TR/rdf-primer, 2004,

[Accessed: 20-Aug-2017].

[46] RDF Vocabulary Description Language 1.0: RDF

Schema. W3C Recommendation,

http://www.w3.org/TR/rdf-schema, Feb 2004,

[Accessed: 20-Aug-2017].

[47] D. Reynolds. “Jena 2 inference support.” Online

manual at https://jena.apache.org/

documentation/inference/, [Accessed: 20-Aug-

2017].

[48] A. Simitsis, K. Wilkinson, M. Castellanos, and U.

Dayal: “QoX-driven ETL design: Reducing the

cost of ETL consulting engagements,”

Conference on Management of Data, 2009.

[49] M. Smid, P. Kremen. “OnGIS: Semantic query

broker for heterogeneous geospatial data

Sources”, Open Journal of Semantic Web

(OJSW), 3(1), pp. 32-50, 2016. [Online]:

http://nbn-resolving.de/urn:nbn:de:101:1-

201705194936

[50] SPARQL Query Language for RDF. W3C Draft.

www.w3.org/TR/rdf-sparql-query/, 15 January,

2008, [Accessed: 20-Aug-2017].

[51] J. Trujillo and S. Luján-Mora, “A UML-based

approach for modeling ETL processes in data

warehouses,” Conceptual Modeling-ER, 2003.

[52] ValueWalk: “Google search now tracks local

storms,” Sends Public Alerts. 2015. Chatham:

Newstex.

[53] P. Vassiliadis: “A generic and customizable

framework for the design of ETL scenarios” in

Information Systems, 30(7), pp. 492–525, 2005.

[54] C. M. White. “Social media, crisis

communication, and emergency management:

Leveraging Web 2.0 technologies”. CRC press,

2011.

[55] W3C Consortium RDF (Resource Description

Framework) http://www.w3.org/RDF. [Accessed:

20-Aug-2017].

[56] D. Yates and S. Paquette. "Emergency knowledge

management and social media technologies: A

case study of the 2010 Haitian earthquake."

International journal of information management

31(1), pp. 6-13, 2011.

http://nbn-resolving.de/urn:nbn:de:101:1-201705194365
http://nbn-resolving.de/urn:nbn:de:101:1-201705194365

Yogesh Pandey, Srividya Bansal: Semantic Safety Check Application for Emergency Management

49

APPENDICES: MATCHING FUNCTIONS

Listing 1: The RegionMatch function for matching regions

Listing 2: The function for matching weather impact

boolean regionMatch(Node n1, Node n2) {

 if (n1.isLiteral() && n2.isLiteral()) {

 Object v1 = n1.getLiteralValue();

 Object v2 = n2.getLiteralValue();

 if (v1 instanceof String && v2 instanceof String) {

 String location = ((String) v1).toLowerCase();

 String[] locParts = location.split(",");

 String region = ((String) v2).toLowerCase();

 if(region.contains(locParts[0]))

 return true;

 }

 }

 return false;

}

boolean WeatherImpactMatch(Node wpoly, Node rlat, Node rlon) {

 Node wpoly = getArg(0, args, context);

 Node rLat = getArg(1, args, context);

 Node rLon = getArg(2, args, context);

 if (rLat.isLiteral() && rLon.isLiteral() && wpoly.isLiteral()) {

 String[] coordinates = ((String)wpoly.getLiteralValue()).split(",");

 Object rLatObj = rLat.getLiteralValue();

 Object rLonObj = rLon.getLiteralValue();

 if (rLatObj instanceof Float && rLonObj instanceof Float) {

 Float rLat = (Float) rLatObj;

 Float rLon = (Float) rLonObj;

 List<Point> points = new ArrayList<>();

 for(String coordinate: coordinates) {

 String[] vals = coordinate.split("_");

 points.add(new Point(Float.parseFloat(vals[0]),

Float.parseFloat(vals[1])));

 }

 return contains(points, new Point(rLat, rLon));

 }

 }

 return false;

}

boolean contains(List<Point> points, Point test) {

 int i, j;

 boolean result = false;

 int size = points.size();

 for (i = 0, j = size - 1; i < size; j = i++) {

 if ((points.get(i).getLongitude() > test.getLongitude()) !=

 (points.get(j).getLongitude() > test.getLongitude()) &&

 (test.getLatitude() <

 (points.get(j).getLatitude() - points.get(i).getLatitude()) *

 (test.getLongitude() - points.get(i).getLongitude()) /

 (points.get(j).getLongitude() - points.get(i).getLongitude()) +

 points.get(i).getLatitude())) {

 result = !result;

 }

 }

 return result;

}

Open Journal of Semantic Web (OJSW), Volume 4, Issue 1, 2017

50

Listing 3: The function for matching earthquake impact

AUTHOR BIOGRAPHIES

Yogesh Pandey
graduated with a M.S in

Software Engineering

from the School of

Computing, Informatics,

and Decision Systems

Engineering in Arizona

State University in

December 2016. He

received his Bachelor

degree in Computer Science from Jaypee Institute of

Information Technology in 2012. He is currently a

Software Development Engineer II at Amazon Web

Services. He has 3.5 years of prior industrial

experience during which worked on a variety of

technologies including web application development

and distributed web services.

Srividya Bansal is an Associate

Professor in Ira A. Fulton

Schools of Engineering at

Arizona State University. Her

primary research focuses on

semantic computing, semantics-

based approaches for Big Data

Integration, semantic querying of

big data, web service description,

discovery & composition, and

tools for outcome-based instruction design in STEM

education. She received a PhD in Computer Science

from the University of Texas at Dallas in 2007 and

Masters in Computer Science from Texas Tech

University in 2002. She is a member of the IEEE

Computer Society and Association of Computing

Machinary (ACM). Contact her at

srividya.bansal@asu.edu.

// Coordinates of the earthquake epicenter and the

// region are passed to this method.

boolean EarthQuakeImpactMatch(Node eLat, Node eLon, Node rLat, Node rLon,

 Magnitude mag) {

 if (eLat.isLiteral() && eLon.isLiteral() && rLat.isLiteral() &&

 rLon.isLiteral() && mag.isLiteral()) {

 Object eLatObj = eLat.getLiteralValue();

 Object eLonObj = eLon.getLiteralValue();

 Object rLatObj = rLat.getLiteralValue();

 Object rLonObj = rLon.getLiteralValue();

 Object magObj = mag.getLiteralValue();

 if (eLatObj instanceof Float && eLonObj instanceof Float &&

 rLatObj instanceof Float && rLonObj instanceof Float &&

 magObj instanceof Float) {

 Float eLat = (Float) eLatObj;

 Float eLon = (Float) eLonObj;

 Float rLat = (Float) rLatObj;

 Float rLon = (Float) rLonObj;

 Float mag = (Float) magObj;

 float radiusInKm = computeEarthquakeRadius(mag);

 float radiusInDeg = radiusInKm / 110;

 return liesInsideEarthquake(eLat, eLon, rLat, rLon, radiusInDeg);

 }

 }

 return false;

}

boolean liesInsideEarthquake(float cX, float cY, float x, float y, float r) {

 float dx = x - cX;

 float dy = y - cY;

 return dx * dx + dy * dy <= r * r;

}

