
© 2016 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Web Technologies (OJWT)
Volume 3, Issue 1, 2016

http://www.ronpub.com/ojwt
ISSN 2199-188X

Query Processing in a P2P Network of
Taxonomy-based Information Sources

Carlo MeghiniA, Anastasia AnalytiB

A Consiglio Nazionale delle Ricerche, Istituto della Scienza e delle Tecnologie della Informazione,
Via G.Moruzzi 1, 56124, Pisa, Italy, carlo.meghini@cnr.it

B Institute of Computer Science, Foundation for Research, and Technology – Hellas (FORTH-ICS),
P.O. Box. 1385, Heraklion 71110, Crete, Greece, analyti@ics.forth.gr

ABSTRACT

In this study we address the problem of answering queries over a peer-to-peer system of taxonomy-based sources.
A taxonomy states subsumption relationships between negation-free DNF formulas on terms and negation-free
conjunctions of terms. To the end of laying the foundations of our study, we first consider the centralized case,
deriving the complexity of the decision problem and of queryevaluation. We conclude by presenting an algorithm
that is efficient in data complexity and is based on hypergraphs. We then move to the distributed case, and introduce
a logical model of a network of taxonomy-based sources. On such network, a distributed version of the centralized
algorithm is then presented, based on a message passing paradigm, and its correctness is proved. We finally discuss
optimization issues, and relate our work to the literature.

TYPE OF PAPER AND K EYWORDS

Regular research paper:query answering, peer-to-peer systems, P2P, taxonomy-based sources, caching,
optimization

1 INTRODUCTION

This paper contributes to the proposal of a logic-based
framework for modeling Peer-to-Peer (P2P) networks.
Each peer joining a P2P network uses a set of mapping
rules, i.e. correspondences to a set of reachable
peers to both provide or import data. In the context
of a P2P network, let us introduce our framework.
Consider an information sourceS structured as a tetrad
S = (T,�,Obj , I), where T is a set of terms,�
is a taxonomy over concepts expressed usingT (e.g.
(Animal∧ FlyingObject) ∨ Penguin � Bird), Obj

is a set of objects andI is the interpretation, that is
a function fromT to P(Obj), assigning an extension
(i.e., a set of objects) to each term. Now assume that

there is a setN of such sourcesN = {S1, . . . ,Sn},
all sharing the same set of objectsObj and related by
taxonomic relationships amongst concepts of different
sources. These relationships are calledarticulationsand
aim at bridging the inevitable naming, granularity and
contextual heterogeneities that may exist between the
taxonomies of the sources (for some examples see [34]).
For example, the taxonomy of a peerS1 could be the
following: { Penguin � Animal, Pelican � Animal,
Ostrich � Animal, (Animal∧ FlyingObject) ∨
Penguin ∨ Ostrich � Bird }. The object base of
S1 could be the following: { Ostrich(1), Bird(2),
Animal(3), FlyingObject(3) }. S1 could have an
articulation to a peerS2 like { Πινγκoυίνoς2 �
Penguin, Πǫλǫκάνoς2 � Pelican }, an articulation

1

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojwt

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

to a peerS3 like { Animale3 ∧ Alato3 � Birds },
and an articulation to two peersS4,S5 of the form:
{ (Fliegendes Tier4) ∨ (Animal5 ∧ Volant5) �
(Animal∧ FlyingObject) }.

Network of sources of this kind are nowadays
commonplace. For instance, the objects may be
web pages, and a source may be a portal serving a
specific community endowed with a vocabulary used
for indexing web pages. The objects may be library
resources such as books, serials, or reports, and a
source may be a library describing the content of
the resources according to a local vocabulary. The
objects may be a category of commercial items, such
as cars, and a source may be an e-commerce site
which sells the items. And so on. Articulations may
be drawn from language dictionaries, or may be the
result of cooperation agreements, such as in the case of
sources belonging to the same organization. In certain
cases, articulations can be constructed automatically, for
instance using the data-driven method proposed in [32].

In this paper we address the problem of answering
Boolean queries over a peer-to-peer (P2P) system of this
kind of sources.

The case of fully heterogeneous conceptual models
makes uniform global access extremely challenging.
This is the case that we are interested in. From a
data modeling point of view several approaches for
P2P systems have been proposed, including relational-
based approaches [5], XML-based approaches [23] and
RDF-based [28]. In this paper we consider the fully
heterogeneous conceptual model approach (where each
peer can have its own schema), with the only restriction
that each conceptual model is represented as a taxonomy.
A taxonomy can range from a simple tree-structured
hierarchy of terms, to the concept lattice derived by
Formal Concept Analysis [21], or to the concept lattice
of a Description Logics theory.

As a specific example, in the context of Linked Open
Data [26], consider peers each holding (i) an RDF
ontology [15], a set of taxonomic relationships between
local classes, and (iii) a set of articulations between
local classes and classes of the local RDF ontology
and/or other RDF ontologies. Then, the instances of the
local classes are enriched by the instances of the local
classes and the instances of the classes of other RDF
ontologies, according to the particular relationships.
Consider for instance that the concepts of the peers
in the introductory example are classes of peer RDF
ontologies and the articulations along with the local
taxonomies are relationships between these classes. In
this case, a semi-naive bottom-up evaluation algorithm
can be applied to the RDF inference rules provided in
[25] in order to compute the closure of each local RDF
ontology. This way the local classes are filled with local

objects. Then, our algorithms can be straightforwardly
applied for finding querying class instances based on all
relationships.

In particular:

• we analyze the theoretical aspects of query
evaluation against a source, and an algorithm is
derived which extends a hypergraph-based method
for satisfiability of propositional Horn clauses. The
algorithm is conceptually very simple and has
polynomial time complexity with respect to the size
of Obj .

• we present a (asynchronous messaging) distributed
query evaluation procedure, based on a functional
model of a peer; correctness and complexity of this
procedure are given;

• we describe several optimization techniques that
can be used for improving the efficiency of query
evaluation based on caching;

• we relate our work to the existing literature on peer-
to-peer systems.

Some parts of the work reported in this paper
have been already published. Namely, [34] presents
a first model of a network of articulated sources,
while [33] studies query evaluation on taxonomies
including only term-to-term subsumption relationships.
Finally, [27] presents a procedure for evaluating
queries over centralized sources supporting term-to-
query subsumption relationships, as well as hardness
results for extensions. With respect to [34, 33, 27],
this paper improves the theoretical aspects for query
evaluation over the centralized case. Additionally, it
provides distributed query evaluation algorithms for the
case that term-to-query subsumption relationships are
considered along with their optimizations which are
based on caching.

The paper is structured as follows: Section 2
introduces sources, presenting the centralized query
evaluation procedure. Networks of sources are
considered in Section 3, where our algorithm for query
evaluation on networks is presented, and Section 4
discusses optimization issues. Section 5 compares our
work with related work and Section 6 concludes the
paper.

2 FOUNDATIONS

This Section defines information sources and the query
evaluation problem. The algorithmic foundations of
this problem are given and an efficient query evaluation
method is provided. These results will be applied later,
upon studying networks of sources.

2

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

2.1 The Model

The basic notion of the model is that ofterminology:
a terminologyT is a non-empty set of terms. From a
terminology,queriescan be defined.

Definition 1 (Query): Thequery languageassociated
to a terminologyT, LT , is the language defined by the
following grammar, wheret is a term ofT :

q ::= d | q ∨ d

d ::= t | t ∧ d.

An instance ofq is called aquery,while an instance ofd
is called aconjunctive queryand adisjunctof q whenever
d occurs inq. �

Terms and conjunctive queries can be used for
defining taxonomies.

Definition 2 (Taxonomy): A taxonomy over a
terminologyT is a pair(T,�) where� is any set of
pairs(q, d) whereq is any query andd is a conjunctive
query. �

For example, ifT = {a1, a2, b1, b2, b3, c1} then a
taxonomy overT could be(T,�) where (using an infix
notation){(b1 ∧ b2) ∨ b3 � a1 ∧ a2, a1 ∧ a2 � c1}.

If (q, q′) ∈ �, we say thatq is subsumed byq′ and we
write q � q′.

Definition 3 (Interpretation): An interpretation for
a terminologyT is a pair (Obj , I), whereObj is a
finite, non-empty set of objects andI is a total function
assigning a possibly empty set of objects to each term in
T, i.e. I : T → P(Obj). �

Interpretations are used to define the semantics of the
query language:

Definition 4 (Query extension): Given an
interpretation I of a terminology T and a query
q ∈ LT , theextension of q in I,qI , is defined as follows:

1. (q ∨ d)I = qI ∪ dI

2. (d ∧ t)I = dI ∩ tI

3. tI = I(t). �

Since·I is an extension of the interpretation function
I, we will simplify notation and will writeI(q) in place
of qI . We can now define aninformation source(or
simplysource).

Definition 5 (Information source): An information
source S is a 4-tuple S = (TS ,�S,ObjS , IS),
where (TS ,�S) is a taxonomy and(Obj S , IS) is an
interpretation forTS. �

When no ambiguity will arise, we will omit the
subscript in the components of sources and equateI with
(Obj , I), for simplicity. Moreover, given a sourceS =
(T,�,Obj , I) and an objecto ∈ Obj , the index of o in
S,indS (o), is given by the terms in whose interpretation
o belongs,i.e.:

indS (o) = {t ∈ T | o ∈ I(t)}.

The interpretations that reflect the semantics of
subsumption are as customary calledmodels,defined
next.

Definition 6 (Models of a source): Given two
interpretationsI, I ′ of the same terminologyT,

1. I is a modelof the taxonomy(T,�) if q � q′

impliesI(q) ⊆ I(q′);

2. I is smaller thanI ′, I ≤ I ′, if I(t) ⊆ I ′(t) for each
termt ∈ T ;

3. I is amodelof a sourceS = (T,�,Obj , I ′) if it is
a model of(T,�) andI ′ ≤ I. �

Based on the notion of model, the answer to a query is
finally defined.

Definition 7 (Answer): Given a sourceS = (T,�,
Obj , I) and a queryq ∈ LT , the answer of q in S,
ans(q, S), is given byans(q, S) = {o ∈ Obj | o ∈
J(q) for all modelsJ of S}. �

Since we are exclusively interested in query
evaluation, we can restrict ourselves to simpler
notions of sources and queries, which are equivalent to
those defined so far from the answer point of view. To
begin with, we observe that a pair(q, q′) in a taxonomy
is interpreted (in Definition 6 point 1) as an implication
q → q′. Now, by a simple truth table argument, it can be
easily verified that the propositional formula:

(C1 ∨ . . . ∨ Cn)→ (t1 ∧ . . . ∧ tm)

where eachCi is any propositional formula, is logically
equivalent to the formula:

(C1 → t1) ∧ (C1 → t2) ∧ . . . ∧ (C1 → tm) ∧ . . .∧
(Cn → t1) ∧ (Cn → t2) ∧ . . . ∧ (Cn → tm),

in that the two formulae have the same models. Based
on this equivalence, thesimplification of a taxonomy
(T,�) is defined as the taxonomy(T,�s), where:

�s= {(C, t) | (C1 ∨ . . .∨Cn) � (t1 ∧ . . .∧ tm), C ∈
{C1, . . . , Cn}, t ∈ {t1, . . . , tm}}.

3

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

Correspondingly, the simplification of a sourceS =
(T,�,Obj , I) is defined to be the sourceSs = (T,�s,

Obj , I). It is not difficult to see that:

Proposition 1: J is a model of a sourceS if and only
if it is a model ofSs. �

The simplification of the taxonomy in the previous
example is given by:
{(b1 ∧ b2) �s a1, (b1 ∧ b2) �s a2, b3 �s a1,
b3 �s a2, b3 �s a2, a1 ∧ a2 �s c1}.

For simplicity, from now on� andS will stand for�s

andSs, respectively.
Finally, non-term queries can be replaced by term

queries by inserting appropriate relationships into the
taxonomy. Specifically:

Proposition 2: For all sourcesS = (T,�,Obj , I) and
non-term queriesq ∈ LT , let tq be any term not inT and
moreover

T q = T ∪ {tq}

�q = � ∪ {(t1 ∧ . . . ∧ tm, tq)| t1 ∧ . . . ∧

tm is a disjunct ofq}

Iq = I ∪ {(tq, ∅)}.

Then,ans(q, S) = ans(tq, S
q) whereSq = (T q,�q,

Obj , Iq). �

In practice, the terminologyT q includes one
additional termtq, which has an empty interpretation and
subsumes each query disjunctt1 ∧ . . . ∧ tm. The size of
Sq is clearly polynomial in the size ofS andq.

For example, assume that the queryq = (t11 ∧ . . . ∧
t1m1

) ∨ (t21 ∧ . . . ∧ t2m2
) is posed to a sourceS. If the

relation� of S is extended byt11 ∧ . . . ∧ t1m1
� tq and

t21 ∧ . . . ∧ t2m2
� tq, wheretq is a new term then the

answer ofq w.r.t. S is the same as the answer oftq in the
new source.

In light of the last Proposition, the problem of query
evaluation amounts to determineans(t, S) for given
term t and sourceS, while the corresponding decision
problem consists in checking whethero ∈ ans(t, S), for
a given objecto.

2.2 The Decision Problem

Given a sourceS = (T,�,Obj , I), o ∈ Obj , andt ∈ T ,
the decision problemo ∈ ans(t, S) has an equivalent
formulation in propositional datalog. We define the
propositional datalog programPS as follows:

PS = CS ∪ IS ∪QS

where

CS = {t′ ← t1, . . . , tm | (t1 ∧ . . . ∧ tm, t′) ∈�r}

IS = {u← | u ∈ indS (o)}

QS = {← t}

It is easy to see that:

Lemma 1: For all sourcesS = (T,�,Obj , I), o ∈
Obj andt ∈ T, o ∈ ans(t, S) iff PS is unsatisfiable.�

Based on Lemma 1, the decision problemo ∈
ans(t, S) is connected to directed B-hypergraphs, which
are introduced next. We will mainly use definitions and
results from [20].

A directed hypergraphis a pairH = (V , E), where
V = {v1, v2, . . . , vn} is the set of vertexes andE =
{E1, E2, . . . , Em} is the set of directed hyperedges,
whereEi = (τ(Ei), χ(Ei)) with τ(Ei), χ(Ei) ⊆ V
for 1 ≤ i ≤ m. τ(Ei) is said to be thetail of
Ei, while χ(Ei) is said to be thehead of Ei. A
directed B-hypergraph(or simplyB-graph) is a directed
hypergraph, where the head of each hyperedgeEi,

denoted ash(Ei), is a single vertex.
A taxonomy can naturally be represented as a B-graph

whose hyperedges represent one-to-one the subsumption
relationships of the transitive reduction of the taxonomy.
In particular, thetaxonomy B-graphof a taxonomy(T,
�) is the B-graphH = (T, E�), where

E� = {({t1, . . . , tm}, u) | (t1 ∧ . . . ∧ tm, u) ∈�r}.

Figure 1 left presents a taxonomy, whose B-graph is
shown in the same Figure right.

A pathPst of lengthq in a B-graphH = (V , E) is a
sequence of nodes and hyperedges

Pst = (s = v1, Ei1 , v2, Ei2 , . . . , Eiq , vq+1 = t),

where:s ∈ τ(Ei1), h(Eiq) = t andh(Eij−1
) = vj ∈

τ(Eij) for 2 ≤ j ≤ q. If Pst exists, t is said to be
connectedto s. If t ∈ τ(Ei1), Pst is said to be acycle; if
all hyperedges inPst are distinct,Pst is said to besimple.
A simple path iselementaryif all its vertexes are distinct.

A B-pathπst in a B-graphH = (V , E) is a minimal
(with respect to deletion of vertexes and hyperedges)
hypergraphHπ = (Vπ, Eπ), such that:

1. Eπ ⊆ E

2. {s, t} ⊆ Vπ

3. x ∈ Vπ andx 6= s imply thatx is connected tos in
Hπ by means of a cycle-free simple path.

Vertexy is said to beB-connectedto vertexx if a B-path
πxy exists inH.

4

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

c3c2

b2

c2c1

b1

˄

b3b1 ˄

α3α2

α1

b2b1 ˄b3

α1 α2 b2 c2

α3 b3 c3

b1 c1

Figure 1: A taxonomy and its B-graph

B-graphs and satisfiability of propositional Horn
clauses are strictly related. The B-graphassociated to
a set of Horn clauses has 3 types of directed hyperedges
to represent each clause:

• the clausep← q1 ∧ q2 ∧ . . . ∧ qs is represented by
the hyperedge({q1, q2, . . . , qs}, p);

• the clause← q1∧ q2∧ . . .∧ qs is represented by the
hyperedge({q1, q2, . . . , qs}, false);

• the clausep ← is represented by the hyperedge
({true}, p).

The following result is well-known:

Proposition 3 ([20]): A set of propositional Horn
clauses is satisfiable if and only if in the associated B-
graph,falseis not B-connected totrue. �

We now proceed to show the role played by B-
connection in query evaluation. For a sourceS = (T,�
,Obj , I) and an objecto ∈ Obj , the object decision
graph (simply theobject graph) is the B-graphHo =
(T, Eo), where

Eo = E� ∪
⋃
{({true}, u) | u ∈ indS (o)}.

Figure 2 presents the object graph for the taxonomy
shown in Figure 1 and an objecto such thatindS (o) =
{c1, c2, c3}.

We can now prove:

Proposition 4: For all sourcesS = (T,�,Obj , I),
termst ∈ T, and objectso ∈ Obj , o ∈ ans(t, S) iff t
is B-connected totrue in the object graphHo.

�

Proof of Proposition 4: From Lemma 1,o ∈ ans(t, S)
iff PS is unsatisfiable iff (by Proposition 3)false is
B-connected totrue in the associated B-graph. By
construction,Ho is the B-graph associated toPS , where
t plays the role offalse.

2.3 An Algorithm for Query Evaluation

A typical approach for query evaluation is resolution,
used also in peer-to-peer networks [3, 4, 2]. Here, we

propose a simpler method to perform query evaluation,
based on B-graphs. Our method relies on the following
result, which is just a re-phrasing of Proposition 4:

Corollary 1: For all sourcesS = (T,�,Obj , I),
o ∈ Obj and term queriest ∈ T, o ∈ ans(t, S)
if and only if either o ∈ I(t) or there exists a
hyperedge({u1, . . . , ur}, t) ∈ E� such thato ∈⋂
{ans(ui, S) | 1 ≤ i ≤ r}. �

This corollary simply “breaks down” Proposition 4
based on the distance betweent and true in the object
graphHo. If o ∈ I(t), then t ∈ indS (o), hence there
is a hyperedge (in fact, a simple arc) fromtrue to t

in Ho, which are 1 hyperedge distant from each other.
If o 6∈ I(t), then there are at least two hyperedges in
betweentrueandt. Let us assume thath is the one whose
head ist. Sincet is B-connected totrue, each termui

in the tail ofh is B-connected totrue. But this simply
means, again by Proposition 4, thato ∈ ans(ui, S) for
all the termsui, and so we have the forward direction of
the Corollary. The backward direction of the Corollary is
straightforward. Notice that, by point 3 in the definition
of B-path, t is connected to eachui by a cycle-free
simple path; this fact is used by the procedure QE in
order to correctly terminate in presence of loops in the
taxonomy B-graphH.

The procedure QE, presented in Figure 3, computes
ans(t, S) for a given term t (and an implicitly
given sourceS) by applying in a straightforward way
Corollary 1. To this end, QE must be invoked as
QE(t, {t}). The second input parameter of QE is the set
of terms on thepath from t to the currently considered
termx. This set is used to guarantee thatt is connected
to all terms considered in the recursion by a cycle-free
simple path. QE accumulates inR the result. The
correctness of QE can be established by just observing
that, for all objectso ∈ Obj , o is in the setR returned
by QE(t, {t}) if and only if o satisfies the two conditions
expressed by Corollary 1.

As an example, let us consider the sequence of
calls made by the procedure QE in evaluating the

5

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

α1 α2 b2 c2

α3 b3 c3

b1 c1

true

Figure 2: An object graph

QE(x : term ; A : set of terms);
1. R← I(x)
2. for each hyperedge〈{u1, . . . , ur}, x〉 inH do
3. if {u1, . . . , ur} ∩A = ∅ thenR← R ∪ (QE(u1, A ∪ {u1}) ∩ . . . ∩ QE(ur, A ∪ {ur}))
4. return (R)

Figure 3: The procedure QE

Table 1: Evaluation of QE(a2, {a2})

Call Result
QE(a2, {a2}) I(a2) ∪ QE(b3, {a2, b3}) ∪ (QE(b1, {a2, b1}) ∩ QE(b2, {a2, b2}))

QE(b3, {a2, b3}) I(b3)
QE(b1, {a2, b1}) I(b1) ∪ QE(c1, {a2, b1, c1}) ∪ QE(c2, {a2, b1, c2})
QE(b2, {a2, b2}) I(b2) ∪ (QE(c2, {a2, b2, c2}) ∩ QE(c3, {a2, b2, c3}))

QE(c1, {a2, b1, c1}) I(c1)
QE(c2, {a2, b1, c2}) I(c2) ⋆
QE(c2, {a2, b2, c2}) I(c2) ∪ (QE(b1, {a2, b2, c2, b1})∩ QE(b3, {a2, b2, c2, b3}))

QE(c3, {a2, b2, c3})) I(c3)
QE(b1, {a2, b2, c2, b1}) I(b1) ∪ QE(c1, {a2, b2, c2, b1, c1}) ⋆

QE(b3, {a2, b2, c2, b3})) I(b3)
QE(c1, {a2, b2, c2, b1, c1}) I(c1)

6

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

querya2 in the example source of Figure 1, as shown
in Table 1. The calls marked with a⋆ are those
in which the test in line 3 gives a negative result.
Upon evaluating QE(c2, {a2, b1, c2}) the procedure
realizes that the only incoming hyperedge inc2 is
〈{b1, b3}, c2〉, whose tail {b1, b3} has a non-empty
intersection with the current path{a2, b1, c2}; so the
hyperedge is ignored. In this case, the cycle(b1, c2, b1)
is detected and properly handled. Analogously,
upon evaluating QE(b1, {a2, b2, c2, b1}), the cycle
(c2, b1, c2) is detected and properly handled. Also notice
the difference between the calls QE(c2, {a2, b1, c2})
and QE(c2, {a2, b2, c2}). They both concernc2, but in
the former case,c2 is encountered upon descending
along the path(a2, b1, c2) whose next hyperedge is
〈{b1, b3}, c2〉; following that hyperedge, would lead the
computation back to the nodeb1, which has already been
met, thus the result of the call is justI(c2). In the latter
case,c2 is encountered upon descending along the path
(a2, b2, c2), thus the hyperedge leading tob1 and b3
must be followed, since none of the terms in its tail have
been touched upon so far.

From a complexity point of view, QE visits all terms
that lie on cycle-free simple paths ending at the query
termt in the taxonomy B-graphH.Now, it is not difficult
to see that these paths may be exponentially many in the
size of the taxonomy. As an illustration, let us consider
the taxonomy whose B-graph contains the hyperedges of
Table 2.

Let us assumet is the query term. It is easy to verify
that there are2n−1 cycle-free simple paths connecting
u1 to t, one for each sequence of the form

(u1 f1 x2 f2 . . . xn−1 fn−1 xn hn t)

wherefi can be eitherhi (in which casexi+1 is ui+1) or
gi (in which casexi+1 is vi+1) for 1 ≤ i ≤ n− 1.

On the other hand, for each query term, QE performs
set-theoretic operations on sets of objects, which initially
are interpretations of terms. Thus, we conclude that
QE has polynomial time complexity w.r.t. the size of
Obj .

3 NETWORKS OF I NFORMATION SOURCES

In this Section we introduce networks of information
sources. The model is first outlined, and then query
evaluation is considered.

3.1 The Model

In order to be a component of a networked information
system, a source is endowed with additional

subsumption relations, called articulations, which
relate the source terminology to the terminologies of
other sources of the same kind.

Definition 8 (Articulation): Given two terminologies
T andU, an articulation from T to U, �TU , is a non-
empty binary relation fromLU to T, such thatq �TU t

implies thatq is a conjunctive query. �

An articulation relationship is not syntactically
different from a subsumption relationship, except that its
head may be a term of a different terminology than the
one where the terms making up its tail come from.

Definition 9 (Articulated Source): An articulated
sourceS over k ≥ 0 disjoint terminologiesT1, ..., Tk,

is a 5-tupleS = (TS ,�S ,Obj , IS , RS), where:

• (TS ,�S ,Obj , IS) is a source;

• RS is a set of articulationsRS = {�TS ,T1
,

. . . ,�TS ,Tk
}. �

Articulations are used to connect an articulated source
to other articulated sources, so creating a networked
information system. An articulated sourceS with an
empty stored interpretation,i.e. IS(t) = ∅ for all
t ∈ TS , is called amediatorin the literature.

Definition 10 (Network): A network of articulated
sources,or simply anetwork, N is a non-empty set of
articulated sourcesN = {S1, . . . ,Sn}, where eachSi
is articulated over the terminologies of some of the other
sources inN and all terminologiesTS1

, . . . , TSn
of the

sources inN are disjoint. �

Notice that the domain of the interpretation of an
articulated source is independent from the source, thus
the same for any articulated source. This is not necessary
for our model to work, just reflects a typical situation
of networked resources such as URLs. Relaxing this
constrain would have no impact on the results reported
in the present study.

Since in a network: (a) there is no source acting at the
global level, (b) all sources store data, and (c) as we will
see, data are exchanged via direct communication, each
source can be seen as, and will in fact be called, apeer,
and the network as apeer-to-peerinformation system.
Articulations of the network peers will also be referred
asP2P mappings.

An intuitive way of interpreting a network is to view it
as a single source which is distributed along the nodes of
a network, each node dealing with a specific vocabulary.
The global source can be logically constructed by
removing the barriers which separate local sources, as
if (virtually) collecting all the network information in a
single repository. The notion ofnetwork sourcecaptures
this interpretation of a network.

7

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

Table 2: Example hyperedges

h1 : ({u1, v1}, u2) h2 : ({u2, v2}, u3) . . . hn−1 : ({un−1, vn−1}, un) hn : ({un, vn}, t)
g1 : ({u1, v1}, v2) g2 : ({u2, v2}, v3) . . . gn−1 : ({un−1, vn−1}, vn)

Definition 11 (Network source): Thenetwork source
SN of a network of articulated sourcesN =
{S1, . . . ,Sn}, is the source
SN = (TN ,⊑,Obj , IN), where:

• TN =
⋃n

i=1
TSi

;

• IN =
⋃n

i=1
ISi

• ⊑= (
⋃n

i=1
⊑Si

)∗

where⊑Si
is the total subsumptionof the sourceSi,

given by the union of the subsumption relation�Si
with

all articulations of the source, that is:

⊑Si
= �Si

∪
⋃

RSi

and A∗ denotes the transitive closure of the binary
relationA. A network queryis a query overTN . �

It is not difficult to see that⊑ is reflexive
and transitive, and every non-trivial subsumption
relationship in it relates a conjunctive query in anyone of
the terminologiesTS1

, . . . , TSn
to a single term. Thus,

SN is indeed a source. Such source emerges in a
bottom-up manner from the articulations of the peers.
This distinguishes peer-to-peer systems from federated
distributed databases.

A network queryq is a query in anyone of the query
languages supported by the network, that isq ∈ LTSi

for
somei ∈ [1, n]. As it will be evident, the method that
we will set up only requires minor modifications to be
able to evaluate also queries in the languageLTN

, that is
queries that mix terms from different terminologies. We
do not provide this facility because it does not seem to
make much sense in our vision.

The answer to a network queryq, or network answer,
is given byans(q, SN).

Figure 4 presents the taxonomy of a network source
SN , whereN consists of 3 peersN = {Pa, Pb, Pc}.
As it can be verified, this is the same taxonomy as the
one shown in Figure 1, except that now some of its
subsumption relationships are elements of articulations.

3.2 Network Query Evaluation

This Section presents a network query evaluation
procedure based on the method devised in the centralized
case. First, a functional model of each peer is introduced,
then the algorithms corresponding to the operations
on the interface of the peer are given. Correctness

and complexity of these algorithms are discussed in
Section 3.3, while Section 4 concludes by considering
optimization issues.

3.2.1 The Functional Model of a Peer

In order to illustrate our query evaluation procedure, we
now define a peer from a functional point of view. In this
respect, we see a peer as a software component uniquely
identified in the network by a peer ID. The interface of a
peer exposes just one method:

• QUERY, which takes as input a network queryq and
evaluates it, returning the set of objectsans(q, SN).

The user (whether human or application program) is
supposed to use this method for the evaluation of
network queries. We assume thatq is expressed in the
query language of the peer. As it will be argued in
due course, this assumption can be relaxed without any
substantial change to our framework.

In addition to QUERY, a peer has methods for sending
to or receiving messages from other peers. We do not
enter into the details of these methods: there are several
options, which do not make any difference from the point
of view of our model. Instead, we detail the types of
messages that can be exchanged between peers. These
can be of one of the following 2 types:

• ASK: by sending a message of this kind to a
peer P, the present peer asksP to evaluate a
term query onP ’s query language. The receiving
peerP processes ASK messages according to the
QE procedure (Figure 3), as we will see in detail
below. An ASK message has the following fields:

– PID: the id of the present peer, which is
sending the message;

– QID: the id of the query thatPID is sending
for evaluation;

– t: the query term ofQID;

– A: the set of already visited terms. These two
last parameters are those of the QE procedure.

• TELL: by sending a message of this kind to a peer
P, the present peer returns toP the result of the
evaluation of a term query which had previously
been ASK-ed by P. A TELL message has the
following fields:

8

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

α3α2

α1 b2b1 ˄ b1

b3b1 ˄

b2

c1

c2

c3c2 ˄

b3

Pα
Pb Pc

Figure 4: A network taxonomy

– QID: the ID of the query whose result is being
returned;

– RES: the set of objects resulting from the
evaluation ofQID.

We will denote the sending of a message of one of
these two kindsm to the peerP asP:m(field values).
By decoupling the request of evaluation from the return
of the result, we aim at minimizing the number of
sessions open at any time between peers, thus removing
a serious obstacle towards scalability. QUERY does
not follow this paradigm since it involves only a local
interaction.

Each peer processes the incoming messages
depending on their type and content. In order to
carry out this work, the peer keeps a(query) log, that
is a set of objects, each associated to a query in whose
evaluation the peer is currently involved. A log object
has the following attributes:

• PID: the id of the peer who sent the query (can be
the local peer itself);

• QID: the id of the query;

• t: the query term (we recall that we need to deal
only with term queries);

• n: the number of open calls inQID (see next
paragraph);

• QP: the query program representing the current
status of evaluation ofQID. A query program is a
set of sub-programs{SP1, . . . , SPk} where each
sub-programSP j is a set ofcalls. A call is a sub-
query ofQID, and can be:

– open, meaning that the sub-query is being
evaluated, in which case the call is the sub-
query id; or

– closed, meaning the sub-query has been
evaluated, in which case the call is the
resulting set of objects.

Since no two log objects can have the same query id, we
will represent a log object as a 5-tuple (PID,QID,t,n,QP).

QUERY(q : query);
1. t← MODIFY-TAXONOMY (q)
2. ID← NEW-QUERY-ID

3. self: ASK(self, ID, t, {t})
4. wait until ID is closedthen
5. (PID, QID, t, n, R)← DELETE(ID)
6. CLEANUP-TAXONOMY (t)
7. return (R)

Figure 5: The QUERY procedure

3.2.2 QUERY

Let us assume that the input queryq posed to a peerS,
is given by

q =
∨

Ci

where eachCi is a conjunctive query. As a first step,
QUERY reducesq to a term queryt by generating a new
term t not in TN and inserting a new hyperedge(Ci, t)
into the local taxonomy B-graph (i.e. that corresponding
to (TS ,⊑S)), for each conjunctive queryCi in q.

This work is carried out by the function MODIFY-
TAXONOMY, which returns the newly generated term
t. A new query id for t is subsequently obtained by
QUERY, and an ASK message is sent to the peer itself for
evaluatingt. As required by QE, the set of already visited
terms consists just oft itself. At this point QUERY hangs
on the log, until the log object associated to the queryt is
closed, that is the number of its open call is 0. Notice that
this object is created only after the ASK message sent on
line 3 is processed, but this creates no problem, as all
QUERY has to do in the meantime is wait. When the log
object is finally closed, QUERY retrieves it and deletes
it from the log, by using the function DELETE, which
returns the object itself. When the object is closed, its
query program, that is the value of the last field, equals
to ans(t, SN). This value is assigned to the variable
R. On line 6, the subsumption relationships inserted
by MODIFY-TAXONOMY are removed by CLEANUP-
TAXONOMY, andR is finally returned.

As an example, let us consider the network shown
in Figure 4, whose corresponding B-graph is shown in
Figure 6, and the query(a2∧a3) on peerPa.When given

9

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

as input to QUERY, this query is passed on to MODIFY-
TAXONOMY, which adds the hyperedge({a2, a3}, t) to
the taxonomy B-graph and returns the newly generated
termt. Let us assume thatq1 is the id of the new query.
QUERY then sends the message ASK(Pa, q1, t, {t})
to itself, and gets into the wait loop until the query is
evaluated.

3.2.3 ASK

For readability, we will describe ASK and TELL as if
they were methods whose parameters are the message
fields. ASK (Figure 7) uses the following variables:

• n : counts how many sub-queries the input query
QID generates;

• QP: is the initial query program ofQID;

• Q : is a queue holding the information to send the
ASK messages required to evaluateQID;

• C : is the query sub-program being currently
computed.

After initialization, ASK performs (line 2) the same test
as QE, looking for a hyperedgeh in the local B-graph
whose head is the given termt and whose tail is disjoint
formA. If no such hyperedge is found, thenn remains 0,
the test on line 10 fails, and the result of the evaluation
of the given term queryt is justI(t) (as QE establishes),
which ASK returns by sending a TELL message to the
invoking peerPID (line 15). If instead a hyperedgeh
is found, then the intersection of the evaluation of each
termui in its tail should be added to the result, according
to QE. In order to achieve the same behavior, ASK enters
a loop in which it processes each termui to the end of
constructing inC the query sub-program associated toh.

First, a new query idID is generated (line 5) to denote
the sub-query onui; the newly generated id is then added
toC. On line 7, the number of open calls is increased by
one, and on line 8 the required information to evaluate
the queryui is enqueued inQ. This information is:

• the id of the peerPh holding the terms in the tail
of the hyperedgeh; we assume this information is
stored with the hyperedge just for convenience, the
peer can also store it separately;

• theID of the sub-query;

• the query termui and

• the set of the visited termsA ∪ {ui}, as in QE.

Each sub-program so generated is added toQP, after
considering all relevant hyperedges (line 9). At this
point, if the number of open calls is positive, ASK uses

the function PERSIST in order to create the log object
representing the queryQID, and to persist it in the
log. Once the log object is successfully persisted,
ASK must launch the evaluation of the generated sub-
queries, which it does in the loop on lines 12-14. Until
Q is empty, it dequeues the information for constructing
an ASK message for each sub-query, and sends such
message to the peerPh. The value of the first message
field is the peer identity (self), as the invoking peer.

At this point, it can be easily verified that the
assumption that all terms in the tail of a hyperedge are
from the same terminology, namely that of peerPh, can
be relaxed without any impact on the query evaluation
procedure. In logical terms, this is the assumption
that the conjunctive queries on the left-hand side of
subsumption relationships are from the query language
of one peer. We have made this assumption because it fits
our vision of a network. But ASK can easily work also
with hyperedges whose tails have terms from different
terminologies: all that is required is to store the id of
the peer holding each term, rather than the id of the peer
holding the whole hyperedge.

Let us resume our running example. Upon processing
the message (Pa, q1, t, {t}), ASK finds that the
hyperedgeh = ({a2, a3}, t) passes the test on line
2, and enters the loop on the tail ofh. For term a2,
assuming the generated query id isq2, the record (Pa,

q2, a2, {t, a2}) is enqueued inQ, while for term a3,
(generated idq3) it is enqueued the record (Pa, q3, a3,
{t, a3}). As there are no more hyperedges andn = 2,
a new log object is created to represent the queryt. The
attributes of this object are:

– PID = Pa

– QID = q1

– t = t

– n = 2

– QP= {{q2, q3}}.

Now two ASK messages are send toPa :

1. (Pa, q2, a2, {t, a2}), and

2. (Pa, q3, a3, {t, a3}).

Let us see how the latter message is processed. Since
there are no incoming hyperedges into terma3, n

remains 0, and the processing of the message is
concluded by the sending of the message TELL(q3,
I(a3)) to Pa.

3.2.4 TELL

When a peer receives a TELL(QID,R) message (see
Figure 8), QID is an open call of some log object in

10

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

α2α1

α3

b2

b3
c3

c2

c1b1

Figure 6: A network taxonomy B-graph

ASK(PID,QID: ID ; t : term; A : set of terms);
1. n← 0; QP, Q← ∅
2. for each hyperedgeh = 〈{u1, ..., ur}, t〉 such that{u1, ..., ur} ∩ A = ∅ do
3. C ← ∅
4. for eachui do
5. ID ← NEW-QUERY-ID

6. C ← C ∪ {ID}
7. n← n+ 1
8. ENQUEUE(Q, (Ph, ID, ui, A ∪ {ui}))
9. QP← QP∪ {C}

10. if n > 0 then
11. PERSIST(PID,QID,t,n,QP)
12. until Q 6= ∅ do
13. (Ph,ID,u,B)← DEQUEUE(Q)
14. Ph : ASK(self , ID, u, B)
15. elsePID:TELL(QID,I(t))

Figure 7: The procedure to process ASK messages

11

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

the peer’s log, in the program of some term (sub)queryt

with id QID1. Then, as a first action, the peer retrieves
this object by using the DELETE1 function, which takes
as input QID, returns the object anddeletesit form
the log. Notice that there is exactly one object having
QID as open call, since ASK generates a new id for each
sub-query it identifies, as we have already seen. After
retrieving the log object, TELL uses CLOSE to modify
the query programQP in it, by closing the open callQID:
this means to replaceQID by R, obtaining a new query
programQP1. On line 3, the number of open calls of
the log object is tested: if it is 1, then the just closed
call was the last one to be open in queryQID1; in this
case, the result ofQID1 is computed inS by COMPUTE-
ANSWER. For a given program:

QP = {SP1, . . . , SPm}

where each sub-programSP j is given by a collection of
object sets:

SP j = {R
j
1, . . . , R

j
mj
}

COMPUTE-ANSWER returns:

S =

m⋃

j=1

mj⋂

i=1

R
j
i

S ∪ I(t) is exactly what the QE procedure computes.
If t is not in the terminology of the peer(t 6∈ Tself)
then it follows thatQID1 is the id of the original query
q. Thus,I(t) = ∅ andS = ans(t, SN). Therefore, the
object (PID, QID1, t, 0, S) is persisted in the log (line
5), indicating to QUERY(q) (Figure 5) that the evaluation
of the queryq has finished. Otherwise, the so obtained
result S ∪ I(t) is TELL-ed to the peerPID which,
according to the log object, was the one to ASK the
evaluation ofQID1. Notice that this may fire another
TELL message, in caseQID1 is the last open call of some
other query. If the test on line 3 fails, then there are still
open calls in the log object, which is therefore persisted
back by PERSISTon line 6, after decreasing the number
of open calls in it and replacing the query programQPby
the updated oneQP1.

TELL(QID: ID ; R : set of objects);
1. (PID, QID1, t, n, QP)← DELETE1(QID)
2. QP1← CLOSE(QP, QID, R)
3. if n = 1 then
4. S ← COMPUTE-ANSWER(QP1)
5. if t 6∈ Tself then PERSIST(PID, QID1, t, 0, S)
6. elsePID:TELL(QID1, S ∪ I(t))
7. elsePERSIST(PID, QID1, t, n− 1, QP1)

Figure 8: The procedure to process TELL messages

In our example, the message TELL(q3, I(a3)) is
received by peerPa. The function DELETE1 returns
the log object (Pa, q1, t, 2, {{q2, q3}}), the only one
that has the open callq3. CLOSE produces the new
query program{{q2, I(a3)}}, and sincen is not 1, the
following modified log object is persisted:

(Pa, q1, t,1,{{q2, I(a3)}}).

The example is completed in appendix.

3.3 Correctness and Complexity

As it has been argued, the combined action of the
procedures processing ASK and TELL messages is
equivalent to the behavior of the procedure QE. To see
why in more detail, it suffices to consider the following
facts:

1. An ASK message is generated for each recursive
call performed by QE and vice-versa, that is
whenever QE would perform a recursive call, an
ASK message is generated. This is guaranteed by
the fact that the test on line 2 of ASK is the same as
the test on line 3 of QE. Therefore, the number of
ASK messages is the same as the number of terms
that can be found on a B-path fromt.

2. For each ASK message, at most one log object is
generated and persisted.

3. For each ASK message, a TELL message results,
and no more. This can be observed by considering
that, for each processed ASK message, there can be
two cases:

(a) no hyperedge is found that passes the test
on line 2 of ASK: in this case, no
subsequent ASK message is generated, and a
TELL message is generated;

(b) at least one hyperedge passes the test: in this
case a number of sub-queries is generated
and registered in the query program of the
log object. Each such sub-query is evaluated
by issuing an ASK message with a larger
set of visited terms. Since the B-graph is
finite, eventually each sub-query will lead to a
term falling in the previous case (this is how
QE terminates). When all sub-queries of a
given term queryt are closed, the number
of open calls of t goes down to 0, and
TELL issues another TELL message ont. This
will propagate closure up, until all open calls
are closed.

12

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

4. Finally, the COMPUTE-ANSWER procedure
performs the same operation on the result of sub-
queries as QE does on the results of its recursive
calls.

As a consequence of these facts we have the
correctness of the network query evaluation procedure,
and also its efficiency. In fact, the total number of
messages generated is twice the number of terms visited
by QE, and the number of log objects is no larger than
that.

4 OPTIMIZATION ISSUES

So far, we have focused on correctness. In this Section
we discuss optimization. A strong point of our model is
that the adoption of caches could significantly speed up
the evaluation of queries, by reducing both the latency
time and the network throughput. This is because the set
of queries that a peer can send to its articulated peers is
bounded in size and can be pre-determined: it comprises
all “foreign” queries of the peer,i.e. queries that appear
as left-hand sides in the peer’s articulations.

The subsequent subsections present three caching
policies, namely:

• caching answers of local terms,

• caching answers of local terms and pushing answers
of articulation tails, and

• caching answers of articulation heads.

4.1 Caching Answers of Local Terms

According to this caching policy, each peerS caches
pairs of the form(t, ans(t, SN)), where t is a term
in the peer’s terminologyTS . If there are no memory
limitations for caches, then after a while each peer
will have cached its whole terminology, and query
evaluation reduces to locally calculating the extension of
the query by union-ing and intersecting the extensions
of the peer’s terms. In other words, any peer will be
able to evaluate network queries over its own taxonomy
without sending any message to the network1! This is of
course the idealistic case. In general, only some terms
(possibly none) will be cached in each peer. Under these
circumstances, when a peerS receives an ASK message
for a term queryt, the ASK procedure checks which
of the answers for the term (sub)queries needed for the
evaluation oft are in the cache, and issues ASK messages
only for evaluating the remaining terms.

The modified query evaluation algorithms for
supporting this caching policy are parts of the algorithms

1 Apart those required for re-evaluating queries when updates occur.

for the more general policy that is described in Section
4.2.

4.2 Caching Answers of Local Terms and
Pushing Answers of Articulation Tails

A complementary scenario, best suited for a P2P
system that offers recommendation services in push-
style manner, is to assume that each peerS knows also
the articulationst1∧. . .∧tr � u from other peersS ′ toS
(calledforeign articulations). In this case, if all the terms
t1, . . . , tr are cached inS, thenS can send toS ′ the pair
(t1 ∧ . . .∧ tr, ans(t1 ∧ . . .∧ tr, SN)) to be stored in the
cache ofS ′. This can be done because from Definition 4
it follows that

ans(t1 ∧ . . . ∧ tr, SN) =
⋂
{ans(ti, SN) | 1 ≤ i ≤ r}

The cache is exploited by the modified ASK procedure
(ASKc), shown in Figure 9. The modified with caching
TELL procedure (TELLc) is shown in Figure 10. The
modifications are indicated by bold line numbers and are
described in a semi-formal way, in order to abstract from
irrelevant details.

The cache of a peerS consists of two kinds of pairs:

• (t′, ans(t′, SN)) where t′ is a term in the peer’s
terminologyTS . Pairs of this kind are inserted into
the cache by the TELLc(QID, t′, R) procedure2,
when the peerS is TELL-ed the answerR for a term
queryt′, initiated by an ASK message of type

ASK(PID, QID, t′, {u, t′})

whereu is a new term created by QUERY(q) to
represent the original (complex) queryq, posed to
peerS. This means that the termt′ appears inq
and is not evaluated in the context of the evaluation
of a more general term. For example, this is the
case of the ASK messages presented at the end of
Section 3.2.3:

1. (Pa, q2, a2, {t, a2}), and

2. (Pa, q3, a3, {t, a3}).

In this way, based on the correctness of theQUERY

procedure (Section 3.3), it is guaranteed thatR =
ans(t′, SN), i.e. the received answerR is the full
answer fort′ and not a subset of it, reduced due to
cycles in the taxonomy(TN ,�N). Thus, the pair
(t′, R) can be safely cached.

2 Note that TELLc(QID, t′, R) takes an extra argumentt′, which is
the term query corresponding to query idQID.

13

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

ASKc(PID,QID: ID ; t : term; A : set of terms);
1. if t is cachedthen PID:TELLc(QID, t, ans(t, SN))
2. else if|A| = 2 then addt into TO-BE-CACHED log // t is a term of the original queryq
3. n← 0; QP, Q, S ← ∅
4. for each hyperedgeh = 〈{u1, ..., ur}, t〉 such that{u1, ..., ur} ∩ A = ∅ do
5. if Ph 6= self andu1 ∧ . . . ∧ ur is cachedthenC ← {ans(u1 ∧ . . . ∧ ur, SN)}
6. elseC ← ∅
7. for eachui do
8. if Ph = self andui is cachedthen
9. C ← C ∪ {ans(ui, SN)}

10. else
11. ID← NEW-QUERY-ID

12. C ← C ∪ {ID}
13. n← n+ 1
14. ENQUEUE(Q, (Ph, ID, ui, A ∪ {ui}))
15. QP← QP∪ {C}
16. if n > 0 then
17. PERSIST(PID,QID,t,n,QP)
18. until Q 6= ∅
19. (Ph,ID,u,B)← DEQUEUE(Q)
20. Ph:ASKc(self , ID, u,B)
21. else ifQP 6= ∅ then S ← COMPUTE-ANSWER(QP)
22. PID:TELLc(QID, t, S ∪ I(t))

Figure 9: The procedure to process ASK messages with cache

TELLc(QID: ID ; t′ : term; R : set of objects);
1. if t′ in TO-BE-CACHED log then // t′ is a term of the original queryq
2. deletet′ from TO-BE-CACHED log
3. CACHE(t′, R)
4. for eachforeign articulationt1 ∧ . . . ∧ tr � u from another peerS to self do
5. if t′ ∈ {t1, ..., tr} and allt1, ...,tr are cachedthen
6. forward toS the pair(t1 ∧ . . . ∧ tr, ans(t1 ∧ . . . ∧ tr, SN) for caching
7. (PID, QID1, t, n, QP)← DELETE1(QID)
8. QP1← CLOSE(QP, QID, R)
9. if n = 1 then

10. S ← COMPUTE-ANSWER(QP1)
11. if t 6∈ Tself then PERSIST(PID, QID1, t, 0, S)
12. elsePID:TELLc(QID1, t, S ∪ I(t))
13. elsePERSIST(PID, QID1, t, n− 1, QP1)

Figure 10: The procedure to process TELL messages with cache

14

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

• (t1∧. . .∧tr, ans(t1∧. . .∧tr, SN)) wheret1∧. . .∧
tr � u is an articulation fromS to S ′, i.e.u ∈ TS

andt1, . . . , tr ∈ TS′ . Each such pair is forwarded
to S by the TELLc procedure executed at the peer
S ′, upon realizing that all the terms involved in the
left-hand side of the articulation are stored in the
local (toS ′) cache. In particular, this check is made
immediately after a pair(t′, ans(t′, SN)) is added
in the cache ofS ′, wheret′ ∈ {t1, ..., tr} (see lines
3-6 of TELLc).

Below are the main differences of
ASKc(PID,QID, t, A) with respect to the cache-less
ASK:

• If the answer to the term queryt ASK-ed by peer
PID is in the cache, then the answer is immediately
TELL-ed to peerPID. Otherwise, if|A| = 2 then
t is added in theTO-BE-CACHED log (t is a term
of the original queryq). The TO-BE-CACHED log
is checked by TELLc(QID, t′, R). If t′ is found
in the TO-BE-CACHED log then(t′, R) is added to
the local cache through theCACHE(t′, R) command
(line 3 of TELLc).

• Before processing the tail of a hyperedgeh which
passes the test on line 4, a test is performed, to
ascertain whether the query corresponding to the
tail, given byu1 ∧ . . . ∧ ur, is in the cache (this
test is needed only ifPh 6= self , i.e.h corresponds
to an articulation hyperedge). If yes, the only action
taken is the insertion ofans(u1∧ . . .∧ur, SN) into
the query sub-programQP being built (line 15). If
the query is not in the cache, then for eachui, it
is checked if its answer is in the cache (this test
is needed only ifPh = self). If not, then the
execution proceeds normally.

• If all sub-queries are cached, then when all relevant
hyperedges have been processed (line 16),n is zero
but QP is not empty. In this case the test on line 21
is passed, and the result ofQID is computed inS as
if closingQP in a TELL. S is subsequently returned
along withI(t). If QP is empty, then no hyperedge
has been found andS = ∅. So, the result returned
to the user is simplyI(t).

We would like to note that our algorithms can further
be extended such that TELLc caches the answerS ∪ I(t)
for term sub-queriest before TELL-ing them to the
requesting peerPID (line 12 of TELLc), as long as it
is certain thatS ∪ I(t) = ans(t, SN). This is the case
if (i) for each termu of a peerS ′ encountered during
the evaluation oft (including t itself), all hyperedges
〈{u1, ..., ur}, u〉 of the taxonomy B-graph ofS ′ pass the
test of line 4 of ASKc, or (ii) u is cached. Thus, (i) no

evaluation path ofu is eliminated due to cycles in the
taxonomy(TN ,�N) or (ii) ans(u, SN) is immediately
retrieved from the cache.

For this reason PERSIST(PID,QID,t, n,QP) and
TELLc(QID,t′, R) should be extended with an extra
field flag that takes the valuesfull or partial.
A (query) log object (PID,QID,t, n,QP, f lag), where
flag =full, of a peerS indicates that (i) for allclosed
term sub-queries ofQP , full answers have been received
and (ii) all hyperedges〈{u1, ..., ur}, t〉 of the taxonomy
B-graph ofS have passed the test of line 4 of ASKc.
If this is not the case,flag =partial. A message
TELLc(QID, t′, R, f lag), where flag =full,
indicates thatR = ans(t′, SN), whereas a message
TELLc(QID, t′, R, f lag), where flag =partial,
indicates thatR ⊆ ans(t′, SN). Thus, based on the
flag information, the TELLc procedure executed at a
peer will always be able to know if the computed answer
S ∪ I(t) for a term sub-queryt requested by peerPID

is a full or partial answer. In the case of a full answer
and if t is the head of an articulation hyperedge then
(t, S ∪ I(t)) is cached. We want to note that the latter
condition is not a strong condition and is needed only
in order to reduce the cache size, while taking the most
advantage of caching.

The extended ASKc procedure (ASKext
c) and the

extended TELLc procedure (TELLext
c) are given in

Figures 11 and 12, respectively. The modifications are
indicated by bold line numbers. Note that TELLext

c calls
the procedure CACHE&FORWARD (Figure 13), when
a pair (t, ans(t, SN)) is going to be stored in the
cache. Additionally, TELLext

c uses the function
min(flag, f lag′) (lines 8, 11), which returns the
minimum of the flag valuesflag, flag′, based on the
orderingpartial ≤ full. This guarantees that the
flag value of the TELLext

c message in line 8 and the log
object in line 11 is correct.

4.3 Caching Answers of Articulation Heads

The previous algorithms will cache the most frequently
used terms, taking full advantage of caching with no
extra cost for computing cached answers. However,
caches may get filled very quickly. Below we investigate
the case that we cache only the heads of articulation
hyperedges, as the cached answer of these terms is the
most beneficial for speeding-up query answering. For
instance, in the example of Figure 6, we want to cache
only a2 on PeerPa, b1 andb2 on PeerPb, andc2 on Peer
Pc.

For this alternative caching case, a top algorithm can
be easily designed such that whenever a peer receives
an external queryq, it finds the local terms that are
heads of articulation hyperedges and are needed for the

15

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

ASKext
c (PID,QID: ID ; t : term; A : set of terms);

1. if t is cachedthen PID:TELLext
c (QID, t, ans(t, SN), full)

2. else if|A| = 2 then addt into TO-BE-CACHED log // t is a term of the original queryq
3. n← 0; QP, Q, S ← ∅; flag =full
4. for each hyperedgeh = 〈{u1, ..., ur}, t〉 do
5. if {u1, ..., ur} ∩ A = ∅ then
6. if Ph 6= self andu1 ∧ . . . ∧ ur is cachedthenC ← {ans(u1 ∧ . . . ∧ ur, SN)}
7. elseC ← ∅
8. for eachui do
9. if Ph = self andui is cachedthen

10. C ← C ∪ {ans(ui, SN)}
11. else
12. ID← NEW-QUERY-ID

13. C ← C ∪ {ID}
14. n← n+ 1
15. ENQUEUE(Q, (Ph, ID, ui, A ∪ {ui}))
16. QP← QP∪ {C}
17. elseflag =partial
18. if n > 0 then
19. PERSIST(PID, QID, t, n, QP, flag)
20. until Q 6= ∅
21. (Ph,ID,u,B)← DEQUEUE(Q)
22. Ph:ASKext

c (self , ID, u,B)
23. else ifQP 6= ∅ then S ← COMPUTE-ANSWER(QP)
24. PID:TELLext

c (QID, t, S ∪ I(t), flag)

Figure 11: The extended procedure to process ASK messages with cache

TELLext
c (QID: ID ; t′ : term; R : set of objects; flag′ : {full, partial});

1. if t′ in TO-BE-CACHED log then // t′ is a term of the original queryq
2. CACHE&FORWARD(t′, R)
3. (PID, QID1, t, n, QP, flag)← DELETE1(QID)
4. QP1← CLOSE(QP, QID, R)
5. if n = 1 then
6. S ← COMPUTE-ANSWER(QP1)
7. if t 6∈ Tself then PERSIST(PID, QID1, t, 0,S, full)
8. elsePID:TELLext

c (QID1, t, S ∪ I(t), min(flag, flag′))
9. if min(flag, flag′)=full andt is the head of an articulation hyperedgethen

10. CACHE&FORWARD(t,S ∪ I(t))
11. elsePERSIST(PID, QID1, t, n− 1, QP1, min(flag, flag′))

Figure 12: The extended procedure to process TELL messages with cache

CACHE&FORWARD(t : term; R : set of objects);
// It stores the pair(t, R) in the local cache and checks if related (foreign articulation)

query-answer pairs can be forwarded to other peers for caching
1. CACHE(t,R)
2. if t in TO-BE-CACHED log then deletet from TO-BE-CACHED

3. for each foreign articulationt1 ∧ . . . ∧ tr � u from another peerS to self do
4. if t ∈ {t1, ..., tr} and allt1, ...,tr are cachedthen
5. forward toS the pair(t1 ∧ . . . ∧ tr, ans(t1 ∧ . . . ∧ tr, SN) for caching

Figure 13: The procedure CACHE &F ORWARD

16

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

ASKalt
c (PID,QID: ID ; t : term; A : set of terms);

1. if t is cachedthen PID:TELL(QID, t, ans(t, SN))
2. elsen← 0; QP, Q, S ← ∅
3. for each hyperedgeh = 〈{u1, ..., ur}, t〉 such that{u1, ..., ur} ∩ A = ∅ do
4. C ← ∅
5. for eachui do
6. if ui is cachedthen
7. C ← C ∪ {ans(ui, SN)}
8. else
9. ID← NEW-QUERY-ID

10. C ← C ∪ {ID}
11. n← n+ 1
12. ENQUEUE(Q, (Ph, ID, ui, A ∪ {ui}))
13. QP← QP∪ {C}
14. if n > 0 then
15. PERSIST(PID,QID,t,n,QP)
16. until Q 6= ∅
17. (Ph,ID,u,B)← DEQUEUE(Q)
18. Ph:ASKalt

c (self , ID , u,B)
19. else ifQP 6= ∅ then S ← COMPUTE-ANSWER(QP)
20. PID:TELL(QID, S ∪ I(t))

Figure 14: An alternative procedure to process ASK messages with cache

evaluation of the query. Then, for each such termt, if t
is not cached, it calls the QUERY(t) procedure (Figure
5) and it cachest along with the received answerR,
as it is certain thatR = ans(t, SN). This will fill the
needed caches. The answer of the original query is then
computed locally. Note that QUERY(t), in this case,
should call ASKalt

c (Figure 14) which is a simplified
version of ASKc that issues ASKalt

c and TELL messages.
Though this approach has the extra cost of requiring full
answers for terms that do not belong to the original query
q, it is the most beneficial with respect to the trade-off
cache size versus speed.

Of course, another alternative is if the above
mentioned top algorithm asks for the answers of foreign
terms t (through QUERY(t)) that appear in the body
of articulation hyperedges, instead of asking for the
answers of (local) termst that are heads of articulation
hyperedges.

4.4 Synopsis

Above we described three caching policies. Overall,
four query evaluation modes can be supported by our
model. The three caching policies result in faster query
evaluation, but possibly not very updated results, since
taxonomies, interpretations and articulations change.
The mode without cache results in fresher results but
with a slower query evaluation.

In case there are memory limitations for caches,
various update policies could be employed,e.g. keep
in cache only the answers of the most frequently used

terms, or keep in cache only some parts of the answers,
for instance “popular” objects according to some
external information collected for this purpose (object-
ranking techniques similar to page-ranking techniques
for the Web could be employed to this end).

5 RELATED WORK

In this paper we studied the problem of evaluating
content-based retrieval queries in an entirely pure P2P
architecture (without any form of structuring), where
each peer can have its own conceptual model expressed
as a taxonomy.

Note that the peers of our model are quite autonomous
in the sense that they do not have to share or publish their
stored objects, taxonomies or mappings with the rest of
the peers (neither to one central server, nor to the on-
line peers). To participate in the network, a peer just has
to answer the incoming queries by using its local base,
and to propagate queries to those peers that according
to its “knowledge” (i.e. taxonomy + articulations) may
contribute to the evaluation of the query. However both
of the above tasks are optional and at the “will” of the
peer.

There have been several works on P2P systems
endowed with logic-based models of the peers’
information bases and of the mappings relating them
(calledP2P mappings). These works can be classified in
two broad categories: (1) those assuming propositional
or Horn clauses as representation language or as a
computational framework, and (2) those based on more

17

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

powerful formalisms. With respect to the former
category (e.g., see [3, 4, 2]), our work makes an
important contribution, by providing a much simpler
algorithm for performing query answering than those
based on resolution. Indeed, we do rely on the theory
of propositional Horn clauses, but only for proving
the correctness of our algorithm. For implementing
query evaluation, we devise an algorithm that avoids
the (unnecessary) algorithmic complications that plague
the methods based on resolution. As an example,
after appropriate transformations our framework can be
seen as a special case of that in [4]. Then, query
evaluation can be performed by first computing the prime
implicates of the negation of each term in the query,
using the resolution-based algorithms presented in [4].
As the complexity of this problem is exponential w.r.t
the size of the taxonomy and polynomial w.r.t. the
size of Obj , there is no computational gain in using
this approach. Instead, there is an algorithmic loss,
since the method is much more complicated than ours.
Additionally, for each (sub)query posed to a peer, its
prime implicates are returned back to the peer one by one
(though asynchronous messaging). In our case its answer
is returned back to the peer that posed the query (also
through asynchronous messaging) in single message.

As for the second category above, works in this area
have focused on providing highly expressive knowledge
representation languages in order to capture at once the
widest range of applications. Notably, [10] proposes
a model allowing, among other things, for existential
quantification both in the bodies and in the heads of
the mapping rules. Inevitably, such languages pose
computational problems: deciding membership of a
tuple in the answer of a query is undecidable in the
framework proposed by [10], while disjunction in the
rules’ heads makes the same problem coNP-hard already
for datalog with unary predicate (i.e. terms) [27]. These
problems are circumvented by changing the semantics
of a P2P network, in particular by adopting an epistemic
reading of mappings. As a result, the inferential relation
of the resulting logic is weakened up to the point of
making the above mentioned decision problem solvable
in polynomial time.

Below, we review in more detail several works dealing
with the problem of answering (union of) conjunctive
queries posed to a peer in logic-based P2P frameworks.

In [8], a query answering algorithm for simple P2P
systems is presented where each peerS is associated
with a local database, an (exported) peer schema, and
a set of local mapping rules from the schema of the
local database to the peer schema. P2P mapping
rules are of the formcq1 cq2, where cq1, cq2
are conjunctive queries of the same arityn ≥ 1
(possibly involving existential variables), expressed over

the union of the schemas of the peers, and over the
schema of a single peer, respectively3. Note that
this representation framework partially subsumes our
network source framework, since in our casecq1, cq2
are of arity 1,cq1 is a conjunctive query of the form
u1(x)∧ ...∧ur(x) over the terminology of a single peer4

andcq2 is a single atom queryt(x) over the terminology
of the peer that the mapping (articulation) belongs to.
However, simple P2P systems cannot express the local
to a peerS taxonomy�S of our framework. Query
answering in simple P2P systems according to the first-
order logic (FOL) semantics is in general undecidable.
Therefore, the authors adopt a new semantics based
on epistemic logic in order to get decidability for
query answering. Notably, the FOL semantics and
epistemic logic semantics for our framework coincide.
In particular, in [8], a centralized bottom-up algorithm is
presented which essentially constructs a finite database
RDB which constitutes a “representative” of all the
epistemic models of the P2P system. The answers
to a conjunctive queryq are the answers ofq w.r.t.
RDB. However, though this algorithm has polynomial
time complexity, it is centralized. In contrast, we
present distributed algorithms based on asynchronous
messaging.

The work in [10] extends the work in [8] where
the same framework and epistemic semantics are
considered. A top-down distributed query answering
algorithm is presented which is based on synchronous
messaging. Essentially, the algorithm returns to the
peer where the (sub)query is posed, a datalog program
containing the full extensions of the relevant to the query,
peer source predicates. The returned to the user datalog
program is used for providing the answers to the user
query. Though the algorithm for a user query and a term
subquery visits the corresponding peer just once, it is
based on synchronous messaging with all the subsequent
delays. Note that our algorithm is based on asynchronous
messaging.

The framework in [30], extends our framework by
considering (i) n-ary (instead of unary) predicates
(i.e. P2P mappings are general datalog rules) and (ii)
a set of domain relations (also suggested in [31, 29]),
mapping the objects of one peer to the objects of
another peer. A distributed query answering algorithm
is presented based on synchronous messaging. However,
the algorithm will perform poorly in our restricted
framework5, since when a peer receives a (sub)query, it

3 Note that P2P mapping rules of this kind can accommodate bothGAV
and LAV-style mappings, and are referred in the literature as GLAV
mappings.

4 Recall that this restriction can be easily relaxed.
5 In our framework, domain relations correspond to the identity

relation.

18

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

iterates through the relevant P2P mappings and for each
one of them, sends a (sub)query to the appropriate peer
(waiting for its answer), until fixpoint is reached. In our
case, when a peer receives a (sub)query, each relevant
P2P mapping is considered just once and no iteration
until fixpoint is required. Additionally, asynchronous
messaging is supported.

A P2P framework similar to [8] is presented in [24],
where query answering according to FOL semantics
is investigated. Since in general, query answering is
undecidable, the authors present a centralized algorithm
(employed in the Piazza system [22]), which however
is complete (the algorithm is always sound), only for
the case that polynomial time complexity in query
answering can be achieved. This includes the condition
that inclusion P2P mappings are acyclic. However,
such a condition severely restricts the modularity of
the system. Note that our algorithm is sound and
complete even in the case that there are cycles in the term
dependency path and it always terminates. Thus, our
framework allows placing articulations between peers
without further checks. This is quite important, because
the actual interconnections are not under the control of
any actor in the system.

In [19, 18], the authors consider a framework where
each peer is associated with a relational database, and
P2P mapping rules contain conjunctive queries in both
the head and the body of the rule (possibly with
existential variables), each expressed over the alphabet
of a single peer. Again the semantics of the system is
defined based on epistemic logic [17]. In these papers, a
peer database update algorithm is provided allowing for
subsequent peer queries to be answered locally without
fetching data from other nodes at query time. The
algorithm (which is based on asynchronous messaging)
starts at the peer which sends queries to all neighbor
peers according to the involved mapping rules. When
a peer receives a query, the query is processed locally
by the peer itself using its own data. This first answer
is immediately replied back to the node which issued
the query and sub-queries are propagated similarly to
all neighbor peers. When a peer receives an answer,
(i) it stores the answer locally, (ii) it materializes the
view represented in the head on the involved mapping
rule, and (ii) it propagates the result to the peer that
issued the (sub)query. Answer propagation stops when
no new answer tuples are coming to the peer through any
dependency path, that is until fixpoint is reached. In our
case, the database update problem for a peerS amounts
to invokingS ′ : QUERY(q) for each articulationq � t

fromS to another peerS ′ and storing the answer locally
to S. Note that our query answering algorithm is also
based on asynchronous messaging. However, since it
considers a limited framework, it is much simpler and

no computation until fixpoint is required. In particular,
for each term (sub)query issued to a peer through ASK,
only one answer is returned through TELL.

The authors in [29] introduce a model of a peer
database management system (PDMS) which uses a
mapping that combines schema-level and data-level
mappings. They call this new type of mappingbi-
level mapping. The authors verbally describe a query
evaluation procedure for the PDMS that uses the bi-
level mappings but not specific algorithms are provided.
Additionally, the presence of cycles is not addressed. In
our case, we consider P2P taxonomy-based sources and
distributed algorithms are provided which work even in
the presence of cycles.

In [9], extending [10], an epistemic semantics
has been proposed in order to deal with possible
inconsistencies in P2P Data Inference Systems
formalized in a first order multi-modal language.
The authors consider the case of local inconsistency, as
well as global inconsistency. Mappings are formalized
in such a way that they cannot be used to propagate
information from some locally inconsistent theory.
Moreover mappings can only be used to propagate
information to a peer, as far as they do not contradict
either local information or other non-local information
that may be deduced on that peer. The authors
present distributed algorithms, based on synchronous
messaging, which extend these of [10] in such a way
that they can handle conflicts. Comments similar to
these that compare our algorithm with [10] apply here.

The authors in [7] address the problem of P2P query
answering over distributed propositional information
sources that may be mutually inconsistent. They assume
the existence of a priority ordering over the peers to
discriminate between peers with conflicting information.
This ordering may reflect an individual’s level of trust in
an information source. They provide for their framework
a distributed entailment relation related to argumentation
frameworks. Decentralized algorithms for computing
answers YES, NO, UNKNOWN to arbitrary CNF
queries according to distributed entailment are presented.
The algorithms, which are based on the algorithms of [4]
are very complicated and dedicated to the inconsistencies
that may arise. In our case, we proposed much more
simpler algorithms for P2P taxonomy-based information
sources, where the answer to a query is a set of objects.

The work in [11] investigates the data exchange
problem among distributed consistent P2P deductive
databases with integrity constraints and uses dynamic
preferences to drive the integration process in the case
of conflicting information. The interaction among peer
deductive databases has been modeled by importing, by
means of mapping rules, maximal sets of atoms not
violating integrity constraints, that is maximal sets of

19

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

atoms that allow the peer to enrich its knowledge while
preventing inconsistencies. The proposed semantics,
calledmaximal weak model semantics, can be computed
by means of a prioritized logic program. However, no
distributed algorithms are provided.

The authors in [12] propose a logic-based framework
for modeling the interaction among possibly inconsistent
P2P deductive databases. Data are exchanged by means
of mapping rules. Under this semantics, calledminimal
weak model semantics, each peer just imports the
minimal information allowing to restore consistency. A
prioritized logic program is defined which computes the
minimal weak model semantics. However, no distributed
algorithms are provided. In [14], the same framework
and semantics are considered but these are computed
through a centralized disjunctive logic programs.

The work in [13], extends the works in [11, 12] by
considering two types of of mapping rules. One that
imports a maximal set of atoms as long as the peer
remains consistent and the other that imports a minimal
set of atoms as long as they imply the satisfaction of
some peer integrity constraints. The semantics, called
preferred weak model semantics, are computed through
a centralized prioritized logic program with two levels
of priorities. As in [11, 12], no distributed algorithms
are provided.

In [6], the authors develop a P2P distributed
algorithm for query evaluation in a multi-context system
framework that is based on propositional defeasible
logic. P2P mappings are defeasible rules and each peer
holds strict rules, defeasible rules, and a total preference
ordering of peers for resolving conflicts when conflicting
information is imported. Each query is a literall issued
to some peer and the answer is thatl is a provably (not)
logical conclusion of the system or this remain open. In
our case, we proposed much more simpler algorithms
for P2P taxonomy-based information sources, where the
answer to a query is a set of objects.

In [16], the authors present P2P algorithms for model
building in heterogeneous non-monotonic multi-context
systems where P2P mappings are non-monotonic rules.
In our case, we are not interesting in model building but
in query answering.

With respect to [9, 7, 11, 12, 14, 13, 6], we can say that
in our framework no conflicts arise. Additionally, note
that in all works mentioned in the related work section,
no optimizations based on caching are considered.

6 CONCLUSIONS

This study presents a model of a P2P network consisting
of sources based on taxonomies. A taxonomy states
subsumption relationships between negation-free DNF

formulas on terms and negation-free conjunctions of
terms. The language for querying such sources offers
Boolean combinations of terms, in which negation
can be efficiently handled by adopting a closed-world
reading of the information. An efficient, hypergraph-
based query evaluation method is presented for such
sources, resting on results coming from the theory of
propositional clauses. It is also shown that extending the
expressive power of the taxonomy language by adding
negation or full disjunction, leads to the intractability of
the decision problem.

A model of a P2P network, having sources as nodes,
is subsequently presented. The essential feature of
the model is the possibility of relating the assumed
disjoint peer terminologies by means of subsumption
relationships of the same type as those in the taxonomies
of the sources. The resulting system subscribes to the
universally accepted notion of P2P information system,
recently postulated also in the context of the so-called
emergent semantics [1].

An efficient query evaluation procedure for queries
stated against such a network is presented, and proved
correct. The procedure is a distributed version of
the centralized procedure, based on an asynchronous,
message-based interaction amongst the peers aimed at
favoring scalability. Some optimization techniques are
also discussed, namely one based on caching, for which
the algorithms for message processing are given.

Finally, the work is related to the most relevant papers
in the area of P2P systems.

It is true that our P2P caching algorithms, as they have
been described, work only for static datasets. Dynamic
datasets can be handled by setting an expiration time
for the cached terms. In particular, terms (along their
answer) are removed from the cache when the time
stored in the cache exceeds the set expiration time.
Details will be given in future work. Future work
also concerns implementation and evaluation of our
framework.

REFERENCES

[1] K. Aberer, T. Catarci, P. Cudré-Mauroux, T. S.
Dillon, S. Grimm, M. Hacid, A. Illarramendi,
M. Jarrar, V. Kashyap, M. Mecella, E. Mena, E. J.
Neuhold, A. M. Ouksel, T. Risse, M. Scannapieco,
F. Saltor, L. D. Santis, S. Spaccapietra, S. Staab,
R. Studer, and O. D. Troyer, “Emergent Semantics
Systems,” in 1st Intern. IFIP Conference on
Semantics of a Networked World (ICSNW-2004),
2004, pp. 14–43.

[2] P. Adjiman, “Peer-to-peer reasoning in
propositional logic: algorithms, scalability, study

20

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

and applications,” Ph.D. dissertation, University of
Paris South, 2006.

[3] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C.
Rousset, and L. Simon, “Distributed reasoning in a
peer-to-peer setting,” inProceedings of ECAI 2004,
the European Conference on Artificial Intelligence,
R. L. de Mntaras and L. Saitta, Eds., Valencia,
Spain, 2004, pp. 945–946, short paper.

[4] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C.
Rousset, and L. Simon, “Distributed reasoning in
a peer-to-peer setting: Application to the semantic
web,” Journal of Artificial Intelligence Research,
vol. 25, pp. 269–314, 2006.

[5] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu,
“Data Management for Peer-to-Peer Computing:
A Vision,” in Fifth International Workshop on
the Web and Databases (WebDB-2002), Madison,
Wisconsin, June 2002.

[6] A. Bikakis, G. Antoniou, and P. Hassapis,
“Strategies for contextual reasoning with
conflicts in ambient intelligence,”Knowledge
and Information Systems (KAIS), vol. 27, no. 1, pp.
45–84, 2011.

[7] A. Binas and S. A. McIlraith, “Peer-to-Peer
Query Answering with Inconsistent Knowledge,”
in Eleventh International Conference on the
Principles of Knowledge Representation and
Reasoning (KR-2008), 2008, pp. 329–339.

[8] D. Calvanese, E. Damaggio, G. De Giacomo,
M. Lenzerini, and R. Rosati, “Semantic Data
Integration in P2P Systems,” inFirst International
Workshop on Databases, Information Systems and
Peer-to-Peer Computing (DBISP2P-2003), 2003,
pp. 79–90.

[9] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati, “Inconsistency
tolerance in P2P data integration: An epistemic
logic approach,”Information Systems, vol. 33, no.
4-5, pp. 360–384, 2008.

[10] D. Calvanese, G. D. Giacomo, M. Lenzerini,
and R. Rosati, “Logical foundations of peer-to-
peer data integration,” in23rd ACM symposium
on Principles of database systems (PODS-2004).
New York, NY, USA: ACM Press, 2004, pp. 241–
251.

[11] L. Caroprese and E. Zumpano, “Handling
Preferences in P2P Systems,” in7th International
Symposium on Foundations of Information and
Knowledge Systems (FoIKS-2012), 2012, pp.
91–106.

[12] L. Caroprese and E. Zumpano, “Restoring
Consistency in P2P Deductive Databases,”
in Scalable Uncertainty Management - 6th
International Conference on Scalable Uncertainty
Management (SUM-2012), 2012, pp. 168–179.

[13] L. Caroprese and E. Zumpano, “A Logic
Based Approach for Managing Incompleteness
and Inconsistencies in P2P Deductive Databases,”
in 19th International Symposium on Database
Engineering & Applications, 2015, pp. 168–173.

[14] L. Caroprese and E. Zumpano, “A Logic
Based Approach for Restoring Consistency in
P2P Deductive Databases,” in26th International
Conference on Database and Expert Systems
Applications (DEXA-2015), 2015, pp. 3–12.

[15] R. Cyganiak, D. Wood, and M. Lanthaler,
“RDF 1.1 Concepts and Abstract Syntax,” W3C
Recommendation, 25 February 2014, available at
https://www.w3.org/TR/rdf11-concepts/.

[16] M. Dao-Tran, T. Eiter, M. Fink, and
T. Krennwallner, “Distributed Evaluation of
Nonmonotonic Multi-context Systems,”Journal of
Artificial Intelligence Research (JAIR), vol. 52, pp.
543–600, 2015.

[17] E. Franconi, G. M. Kuper, A. Lopatenko, and
L. Serafini, “A Robust Logical and Computational
Characterisation of Peer-to-Peer Database
Systems,” in First International Workshop on
Databases, Information Systems, and Peer-to-Peer
Computing (DBISP2P-2003), 2003, pp. 64–76.

[18] E. Franconi, G. M. Kuper, A. Lopatenko, and
I. Zaihrayeu, “A Distributed Algorithm for Robust
Data Sharing and Updates in P2P Database
Networks,” inEDBT’04 Intern. Workshop on Peer-
to-Peer Computing and Databases (P2P&DB-
2004), 2004, pp. 446–455.

[19] E. Franconi, G. M. Kuper, A. Lopatenko, and
I. Zaihrayeu, “Queries and Updates in the
coDB Peer to Peer Database System,” in30th
International Conference on Very Large Data
Bases (VLDB-2004), 2004, pp. 1277–1280.

[20] G. Gallo, G. Longo, and S. Pallottino, “Directed
Hypergraphs and Applications,”Discrete Applied
Mathematics, vol. 42, no. 2, pp. 177–201, 1993.

[21] B. Ganter and R. Wille,“Formal Concept Analysis:
Mathematical Foundations”. Springer-Verlag,
Heidelberg, 1999.

[22] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork,
D. Suciu, and I. Tatarinov, “The Piazza Peer
Data Management System,”IEEE Transactions on

21

https://www.w3.org/TR/rdf11-concepts/

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

Knowledge and Data Engineering, vol. 16, no. 7,
pp. 787–798, 2004.

[23] A. Halevy, Z. Ives, P. Mork, and I. Tatarinov,
“Piazza: Data Management Infrastructure for
Semantic Web Applications,” in12th International
Conference on World Wide Web (WWW-2003), May
2003, pp. 556 – 567.

[24] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov,
“Schema Mediation in Peer Data Management
Systems,” in 19th International Conference on
Data Engineering (ICDE-2003), March 2003, pp.
505–518.

[25] P. Hayes and P. F. Patel-Schneider, “RDF 1.1
Semantics,” W3C Recommendation, 25 February
2014, available at http://www.w3.org/TR/2014/
REC-rdf11-mt-20140225/.

[26] T. Heath and C. Bizer,Linked Data: Evolving
the Web into a Global Data Space (1st edition).
Morgan & Claypool, 2011.

[27] C. Meghini and Y. Tzitzikas, “Querying Articulated
Sources,” in3rd Intern. Conference on Ontologies,
Databases and Applications of Semantics for
Large Scale Information Systems (ODBASE-2004),
Larnaca, Cyprus, October 2004, pp. 945–962.

[28] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek,
A. Naeve, M. Nilsson, M. Palmer, and T. Risch,
“EDUTELLA: A P2P networking infrastructure
based on RDF,” in11th International Conference
on World Wide Web (WWW-2002), 2002, pp. 604 –
615.

[29] M. A. Rahman, M. Masud, I. Kiringa, and A. El-
Saddik, “Bi-Level Mapping: Combining Schema
and Data Level Heterogeneity in Peer Data Sharing
Systems,” in3rd Alberto Mendelzon International
Workshop on Foundations of Data Management,
2009.

[30] L. Serafini and C. Ghidini, “Using Wrapper Agents
to Answer Queries in Distributed Information
Systems,” in Procs. of the First International
Conference on Advances in Information Systems
(ADVIS-2000). Springer-Verlag, 2000, pp. 331–
340.

[31] L. Serafini, F. Giunchiglia, J. Mylopoulos, and P. A.
Bernstein, “Local Relational Model: A Logical
Formalization of Database Coordination,” inProcs.
of the 4th International and Interdisciplinary
Conference on Modeling and Using Context
(CONTEXT-2003), 2003, pp. 286–299.

[32] Y. Tzitzikas and C. Meghini, “Ostensive Automatic
Schema Mapping for Taxonomy-based Peer-to-
Peer Systems,” inSeventh International Workshop

on Cooperative Information Agents (CIA-2003),
Helsinki, Finland, August 2003, pp. 78–92, (Best
Paper Award).

[33] Y. Tzitzikas and C. Meghini, “Query Evaluation
in Peer-to-Peer Networks of Taxonomy-based
Sources,” in 19th Int. Conf. on Cooperative
Information Systems (CoopIS-2003), Catania,
Sicily, Italy, November 2003, pp. 263–281.

[34] Y. Tzitzikas, C. Meghini, and N. Spyratos,
“Taxonomy-based Conceptual Modeling for
Peer-to-Peer Networks,” in22th Int. Conf. on
Conceptual Modeling (ER-2003), October 2003,
pp. 446–460.

APPENDICES: COMPLETION OF THE
EXAMPLE

We resume the example from the processing of the
messagePa:TELL(q3, I(a3)).

• Pa:TELL(q3, I(a3))

TELL finds the object in the log and updates it. The
old log onPa was:

Pa log
(Pa, q1, t, 2, {{q2, q3}})

The new log is:

Pa log
(Pa, q1, t, 1, {{q2, I(a3)}})

• Pa:ASK(Pa, q2, a2, {t, a2})

Since there are two incoming hyperedges ina2,
both inPb, ASK enqueues 3 ASK messages toPb,

one for each involved term:

– Pb:ASK(Pa, q4, b3, {t, a2, b3})

– Pb:ASK(Pa, q5, b1, {t, a2, b1})

– Pb:ASK(Pa, q6, b2, {t, a2, b2})

It then persists the corresponding log object. The
new log is:

Pa log
(Pa, q1, t, 1, {{q2, I(a3)}})
(Pa, q2, a2, 3, {{q4}, {q5, q6}})

and issues the 3 enqueued messages.

• Pb:ASK(Pa, q4, b3, {t, a2, b3})

Since there are no incoming hyperedges inb3, the
messagePa:TELL(q4, I(b3)) is produced.

22

http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

• Pa:TELL(q4, I(b3))

TELL finds the object in the log and updates it. The
updated log is:

Pa

(Pa, q1, t, 1, {{q2, I(a3)}})
(Pa, q2, a2, 2, {{I(b3)}, {q5, q6}})

• Pb:ASK(Pa, q5, b1, {t, a2, b1})

Since there are two incoming hyperedges inb1,
ASK enqueues 2 ASK messages toPc, one for each
involved term:

– Pc:ASK(Pb, q7, c1, {t, a2, b1, c1})

– Pc:ASK(Pb, q8, c2, {t, a2, b1, c2})

It then persists the corresponding log object. The
log is now:

Pb log
(Pa, q5, b1, 2, {{q7}, {q8}})

• Pb:ASK(Pa, q6, b2, {t, a2, b2})

Since there is one incoming hyperedge inb2,
ASK enqueues 2 ASK messages toPc, one for each
involved term:

– Pc:ASK(Pb, q9, c2, {t, a2, b2, c2})

– Pc:ASK(Pb, q10, c3, {t, a2, b2, c3})

It then persists the corresponding log object. The
log is now:

Pb log
(Pa, q5, b1, 2, {{q7}, {q8}})
(Pa, q6, b2, 2, {{q9, q10}})

• Pc:ASK(Pb, q7, c1, {t, a2, b1, c1})

Since there are no incoming hyperedges inc1,
ASK generatesPb:TELL(q7, I(c1)).

• Pb:TELL(q7, I(c1))

TELL finds the object in the log and updates it. The
new log is:

Pb log
(Pa, q5, b1, 1, {{I(c1)}, {q8}})
(Pa, q6, b2, 2, {{q9, q10}})

• Pc:ASK(Pb, q8, c2, {t, a2, b1, c2})

Since there is one incoming hyperedge inc2 but
its tail has a non-empty intersection with the set
of visited terms, just a TELL message results:
Pb:TELL(q8, I(c2)).

• Pb:TELL(q8, I(c2))

TELL finds the object in the log and updates it. The
new log is:

Pb log
(Pa, q5, b1, 0, {{I(c1)}, {I(c2)}})
(Pa, q6, b2, 2, {{q9, q10}})

There are no more open calls in the updated log
object, therefore the answer to the queryq5 can
be computed asI(c1) ∪ I(c2). Then the object is
deleted permanently from the log and the message
Pa:TELL(q5, I(b1)∪ I(c1) ∪ I(c2)) is issued.

• Pa:TELL(q5, I(b1)∪ I(c1) ∪ I(c2))

TELL finds the object in the log and updates it. The
new log is:

Pa log
(Pa, q1, t, 1, {{q2, I(a3)}})
(Pa, q2, a2, 1, {{I(b3)}, {I(b1)∪ I(c1) ∪ I(c2), q6}})

• Pc:ASK(Pb, q9, c2, {t, a2, b2, c2})

Since there is one incoming hyperedge inc2,
ASK enqueues 2 ASK messages toPb, one for each
involved term:

– Pb:ASK(Pc, q11, b1, {t, a2, b2, c2, b1})

– Pb:ASK(Pc, q12, b3, {t, a2, b2, c2, b3})

It then persists the corresponding log object. The
updated log is:

Pc log
(Pb, q9, c2, 2, {{q11, q12}})

• Pc:ASK(Pb, q10, c3, {t, a2, b2, c3})

Since there are no incoming hyperedges inc3 a
TELL message results:Pb:TELL(q10, I(c3)).

• Pb:TELL(q10, I(c3))

TELL finds the object in the log and updates it. The
updated log is:

Pb log
(Pa, q6, b2, 1, {{q9, I(c3)}})

• Pb:ASK(Pc, q11, b1, {t, a2, b2, c2, b1})

There are two incoming hyperedges inb1, but
the one having c2 in the tail generates no
ASK messages. The only ASK enqueued is
therefore:

– Pc:ASK(Pb, q13, c1, {t, a2, b2, c2, b1, c1})

23

Open Journal of Web Technologies (OJWT), Volume 3, Issue 1, 2016

It then persists the corresponding log object. The
updated log is:

Pb log
(Pa, q6, b2, 1, {{q9, I(c3)}})
(Pc, q11, b1, 1, {{q13}})

• Pb:ASK(Pc, q12, b3, {t, a2, b2, c2, b3})

Since there are no incoming hyperedges inb3, it
results:Pc:TELL(q12, I(b3)).

• Pc:TELL(q12, I(b3))

TELL finds the object in the log and updates it. The
new log is:

Pc log
(Pb, q9, c2, 1, {{q11, I(b3)}})

• Pc:ASK(Pb, q13, c1, {t, a2, b2, c2, b1, c1})

Since there are no incoming hyperedges inc1,
ASK issuesPb:TELL(q13, I(c1)).

• Pb:TELL(q13, I(c1))

TELL finds the object in the log and updates it. The
new log is:

Pb log
(Pa, q6, b2, 1, {{q9, I(c3)}})
(Pc, q11, b1, 0, {{I(c1)}})

There are no more open calls in the updated log
object, therefore the answer to the queryq11
can be computed asI(c1). Then the object is
permanently deleted from the log and the message
Pc:TELL(q11, I(b1)∪ I(c1)) is issued.

• Pc:TELL(q11, I(b1)∪ I(c1))

TELL finds the object in the log and updates it. The
updated log is:

Pc log
(Pb, q9, c2, 0, {{I(b1)∪ I(c1), I(b3)}})

There are no more open calls in the updated
log object, therefore the answer to the query
q9 can be computed. Then the object is
permanently deleted from the log and the message
Pb:TELL(q9, [(I(b1) ∪ I(c1)) ∩ I(b3)] ∪ I(c2)) is
issued.

• Pb:TELL(q9, [(I(b1)∪ I(c1)) ∩ I(b3)] ∪ I(c2))

TELL finds the object in the log and updates it. The
updated log is:

Pb log
(Pa, q6, b2, 0, {{[(I(b1)∪ I(c1)) ∩ I(b3)] ∪ I(c2),

I(c3)}})

There are no more open calls in the updated log
object, therefore the answer to the queryq6 can be

computed. Then the object is permanently deleted
from the log and the messagePa:TELL(q6, [X ∩
I(c3)] ∪ I(b2)) is issued, where

X = [(I(b1) ∪ I(c1)) ∩ I(b3)] ∪ I(c2)

• Pa:TELL(q6, [X ∩ I(c3)] ∪ I(b2))

TELL finds the object in the log and updates it. The
updated log is:

Pa log
(Pa, q1, t, 1, {{q2, I(a3)}})
(Pa, q2, a2, 0, {{I(b3)}, {I(b1)∪ I(c1)∪

I(c2), [X ∩ I(c3)] ∪ I(b2)}})

There are no more open calls in the updated log
object, therefore the answer to the queryq2 can be
computed. Then the object is permanently deleted
from the log and the messagePa:TELL(q2, I(a2)∪
I(b3) ∪ (Y ∩ Z) is issued, where

Y = I(b1) ∪ I(c1) ∪ I(c2)

Z = [X ∩ I(c3)] ∪ I(b2)

• Pa:TELL(q2, I(a2)∪ I(b3) ∪ (Y ∩ Z))

TELL finds the object in the log and updates it. The
new log is:

Pa log
(Pa, q1, t, 0, {{I(a3)∩ (I(a2) ∪ I(b3) ∪ (Y ∩ Z))}})

There are no more open calls in the updated object
and q1 6∈ TPa

. Therefore,q1 must be a user
(external) query.

The QUERY procedure will realize thatq1 is
complete, and return the answer to the user, thus
concluding query evaluation.

24

C. Meghini, A. Analyti: Query Processing in a P2P Network of Taxonomy-based Information Sources

AUTHOR BIOGRAPHIES

Dr. Carlo Meghini graduated
in Computer Science at the
University of Pisa in 1979
and since 1984 he is a
researcher at ISTI CNR. He
is a member of the Networked
Multimedia Information System

laboratory, where he leads the Digital Library group
(http://nemis.isti.cnr.it/groups/digital-libraries). His
areas of interest are digital libraries and semantic
technologies. He is involved in European projects since
1986, in the areas of Office Automation, Information
Retrieval, Digital Libraries and Digital Preservation.
From 2007 he is involved in the making of Europeana,
the European digital library (www.europeana.eu),
taking care of the scientific aspects of the project.
He is currently coordinating the Coordination Action
PRELIDA on the Preservation of Linked Data. He has
published more than 90 scientific papers in international
journals, books and conferences.

Dr. Anastasia Analyti earned
a B.S. degree in Mathematics
from University of Athens,
Greece and a M.S. and Ph.D.
degree in Computer Science
from Michigan State University,
USA. She worked as a visiting
professor at the Department of
Computer Science, University of

Crete, and at the Department of Electronic and Computer
Engineering, Technical University of Crete. Since 1995,
she is a principal researcher at the Information Systems
Lab of the Institute of Computer Science, Foundation for
Research and Technology - Hellas (FORTH-ICS). Her
current interests include the Semantic Web, conceptual
modeling, faceted metadata and semantics, rules for the
Semantic Web, bio-medical ontologies and systems,
contextual organization of information, contextual web-
ontology languages, and integration of information. She
has participated in several projects and has published
over 75 papers in refereed journals and conferences.

25

	Introduction
	Foundations
	The Model
	The Decision Problem
	An Algorithm for Query Evaluation

	Networks of Information Sources
	The Model
	Network Query Evaluation
	The Functional Model of a Peer
	Query
	Ask
	Tell

	Correctness and Complexity

	Optimization issues
	Caching Answers of Local Terms
	Caching Answers of Local Terms and Pushing Answers of Articulation Tails
	Caching Answers of Articulation Heads
	Synopsis

	Related work
	Conclusions

