
c© 2018 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Semantic Web (OJSW)
Volume 5, Issue 1, 2018

http://www.ronpub.com/ojsw
ISSN 2199-336X

Count Distinct Semantic Queries over
Multiple Linked Datasets

Bogdan Kostov, Petr Křemen

Department of Cybernetics, Czech Technical University in Prague,
Technicka 2, 16000 Prague, Czech Republic, {bogdan.kostov, petr.kremen }@fel.cvut.cz

ABSTRACT

In this paper, we revise count distinct queries and their semantics over datasets with incomplete knowledge, which is
a typical case for the linked data integration scenario where datasets are viewed as ontologies. We focus on counting
individuals present in the signature of the ontology. Specifically, we investigate the Certain Epistemic Count (CEC)
and the Possible Epistemic Count (PEC) interval based semantics. In the case of CEC semantics, we propose an
algorithm for its evaluation and we prove its correctness under a practical constraint of the queried ontology. We
conduct and report experiments with the implementation of the proposed algorithm. We also prove decidability of
the PEC semantics.

TYPE OF PAPER AND KEYWORDS

Regular research paper: semantic queries, aggregate queries, conjunctive queries, distinct count, linked data,
ontology, incomplete knowledge, certain epistemic count, possible epistemic count

1 INTRODUCTION

Reflecting knowledge incompleteness in aggregate
queries with their different interpretations (different
strategies employed when counting incomplete data)
over linked data sets is in its early stages of
research, lacking appropriate algorithms, tools as well
as benchmark support. We believe that such queries are
vital in business intelligence and data quality assessment
use-cases where integrated incomplete data is analyzed.
We attempt to bring some practical results to this
interesting research area.

In this paper, we extend the work [12]. We investigate
the possibility to implement different interpretations of
count distinct queries over ontologies where the Unique
Name Assumption1 (UNA) does not hold, which is a

1 The unique Name Assumption (UNA) is a convenient assumption
in which differently named individuals are interpreted as different
domain elements.

typical case for the linked data integration scenario. We
focus on counting individuals present in the signature of
the ontology.

Specific contributions of the paper include:

• a novel interpretation labeled possible epistemic
count (PEC) for count distinct queries and we prove
its decidability, see Section 4,

• an algorithm implementing the certain epistemic
count (CEC) interpretation and proof of its
correctness under a practical constraint on the
queried ontology, see Section 5,

• experimental evaluation of the algorithm over
artificial data, see Section 6.

This paper is organized as follows. In Section 2
we present a motivational use-case for semantic count
distinct queries over multiple Linked Data (LD) datasets
in the domain of aviation safety. We also discuss the

1

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojsw

Open Journal of Semantic Web (OJSW), Volume 5, Issue 1, 2018

Table 1: Safety event report dataset D1 from Prague
Airport

ID Location Incident Time Report Time FN
1 Prague 12h 12h A
2 Prague 11h 11h B
3 - Not-sure 15h20 C
4 - Not-sure 10h D

types of incompleteness that we found in the data and
conclude by identifying two suitable interpretations of
count distinct queries. In Section 3 we formally define
the syntax and semantics of OWL 2 - DL ontologies,
semantic conjunctive queries and count distinct queries
with basic semantics. In Section 4 we define the
PEC semantics of count distinct queries and prove its
decidability. In Section 5 we propose an algorithm for
the CEC semantics of count distinct queries and we
prove its soundness and completeness under a practical
constraint on the queried ontology. In Section 6 we
report the results of experiments done with the proposed
algorithm. We experiment with artificial data samples.
In Section 7 we present the state of art. Section 8
summarizes our results and discusses future work.

2 MOTIVATIONAL USE-CASES

We start this section with a discussion about a simple
use-case scenario for semantic counting in the domain
of aviation safety. We also show how two types of data
incompleteness affect the evaluation of the interpretation
of the count distinct aggregate function in different
scenarios.

One of the strategies in managing aviation safety is
through monitoring of reactive indicators. An indicator
is typically defined as a statistic in a time frame (a month)
over a data set of reported safety events and investigation
results. The simplest and also one of the most common
indicators are based on count distinct statistics, e.g.,
the number of bird strike events (e.g., a collision of
a bird with an airplane) per month. The precision of
this statistics is essential for the efficient and effective
performance of safety departments. We identify errors
when evaluating these statistics over data sets caused
by incompleteness of the collected data. Consider the
following example data. Table 1 and 2 show reports
of bird strike events collected respectively at two fictive
organizations – Prague Airport and Brno Airline. Table 3
shows information about individual flights. The column
with name FN refers to the flight number.

Each table represents an autonomous dataset. Note
that the datasets do not contain events but their reports.
Based on our experience with the industry we assume

Table 2: Safety event report dataset D2 from Brno
Airline

ID Location Incident Time Report Time FN
1 Prague 12h 12h20 A
4 - Not-sure 9h10 D

that in an autonomous dataset of event reports the
identity of reports is used to represent the identity of
events and that each event is reported only once. These
conditions are achieved by data collection procedures
and data management processes. We can see the
first incompleteness in the second and third columns,
(“Location” and “Incident Time”) in Table 1 where the
values are not always specified. This incompleteness
of attribute values occurs naturally. A bird strike event
is typically reported by the pilot. The pilot may not
perceive the strike at the moment of the occurrence.
Hence the time and location of the strike might not be
known. As a result, the data collected in the dataset
contains incomplete information about the time and
location of the incidents. Note also that in case of a bird
strike event the time and location of the event are bound
and given the time we know the location and vice versa.
Consider the indicator defined in Example 1.

Example 1. Bird strike indicator

• Number of bird strikes over Prague airport for a
month.

Commonly, this indicator is evaluated by counting the
number of bird strike reports in the dataset. Evaluating
the indicator in this way over the dataset from Table
1 gives a result of 4 and over the dataset obtained by
merging the data from Tables 1 and 2 gives 5. Let’s
investigate and identify the errors which occur using this
evaluation strategy. To compute this indicator correctly,
the queried dataset needs to comply with the following
conditions:

• unique identification for events and

• a definite classification of events.

Let’s first consider evaluation over Table 1. The first
condition is satisfied because the identity of events is
complete, as discussed earlier. The second condition,
however, definite classification, is not met. In this case
classifying a bird strike as ”over Prague airport” or not
is based on the attribute ”Location”. Assuming that
the time and location are dependent attributes and the
location of the incident is not known, then given that
the incident occurred within a certain interval before
the landing, the event can satisfy the condition to be

2

B. Kostov, P. Křemen: Count Distinct Semantic Queries over Multiple Linked Datasets

Table 3: Dataset describing flights

FN Departure Arrival DepTime ArrTime Airline
A Prague Brno 10h 10h30 Brno Airlines
C Paris Prague 13h 15h —
D Brno Prague 8h 8h30 Brno Airlines

classified as ”over Prague airport”. The problem is, as
mentioned earlier, that neither the time nor the location
of some reports are known. For example, the incident
reported at row 3 in Table 1 may have occurred in Paris
and incident reported at row 4 may have occurred in
Brno. In this case, the indicator should be evaluated as a
range 〈2..4〉which represents the incompleteness present
in the data as opposed to the conventional evaluation
which would result in a definite answer – 4.

Let’s investigate the evaluation over the merge of
datasets in Tables 1 and 2. The second condition is
violated because the incompleteness of the attributes
”Location” and ”Incident Time” is inherited from the
merged data. Furthermore, the first condition is also
violated because as opposed to the autonomous datasets
the merged dataset is not managed in the same manner
and thus may contain more than one report for a given
event. For example, the event reported at first and forth
rows in Table 1 are the same events as the ones reported
at first and second rows in Table 2. Note that the merged
datasets does not contain this information. In this case,
a correct evaluation should return the range 〈2..6〉 as
opposed to the definite value 3 returned by the common
evaluation strategy.

Instance reconciliation may be used to improve
data quality. This process produces a new dataset
containing information about which records report
the same event. This mapping is implemented by
a discriminative attribute which enables grouping of
reports of the same event in one group or using
relational statements (table1/report#4 owl : sameAs
table2/report#1). In the first approach, we can
use distinct count with UNA interpretation to evaluate
correctly the indicator from Example 1. The second
case is quite typical for the semantic web. However,
the correct implementation of the indicator using distinct
count with UNA interpretation needs to be extended
to calculate the partitions defined by the owl : sameAs
statements. In both cases, SPARQL 1.1 can be used to
evaluate this indicator correctly. However, in the second
case, the query will be more complicated because it will
need to calculate the equality partitions induced by the
owl : sameAs axioms. Because of the added information
and the use of a suitable evaluation, this method will
return the value 2.

3 PRELIMINARIES

In this section, we will define basic terms and notions
used in the rest of the paper. We will start with the
definition of an ontology followed by the definition of
conjunctive queries and aggregate queries with distinct
count function.

3.1 Ontology

In this paper we consider the description logic
language SROIQ(D) for ontology representation. We
will use the term ontology as a shorthand of a
SROIQ(D) ontology. Next, we will introduce part of
the syntax and semantics of the language, relevant to
our work. We will also introduce some syntactic sugar
used in OWL 2 Web Ontology Language [17, 19], a
syntactic variant of SROIQ(D). For a full description
of the syntax and semantics of different description
logic formalisms see [1]. Also, note that we assume
that the SROIQ(D) ontologies should comply with all
the necessary syntactic restrictions for which inference
problems remain decidable.

Definition 1 (Ontology, Selected Syntax and Semantics).
An ontology O is a pair 〈S,A〉, where S is a signature
and A is a set of axioms. The semantics of ontologies
uses a first order interpretation I = (∆I , ·I), where
∆I is an interpretation domain and ·I : S →
∆I is an interpretation function mapping elements
from the ontology signature S to elements from the
interpretation domain ∆I . An ontology O is satisfied
by an interpretation I, denoted by I |= O, if all of
its axioms are satisfied by the interpretation I, such
interpretation I is called a model of O. We say that a
set of axioms A is entailed by the ontology O, denoted
by O |= A, if every model I of the ontology O, is also a
model of A, I |= A.

Let I = (∆I , ·I) be an interpretation. Let
R, R1,R2, · · · ,Rn be roles, C,D be concepts, a, b,
a1, a2, · · · , an be individuals (all previous part of S) and
k is a natural number. Selected role axioms and their
interpretations are:

• I |= Func(R) if 〈xI , yI〉 ∈ RI and 〈xI , zI〉 ∈ RI

implies yI = zI .

3

Open Journal of Semantic Web (OJSW), Volume 5, Issue 1, 2018

• I |= InvFunc(R) if 〈yI , xI〉 ∈ RI and 〈zI , xI〉 ∈
RI implies yI = zI .

Note that these axioms are only syntactic sugar and in
SROIQ(D) they are represented using TBox axioms.

Selected TBox and ABox axioms and their
interpretations are:

• I |= C v D if CI ⊆ DI

• I |= HasKey(C,R1,R2, · · · ,Rn) if ∀xI , yI ∈ CI

and ∀wI
1 ,w

I
2 , · · · ,wI

n if 〈xI ,wi
I〉 ∈ RI

i and
〈yI ,wi

I〉 ∈ RI
i then xI = yI .

• I |= C(a) if aI ∈ CI

• I |= R(a, b) if 〈aI , bI〉 ∈ RI

We consider the following concept expressions and
their interpretations. Top concept >I = ∆I ,
bottom concept ⊥I = ∅, intersection (C u D)I =
CI ∩ DI , union (C t D)I = CI ∪ DI , one of
({a1, a2, · · · , an})I = {aI1 , aI2 , · · · , aIn}, minimum
number restrictions (≥ k RC)I = {x |]{y | 〈x, y〉 ∈ RI

and y ∈ CI} ≥ k}, maximum number restrictions
(≤ k RC)I = {x |]{y | 〈x, y〉 ∈ RI and y ∈ CI} ≤ k}.
Where]S stands for the size of S.

Examples 2, 3 and 4 show how we can use ABox
axioms to construct an ontology for the datasets from
Tables 1, 2 and 3. The ontologies capture the type of the
incident (e.g., BirdStrike), its location and during which
flight it happened. Other data from the tables is ignored.
Furthermore, for the sake of space we abbreviate some
of the resources: Location – loc; Departure – dep;
Arrival – arr; Prague – Prg. In examples 2 and 3,
reports are represented as individuals ik and rk and the
k corresponds to the identifier from column ID. Flights
are represented as individuals using their flight number
(i.e., column FN) and are associated with reports using
the duringFlight property.

Note, how the lack of location information in tables 2
and 3 is captured by the ontologies in examples 2 and 3
by omitting assertion axioms of the loc property.

Example 2. Ontology (ABox) of Prague Airport Report
dataset from Table 1

BirdStrike(i), loc(i, Prg), duringFlight(i, A)

BirdStrike(i), loc(i, Prg), duringFlight(i, B)

BirdStrike(i), duringFlight(i, C)

BirdStrike(i), duringFlight(i,D)

Example 3. Ontology (ABox) of Brno Airlines Report
dataset from Table 2

BirdStrike(r), duringFlight(r,D)

Example 4. Ontology (ABox) of the Flight dataset
from Table 3

Flight(C), dep(C,Paris), arr(C,Prg),
Flight(D), dep(D,Brno), arr(D,Prg),

Definition 2 (Inference Problems). Let O be an
ontology, A be a set of axioms and C,D be concepts.

Consistency checking (CC). O is consistent,
CC(O) = true, if there is a model I of O,

Subsumption. D subsumes C, denotes as C v D, w.r.t.
O, if O |= C v D.

3.2 Conjunctive Queries

To define distinct count queries we first need to define
conjunctive queries.

Definition 3 (Conjunctive Query). We will denote
conjunctive queries using the following rule like notation

Q(x̄)← φ(x̄, z̄). (1)

The head of the query Q(x̄) denotes the name of the
query and the result variables Rvar(Q) = x̄. The
body of the query φ(x̄, z̄) is a comma-separated list of
query atoms interpreted as a conjunctive query. The
allowed atoms are SROIQ(D) atoms where we allow
for distinguished and non-distinguished variables in
places of individuals.

The variables z̄ are called non-result variables. Result
variables must be distinguished. By Vvar(Q) we denote
the list of all variables in the query. By Vd(Q) we denote
all distinguished variables. A binding µ : Vvar(Q)→ S
is a mapping of the variables of the query to elements
in the ontology’s signature and Q|µ is the substitution of
the variables in Q by the binding µ. Binding of a tuple
of variables is denoted by µ(v̄) = (µ(v1), . . . , µ(vk)).
MQ,O is the set of all possible bindings of Q w.r.t. O,
]MQ,O = nk where n is the number of individuals in the
signature S of O and k is the number of distinguished
variables of Q.

We call Q a semi-ground query if there are no
distinguished variables in the query. A solution to the
query Q w.r.t. the ontology O is a binding µ for which
the substitution Q|µ is a semi-ground query, the body of
which is entailed by the ontology (denoted byO |= Q|µ).

The set of all solution bindings of query Q w.r.t. O is
denoted by SatOQ = {µ | O |= Q|µ, µ ∈ MQ,O}. The
result of query Q w.r.t. ontology O denoted by QO, is a
set of bindings of the result variablesRvar(Q), formally
QO = {Rvar(µ) | µ ∈ SatOQ}.

The set of all solution bindings of a query Q w.r.t.
an interpretation I is denoted by SatIQ = {µ | I |=
Q|µ, µ ∈ MQ,O}. Finally, the result of query Q

4

B. Kostov, P. Křemen: Count Distinct Semantic Queries over Multiple Linked Datasets

w.r.t. an interpretation I denoted by QI , is a set of
bindings of the result variablesRvar(Q), formallyQI =
{Rvar(µ) | µ ∈ SatIQ}.

Note that there are certain syntactic limitations of the
query body concerning undistinguished variables. For
more detail see [11].

Examples 5 shows a conjunctive query using the
notation defined above. which will retrieve all bird strike
incidents which occurred over the Prague airport.

Example 5. Conjunctive Query to Select Bird Strike
Incidents Over Prague Airport,
Q1(?inc)← BirdStrike(?inc), loc(?inc, Prg).

3.3 Count Distinct Queries and Semantics

In this section, we define the notion and semantics of the
count distinct queries. Particularly, we focus on count
distinct queries which retrieve the number of distinct
tuples of the result of a conjunctive query Q. We also
define some additional terminology and symbols used
later in the paper.

First, we define the notation of count distinct queries
and their conventional semantics.

Definition 4 (Count Distinct Query). Let O be an
ontology, Q be an conjunctive query with no negation
as failure atoms. We denote a distinct count query
over O as CD(Q(x̄),O), where CD is the count distinct
function. Q is the conjunctive query the results of which
are counted. The result variables x̄ of Q also specifies
the counting variables. Conventionally, count distinct
queries are evaluated relying on the UNA principle:

• basic semantics CD(Q(x̄),O) =](QO)

Example 6 shows a representation of the indicator
introduced in Example 1 using the notion defined above.

Example 6. Count Distinct Query with CEC Semantics

CD(Q1(?inc)← BirdStrike(?inc), loc(?inc, Prg),O).

Note that in the Definition 6 we count the distinct
result bindings QO. Counting requires comparing
bindings. We can view a binding as a set of variable-
symbol mapping pairs which can be compared. For
example, let binding µ1 = {(x, a)} is different from
binding µ2 = {(x, b)} and equal to binding µ3 =
{(x, a)}. We denote interpretation of bindings as µI

1 =
{(x, a)}I = {(xI , aI)}. When interpreted bindings
may compare differently. For example, if aI = bI then
µI
1 = µI

2 .
Next we define certain epistemic count (CEC)

semantics of count distinct queries.

Definition 5 (Certain Epistemic Count). A count
distinct query with CEC semantics is represented as
CDC(Q(x̄),O).

The C in the superscript denotes the semantics mode,
i.e., CEC. We define the CEC semantics as follows:

• CDC(Q,O) = 〈min(NC
Q,O),max(NC

Q,O)〉

where NC
Q,O is the set of different sizes of certain answers

of Q over O in different models I of O, NC
Q,O =

{]((QO)I) | I |= O}.

Example 7 shows the representation and the result of
the indicator introduced in Example 1 using the notion
and semantics defined above.

Example 7. Count Distinct Queries

CDC(Q1(?inc)← BirdStrike(?inc), loc(?inc, Prg),O).

Evaluating the query with the CEC semantics over
the merged datasets from Tables 1 and 2 will result in
CDC(Q1,O) = 〈2, 3〉. This is because there are at most
three incidents reported over Prague but two of them
might be the same.

4 POSSIBLE EPISTEMIC COUNT SEMANTICS

In this section, we will define the Possible Epistemic
Count (PEC) semantics for distinct count queries.

Definition 6 (Possible Epistemic Count). A count
distinct query with PEC semantics is represented as
CDP(Q(x̄),O).

The P in the superscript denotes the semantics mode,
i.e., PEC. We define the PEC semantics as follows:

• CDP(Q,O) = 〈min(NP
Q,O),max(NP

Q,O)〉,

where NP
Q,O is the set of different sizes of certain answers

of Q over O in different models I of O, NP
Q,O =

{]((QO)I) | I |= O}.

Example 8 shows the representation and the result of
the indicator introduced in Example 1 using the notion
and semantics defined above.

Example 8. Count Distinct Query with PEC Semantics

CDP(Q1(?inc)← BirdStrike(?inc), loc(?inc, Prg),O).

Evaluating the query with the PEC semantics over
the merged datasets from Tables 1 and 2 will result
in CDC(Q1,O) = 〈2, 6〉. This is because there are
potentially at most 6 incidents reported over Prague.
Three of those reports are certainly over Prague.
However, two of them might be the same, therefore the
minimum is again 2.

5

Open Journal of Semantic Web (OJSW), Volume 5, Issue 1, 2018

Certain and possible answers correspond respectively
to the Semantic Tuple Count and Semantic Count
introduced in [12], where we also prove decidability of
the former. Here we prove that CDP(Q,O) is decidable.
To prove this we define an alternative to NP

Q,O which we
denote as N′ and then we prove that it is decidable and
equivalent to NP

Q,O.
The definition of the PEC interpretation requires

to evaluate the number of distinct bindings in each
model of the ontology. This is a problem because
the ontology may have infinitely many models. Each
model I contributes to the set NP

Q,O with a number
]((Rvar(SatIQ))I). The evaluation of that number relies
solely on the results of the query Q over the model I,
and the equivalence relation of the symbols in the query
result encoded in the model.

Note that although there are infinite number models
of the ontology the results of the query Q in any of
those models belongs to the powerset of the set of all
bindings MQ,O, that is there finitely many result sets
being counted. The equality relation can also be thought
of as a partitioning of the elements in the signature
S. Note that the set EO of all different partitionings
encoded in all the models of the ontology is also finite.

Before we define the set N′, we introduce some
auxiliary notions. Given M , a potential set of result
bindings, we can encode them as a set of axioms as
followsAM = O∪{Q|µ |µ ∈M}. Given E, a potential
partitioning of elements in S we can encode them as a
set of axioms as follows AE =

⋃
e∈E{a

.
= b | a, b ∈

e} ∪
⋃
e1,e2∈E{a 6= b | a ∈ e1, b ∈ e2}. Given M and

E, we define the ontology extensionO(M,E) as follows
O(M,E) = O ∪AM ∪AE .

Let L = {(M,E) |M ∈ MQ,O, EinEO} be the set
of all pairs of M (potential result bindings composed
of elements from the signature S) and E (potential
partitioning of those elements). We define the alternative
definition of NP

Q,O as follows.

Definition 7 (Alternative Definition of NP
Q,O). N′ =

{](Rvar(M)E) | O(M,E) is consitent ∧ SatO(M,E)
Q =

M, (M,E) ∈ L}.

Lemma 1. Calculating N′ is decidable.

Proof. To calculate N′ we need to iterate over the
finite set L. For each element , (M,E) ∈ L,
we construct O(M,E), an extension of the original
ontology. O(M,E) is checked for consistency and
whether it satisfies the condition SatO(M,E)

Q = M . If it
does, we count the number of interpreted bindings. Each
of these steps is decidable. Therefore, calculating the set
N′ is decidable.

Lemma 2. The set N′ is equivalent to the set NP
Q,O.

Proof. First, we show that N′ ⊆ NP
Q,O. Let n be a

number in N′, then n =]((Rvar(M))E). We know that
the ontology O(M,E) is consistent and that it satisfies
the condition Sat

O(M,E)
Q = M . We can deduce that

there exists a model I |= O(M,E), such that ME =
(SatIQ)I . Therefore, n ∈ NP

Q,O.
Second, we show that NP

Q,O ⊆ N′. Each number n
in NP

Q,O is computed from the interpreted binding set
(SatIQ)I w.r.t a model I of the ontology. Note that
M ′ = SatIQ belongs to the set MQ,O. Also, note
that the partitioning E′ of elements in the signature of
ontology O induced by I is an element from EO. Then,
the extended ontology O(M ′, E′) is consistent and it
satisfies the condition SatO(M,E)

Q = M which implies
that n ∈ N′.

Therefore, N′ = NP
Q,O

Theorem 1. Let O be an ontology, Q be a conjunctive
query. Then calculating the result of CDP(Q,O) is
decidable.

Proof. The decidability of CDP(Q,O) is a direct
consequence of Lemmas 1, 2.

5 IMPLEMENTATION OF CEC SEMANTICS
FOR COUNT DISTINCT QUERIES

In this section, we present the implementation of the
CEC semantics of count distinct queries described in
Section 3.3. The implementation takes in an ontology
O and the underlying conjunctive query Q with result
variables as counting variables. The implementation
relies on a reasoner which supports conjunctive query
answering and consistency checking. Counting over
multiple datasets is possible if the datasets are merged,
and the schema (ontology) is explicitly included. The
resulting dataset, i.e., ontology with TBox, RBox,
and ABox, can be used as an input for the counting
procedure. The idea behind the implementations is
to look for numbers which belong to the result by
restricting the possible models of the input ontology and
checking whether the restriction is satisfiable.

The algorithm is split into two procedures.
First, in Algorithm 1 we define a procedure
CDCSingleColumn(T,O) which calculates the count
distinct function with CEC semantics over a set of single
variable (single column) bindings.

The input T is a list of elements from the signature
of O. The procedure looks for the minimum and
maximum by iteratively adding axioms to the ontology.
We construct the ontologyO′

i to narrow down its models
to those containing at most (respectively at least) i
many partitions induced by the equality relation of the

6

B. Kostov, P. Křemen: Count Distinct Semantic Queries over Multiple Linked Datasets

Algorithm 1: Evaluation of count distinct with single
counting variable
1 CDCSingleColumn(T,O = 〈S,A〉)
2 / / p, x, C /∈ S
3 O′ := O ∪ {p(x, t) | t ∈ T}
4 a , b := −1
5 / / find minimum
6 f o r i :=n t o 1 do
7 O′

i = O′ ∪ {(≤ i p)(x)}
8 i f CC(O′

i) = false
9 a := i + 1

10 b r e a k
11 / / find maximum
12 O′ := O′ ∪ {C ≡ {t1} t {t2} t ... t {tn}}}
13 f o r i :=1 t o n do
14 O′

i = O′ ∪ {(≥ i p · C)(x)}
15 i f CC(O′

i) = f a l s e
16 b := i − 1
17 b r e a k
18 r e t u r n (a, b)

counted elements encoded in those models. In this
implementation, we use number restrictions to achieve
this effect. A similar algorithm can be designed using
different SROIQ(D) constructs.

Algorithm 2 shows the implementation of the CEC
semantics of count distinct queries CDC(Q,O). The
algorithm makes use of the conjunctive query answering
service of the used reasoner. In the case where the
queryQ has more than one result variables, the algorithm
transforms the problem to a single column problem.
The single column problem is evaluated in both cases
by calling the procedure CDCSingleColumn(T,O) from
Algorithm 1.

The transformation of multi to single column counting
is necessary because in SROIQ(D) there are no
constructs to apply the same restrictions used in the
single column case. The idea of the transformation is to
create a one-to-one mapping between fresh individuals,
one for each result row, with the elements of that
row. This is achieved by modeling columns as
bijective relations, using HasKey and Func axioms and
associating through the column relations, each fresh
individual corresponding to a result binding with the
values of the bound variables.

5.1 Practical Correctness of CDC

In this section, we prove the correctness of Algorithm 2.
First, we define the required practical restrictions of the
queried ontology.

Definition 8 (Ontology Restrictions). Let S′ be the set of
elements composing the counted bindings. An ontology

Algorithm 2: Evaluation of count distinct with
multiple counting variables
1 CDC(Q,O)
2 / / T is a multiset of n k-sized tuples
3 / / of individuals from S
4 T := eva lQue ry (Q,O)
5 i f]Rvar(Q) > 1 / / k > 1, tuple counting
6 O′ := O∪
7 {HasKey(A, c1, c2, · · · , ck)}∪
8 {Func(c1),Func(c2), · · · ,Func(ck)}∪
9 {A(ri), c1(ri, ti,), · · · , ck(ri, ti,k) | i ∈ 〈1, n〉}

10 T ′ := {r1, r2, · · · , rn}
11 r e t u r n CDCSingleColumn(T ′,O′)
12 e l s e / / k = 1, element counting
13 r e t u r n CDCSingleColumn(T,O)

can be queried using Algorithm 2 if any of the following
axioms are not entailed by the queried ontology.

• > v ∀> · ⊥

• ∀> · ⊥(s),∀s ∈ S′

The first restriction allows us to add fresh properties
and associate fresh individuals with them. The second
restriction allows us to associate the counted elements
with other individuals using fresh properties. Note
that these restrictions will be satisfied in most practical
ontologies. For example, if an ontology entails the first
axiom in Definition 8, it will have only models in which
no individual is related to any other individual. In the
case of our running example of incident reports, using
such an ontology will not allow to associate incidents
with flights. The second axiom in Definition 8 has a
similar impact as the first one. Specifically, it restricts
adding new relations to the counted elements.

Next, we prove the correctness of Algorithm 2. The
proof is split into two parts. Lemma 3 shows the
correctness of the procedure shown in Algorithm 1.
Lemma 4 shows the correctness of the transformation of
counting multiple columns to counting a single column.
Note that both proofs consider that the input ontology O
fulfills the restrictions in Definition 8.

Lemma 3. Algorithm 1 is a correct procedure of
CDC(Q,O) considering the input ontology O fulfills the
restrictions in Definition 8.

Proof. Let 〈a, b〉 = CDC(Q,O) and let 〈a′, b′〉 =
CDSingleColumn(,O) where T = QO. We show
that a = a′ and b = b′. Here we will show the proof
for a = a′. The proof for b = b′ is similar. First, we
prove that a ≤ a′. The set axioms in O is a subset of
the axioms in O′

i ontology. By definition, there exists a

7

Open Journal of Semantic Web (OJSW), Volume 5, Issue 1, 2018

model I of O′
a′ , I |= O′

a′ . Because of the monotonicity
property of SROIQ(D) ontologies, I is also a model
of O. The number n =]((QO)I) is greater or equal to
a and it is equal to the number a′. Therefore a ≤ a′.

Now we prove that a ≥ a′. This is equivalent to the
statement that for any I model of O, i =]((QO)I),
there exists a model I ′ of O′

i, where](T I) =](T I′
).

We construct I ′ from I as follows: zI
′

:= zI , z ∈ S,
xI

′
:= a, where a is an arbitrary element from ∆I ; pI =

{(a, t1), (a, t2), · · · , (a, tn)}. It is easy to show that I ′
is a model of O as it has the same domain and mappings
as I. The following implies by the construction of I ′:
](T I) =](T I′

); I ′ |= {p(x, t) | t ∈ T}. Also
I ′ |= (≤ i p)(x) which is implied by the interpretation
conditions of the class expression ≤ i p, see Definition
1, and the equality]{y | (x, y) ∈ pI and y ∈ ∆I} =
]{tIi | (a, tIi) ∈ pI and ti ∈ T} =](T I′

) =](T I) = i.
Therefore I ′ |= O′

i and]T I = T I′
.

Lemma 4. The transformation from multi to single
column counting in Algorithm 2 is a practically correct
procedure for computing CDC(Q,O).

Proof. Counting the set of interpreted row individuals
is equivalent to counting the set of interpreted result
bindings if there is a one-to-one correspondence between
the interpreted rows and interpreted result bindings for
each model of the ontology. Let I be a model of the
ontology O′.

To prove the correspondence, we first show that there
is a unique interpreted result binding tIi , ti ∈ T for
each interpreted row ri ∈ T ′. Because of the functional
restrictions on the column properties c1, c2, · · · , ck, the
interpreted row rIi is restricted to have at most one value
per column property. Therefore, there is exactly one
interpreted unique tuple tIi associated with rIi .

Second, we prove that each interpreted tuple tIi is
associated with exaclty one interpreted row rIi . In this
case, the HasKey axiom restricts each unique tIi to be
associated with exactly one interpreted row rIi . This
proves the one-to-one correspondence.

Because there is a one-to-one correspondence between
the interpreted rows and interpreted result bindings for
each model of the ontology, the proposed transformation
from multi to single column counting is correct.

Theorem 2. The CDC(Q,O) Algorithm 2 is a correct
procedure of CDC(Q,O).

Proof. The proof of this theorem is a consequence of
Lemmas 3 and 4.

6 EXPERIMENTS

In this section, we report the results of our experiments
with Algorithm 1 which is the core procedure of
the implementation of the CEC semantics. In the
experiment, we are counting a set of individuals T
described in an OWL 2 ontology. The goal of the
experiments is to form an initial assessment of the
practicality of the algorithm.

In our first tests we experimented with small sizes
of T , e.g., 1 to 10. We found that, as expected the
bottleneck of the procedure is the consistency check
operation used on lines 8 and 15 in Algorithm 1. Note
that the complexity of the algorithm depends on the
complexity of the consistency check procedure. In the
case of SROIQ(D) reasoner the complexity is known
to be NEXPTIME.

We tried to optimize this operation. In general, using
an arbitrary reasoner for consistency checking has the
limitation that in each iteration the consistency checking
must start from scratch. Note that both loops on lines
6 and 13 in Algorithm 1 iterate over the restriction
of the count from the general to the more specific.
Theoretically, because of the monotonicity property of
SROIQ(D), using incremental reasoner may improve
performance.

In practice, the improvement gained from switching
to an incremental reasoner was negligible compared to
another factor. The last consistency check in the iteration
process (the one that should fail) may take a very long
time even for a small number of elements, e.g., 10 is
that. This is because the reasoner must check all possible
combinations of partitionings of the counted elements.
The number of possible partitionings with k non-empty
partitions of an n element set is given by the Stirling
number s(n, k). The following examples demonstrate
the problem evaluating an inconsistent O′

i ontology, e.g.
s(10, 8) = 750, s(20, 16) = 22350954.

This observation led us to another optimization idea,
where we attempt to recognize the last consistency
check based on how long it takes to terminate. We
implemented a consistency check timeout strategy in
which we terminate the cycles at lines 6 and 13 if the
consistency check takes longer than the total time spent
on that operation during the execution. Note that this
strategy has an impact on correctness. Because the
last consistency check may be falsely identified, the
results might be incomplete. Soundness is preserved in
the sense that the calculated interval will be contained
in CDC(Q,O). For example, if the correct result of
a count distinct query is CDC(Q,O) = 〈100, 150〉
and the timeout strategy fails it will always return
an interval contained within the correct one, e.g.,
CDCSingleColumn(T,O) = 〈125, 140〉.

8

B. Kostov, P. Křemen: Count Distinct Semantic Queries over Multiple Linked Datasets

Figure 1: Execution time dependence on size of T

Figure 1 shows the results of Algorithm 1 using
an incremental reasoner and the consistency timeout
strategy described above. We evaluated 4 queries (i.e., 4
different sizes of T ∈ {20, 40, 100, 180}) over randomly
generated artificial datasets. Each query was executed
100 times. Figure 1 shows the median, the 90- and 100-
percentiles of the times that was needed to compute the
query in each of the executions.

We observed the expected increase of execution time
with the size of T . We also note that most of the
executions were under a minute long. There were some
cases for which the execution took nearly two and a
half minute. The timeout strategy improved performance
dramatically. Nevertheless, more experiments are
needed to improve the performance of the algorithm
and to check how the correctness of the results was
compromised.

The queries were executed against randomly
generated artificial datasets. The structure of each
dataset Di consists of individuals whose identity is
complete in Di. Each dataset partitions the set of
individuals to n disjoint classes from the global schema.
The merged dataset contains incomplete identity of all
the individuals from all the datasets. The datasets were
composed of up to 200 individuals and a random number
(from 4 up to 150) of pairwise disjoint classes. The
synthetic data over which we conduct our experiments
try to capture the motivational example from Section 2.
The common ontology is simulated by the disjointWith
axiom between classes used to annotate the individuals.
The level of matching between datasets of event reports
D1 and D2 is captured by differentFrom axioms
between the individuals.

The experiments were conducted with the Pellet
reasoner [23] on a Dell laptop with Intel Core i7
processor and 8 GB memory.

7 STATE OF ART

In recent years, expressive query languages, like
SPARQL-DL [24], OWL-SAIQL [13], SQWRL [18] for
OWL 2 [25] or SeRQL [2], SPARQL [20] for RDF, have
been introduced and implemented in the field of semantic
web. There have been deep studies [7, 22, 14, 5, 10]
evaluating conjunctive queries in RDF and OWL, but
few efforts have been spent on an algebra, as well as
aggregation functions.

Recently the RDF query language SPARQL [20]
has been extended towards the new SPARQL 1.12

[6] including many new constructs, e.g. aggregation
functions or negation as failure. There are already
publicly available implementations, e.g. ARQ [8],
KGRAM [4], RDF::Query [26] or RDF4J [15]
(previously known as Sesame [9]). Independently on
SPARQL 1.1 the authors of [21] discuss the topic of
aggregation over data structured as RDF graphs rather
than on the relational data returned by the query (the
result set table). The authors stress the need of different
modes of aggregation. A few years ago the SQWRL
query language for OWL [18] was proposed. All these
efforts implement or interpret aggregation using the
basic relational semantics, i.e. the result of aggregation
functions is computed over the results of the non-
aggregate variant of the query and neglect the impact
of the interplay between aggregation functions and the
inferred domain elements.

More closely related to our study is the work [3]. It
shows that exact semantics, of aggregate queries over a
DL-LiteA ontology returns results only if the Abox is not
empty and if axioms in the Tbox resolve as constraints
over cardinalities of the groups in the aggregate query.
The authors propose epistemic semantics of aggregate

2 SPARQL 1.1 is a W3C recommendation since March 2013.

9

Open Journal of Semantic Web (OJSW), Volume 5, Issue 1, 2018

queries in the settings of data integration use-cases
returning the aggregate function’s results known from
(inferred by) the ontology. The authors propose an
evaluation algorithm for a sub set of aggregate queries,
i.e. restricted epistemic aggregate queries, defined using
functional dependency of query variables w.r.t. the
Tbox of the queried ontology. Compared to their work
we investigate different epistemic semantics of count
distinct queries in case the Unique Name Assumption
does not hold, which is a typical case for the linked data
integration scenario.

Although not exactly in the same framework of query
answering like in this paper, the authors in [16] propose
an approach to model/represent quantification over types
without actually using explicit numerical information
using an ontology design pattern. In comparison, we
focus on answering count distinct queries over datasets
containing incomplete knowledge.

In [12], a novel interpretation of count distinct queries,
called Semantic Tuple Count (STC), was introduced
and it was shown that the evaluation of the STC
interpretation of count distinct queries is decidable
in SROIQ(D). Also, STC is compared to three
other known interpretations – Basic Count (conventional
interpretation based on UNA), Semantic Count (a form
of Certain Answers for count distinct queries defined
on an interval of possible counts), and Epistemic
Count (defined as the minimum of the Semantic Count
interpretation)3. The term STC is equivalent to our term
Certain Epistemic Count (CEC).

8 CONCLUSION AND FUTURE WORK

This work presened in the paper extends our previous
work [12] with a new semantics for count distinct
queries – possible epistemic count (PEC) and a proof
of its decidability. In this paper, we also propose an
implementation of the certain epistemic count (CEC)
semantics of count distinct queries over OWL 2 DL
ontologies. We design and implement a reasoner-backed
meta-algorithm and proved its correctness assuming
some practical constraints on the queries ontology.

We also conducted some experiments over artificial,
randomly generated data. During the experiments
we verified that evaluating the first inconsistency
using Algorithm 1 is not tractable. This was
expected but poses challenges for future research. We
report performance improvements when applying two
optimization techniques, i.e., using an incremental
reasoner and a time-out strategy, see Section 6.

We plan to extend experiments so that we can gain

3 Note, that comparing to [12] our definition of Epistemic Count is
different.

a better understanding of its performance characteristics.
We plan to design and investigate possible optimizations.

The results of the work on count distinct queries can
be used for the validation of cardinality constraints. We
plan to spend time for investigating possibilities of their
validation.

ACKNOWLEDGEMENTS

This work was supported by grant No. GA
16-09713S Efficient Exploration of Linked Data
Cloud of the Grant Agency of the Czech Republic
and by grant No.SGS16/229/OHK3/3T/13 Supporting
ontological data quality in information systems of the
Czech Technical University in Prague.

REFERENCES

[1] F. Baader, D. Calvanese, D. L. McGuinness,
D. Nardi, and P. F. Patel-Schneider, The description
logic handbook: theory, implementation, and
applications, F. Baader, D. Calvanese, D. L.
McGuinness, D. Nardi, and P. F. Patel-Schneider,
Eds. Cambridge University Press, 2003.

[2] J. Broekstra and A. Kampman, “An RDF query
and transformation language,” in Semantic Web
and Peer-to-Peer, S. Staab and H. Stuckenschmidt,
Eds., 2006, pp. 23–39.

[3] D. Calvanese, E. Kharlamov, W. Nutt, and
C. Thorne, “Aggregate queries over ontologies,” in
ONISW, 2008, pp. 97–104.

[4] O. Corby, “Kgram: a knowledge
graph abstract machine,” Mar. 2012,
http://wimmics.inria.fr/corese.

[5] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler,
“Conjunctive query answering in the description
logic SHIQ,” in Proceedings of the 20th
International Joint Conference on Artificial
Intelligence, 2007.

[6] S. Harris and A. Seaborne, “SPARQL 1.1 query
language,” W3C, W3C Recommendation, Mar.
2013, http://www.w3.org/TR/2013/REC-sparql11-
query-20130321/.

[7] I. Horrocks, O. Kutz, and U. Sattler, “The
even more irresistible sroiq,” in KR, P. Doherty,
J. Mylopoulos, and C. A. Welty, Eds. AAAI Press,
2006, pp. 57–67.

[8] A. Jena, “ARQ - A SPARQL
Processor for Jena,” Apr. 2011,
http://jena.apache.org/documentation/query.

10

B. Kostov, P. Křemen: Count Distinct Semantic Queries over Multiple Linked Datasets

[9] A. Kampman, C. Fluit, and J. Broekstra, “Sesame,”
Jan. 2013, http://sourceforge.net/projects/sesame.

[10] I. Kollia, B. Glimm, and I. Horrocks, “Query
answering over SROIQ knowledge bases with
SPARQL,” in Proceedings of the International
Workshop on Description Logic, 2011.

[11] B. Kostov and P. Kremen, “Count aggregation
in semantic queries - technical report,” Czech
Technical University in Prague, Dept. of
Cybernetics, Tech. Rep., 2013.

[12] B. Kostov and P. Křemen, “Count aggregation
in semantic queries,” International Workshop
on Scalable Semantic Web Knowledge Base
Systems co-located the International Semantic Web
Conference (SSWS@ISWC), 2013.

[13] E. Kubias, S. Schenk, S. Staab, and J. Z. Pan,
“OWL SAIQL - an OWL DL query language
for ontology extraction,” in W3C web ontology
language (OWL) - experiences and directions
workshop, 2007.

[14] P. Křemen and Z. Kouba, “Conjunctive query
optimization in OWL2-DL,” in Proceedings of the
22th International Conference on Database and
Expert System Applications, ser. LNCS, vol. 6861,
2011.

[15] J. Leigh, “Rdf4j 2.2.2 released,” June 2017,
http://rdf4j.org.

[16] D. C. Martı́nez, K. Janowicz, and P. Hitzler, “A
logical geo-ontology design pattern for quantifying
over types,” in SIGSPATIAL/GIS, 2012, pp. 239–
248.

[17] B. Motik, B. C. Grau, and P. Patel-Schneider,
“OWL 2 web ontology language direct semantics
(second edition),” W3C, W3C Recommendation,
Dec. 2012, http://www.w3.org/TR/2012/REC-
owl2-direct-semantics-20121211/.

[18] M. J. O’Connor and A. K. Das, “SQWRL: A query
language for OWL,” in OWLED, 2009.

[19] B. Parsia, P. Patel-Schneider, and B. Motik,
“OWL 2 web ontology language structural
specification and functional-style syntax (second
edition),” W3C, W3C Recommendation, Dec.
2012, http://www.w3.org/TR/2012/REC-owl2-
syntax-20121211/.

[20] E. Prud’hommeaux and A. Seaborne,
“SPARQL query language for RDF,”
W3C, W3C Recommendation, Jan. 2008,
http://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115, cit. 9.2017.

[21] D. Y. Seid and S. Mehrotra, “Grouping and
aggregate queries over semantic web databases,” in
ICSC, 2007, pp. 775–782.

[22] E. Sirin and B. Parsia, “Optimizations for
Answering Conjunctive ABox Queries,” in
Description Logics, ser. CEUR, vol. 189, 2006.

[23] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz, “Pellet: a practical OWL-DL reasoner,” J.
Web Sem., vol. 5, no. 2, pp. 51–53, 2007.

[24] E. Sirin and B. Parsia, “SPARQL-DL: SPARQL
query for OWL-DL,” in 3rd OWL Experiences and
Directions Workshop (OWLED-2007), 2007.

[25] W3C, “OWL 2 web ontology language
document overview (second edition),”
W3C, W3C Recommendation, Dec. 2012,
http://www.w3.org/TR/2012/REC-owl2-overview-
20121211/.

[26] G. T. Williams, “RDF::Query - a complete
SPARQL 1.1 query and update implementation
for use with RDF::Trine,” Nov. 2012,
http://search.cpan.org/dist/RDF-Query/.

AUTHOR BIOGRAPHIES

Bogdan Kostov is a Ph.D.
student in the field of artifical
intelligence and biocybernetics
at the Czech Technical
University in Prague, Czech
Republic. His research topics
are ontology development,
semantic query answering that
he applied in the domains of
cultural heritage and aviation
safety.

Dr. Petr Křemen received
his Ph.D. degree in artifical
intelligence and biocybernetics
from the Czech Technical
University in Prague, Czech
Republic. He leads a research
team at the Department
of Cybernetics, Faculty of
Electrical Engineering, Czech
Technical University, Prague
in the field of ontology-based

information systems, ontology development, ontology
comparison, error explanation and query answering.
He is an author of more than 50 peer-reviewed articles,
mainly on international fora.

11

	Introduction
	Motivational Use-Cases
	Preliminaries
	Ontology
	Conjunctive Queries
	Count Distinct Queries and Semantics

	Possible Epistemic Count Semantics
	Implementation of CEC Semantics for Count Distinct Queries
	Practical Correctness of CDC

	Experiments
	State of Art
	Conclusion and Future Work

