
© 2018 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 4, Issue 1, 2018

http://www.ronpub.com/ojiot
ISSN 2364-7108

Towards Adaptive Actors for
Scalable IoT Applications at the Edge
Jonathan FürstA, Mauricio Fadel ArgerichA, Kaifei ChenB, Ernö KovacsA

A NEC Labs Europe, Kurfürsten-Anlage 36, 69115 Heidelberg, Germany,
{jonathan.fuerst, mauricio.fadel, ernoe.kovacs}@neclab.eu

B Computer Science Division, UC Berkeley, 387 Soda Hall, Berkeley, USA, kaifei@berkeley.edu

ABSTRACT

Traditional device-cloud architectures are not scalable to the size of future IoT deployments. While edge and
fog-computing principles seem like a tangible solution, they increase the programming effort of IoT systems, do
not provide the same elasticity guarantees as the cloud and are of much greater hardware heterogeneity. Future
IoT applications will be highly distributed and place their computational tasks on any combination of end-devices
(sensor nodes, smartphones, drones), edge and cloud resources in order to achieve their application goals. These
complex distributed systems require a programming model that allows developers to implement their applications in
a simple way (i.e., focus on the application logic) and an execution framework that runs these applications resiliently
with a high resource efficiency, while maximizing application utility. Towards such distributed execution runtime,
we propose Nandu, an actor based system that adapts and migrates tasks dynamically using developer provided
hints as seed information. Nandu allows developers to focus on sequential application logic and transforms their
application into distributed, adaptive actors. The resulting actors support fine-grained entry points for the execution
environment. These entry points allow local schedulers to adapt actors seamlessly to the current context, while
optimizing the overall application utility according to developer provided requirements.

TYPE OF PAPER AND KEYWORDS

Regular research paper: IoT, framework, programming model, edge-computing, adaptation

1 INTRODUCTION

Internet of Things (IoT) applications arrive with
a paradigm shift compared to traditional Internet
applications: huge amounts of data are now generated
at the edge of the network and flow towards the cloud to
be processed and potentially combined with other data
sources. While the first generation of IoT applications

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2018) in conjunction with the
VLDB 2018 Conference in Rio de Janeiro, Brazil. The proceedings
of VLIoT@VLDB 2018 are published in the Open Journal of
Internet of Things (OJIOT) as special issue.

often followed a traditional client-server architecture,
with thin, low complexity clients and high-performance
cloud computing, recent applications are characterized
by richer clients (smartphones, drones, cars) that use
local sensor data as input for—possibly machine learning
based—data processing to support timely and local
decision making (e.g., UAVs) or user interaction—e.g.,
for augmented reality (AR) applications [12].

The requirement of a timely feedback loop conflicts
with common approaches of data processing in the cloud
due to the long round trip times, and is not reliable in
a wireless setting. Further, advanced sensor modalities

70

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot


J. Fürst, M. F. Argerich, K. Chen, E. Kovacs: Towards Adaptive Actors for Scalable IoT Applications at the Edge

like video or 3D data have high bandwidth requirements
that can quickly congest (wireless) network links and
become non-scalable in a cloud-centric solution for
a wide deployment like envisioned for future smart
cities [3].

Edge or Fog computing [37, 8] are principles that
bring cloud resources closer to the user, which can
greatly improve responsiveness, resilience, bandwidth
usage and thereby the scalability of such applications.
However, edge computing adds more burdens on
IoT developers: programming distributed, dynamic
and heterogeneous device-edge-cloud systems requires
complex decision making on (1) application partitioning
into tasks, (2) task allocation and (3) task adaptation.
Application partitioning, meaning the structuring of
application logic into components like packages, classes
or functions, is a daily task for developers and is
static during runtime (i.e., it needs to be done during
implementation).

Task allocation and adaptation however, depend
highly on the current context during execution time,
often unknown to the programmer. As an example, an
AR application running on a smartphone must place and
adapt tasks differently when in proximity to an edge
node , opposed to in a traditional smartphone-cloud
environment. It also needs to adapt its behavior to
changes in the network link (e.g., 3G vs. WiFi, network
partition or downtime) and battery level for mobile
devices. In all allocation and adaptation scenarios, the
application must adhere to its individual requirements
and constraints, such as responsiveness, accuracy, cost,
energy consumption, CPU use, and storage.

In this work, we argue that these deployment and
adaptation decisions should not be left solely to IoT
developers , but happen in interplay with a distributed
execution framework: Firstly, the complexity of these
decisions moves the developer’s focus away from the
application logic that contributes to the business goals.
Secondly, the number of combinations of different
context factors and their implications are too large and
possibly not fully known during implementation time.
For example, network round-trip times have a high
variance in a wireless and mobile scenarios, which is
common for IoT applications [5]. Thirdly, programming
distributed systems is hard and requires skills beyond the
ones of many application developers.

We begin this work with the assumption that IoT
programmers should focus on (monolithic) application
logic, while the framework transforms this logic into
adaptive, distributed components (see Figure 1). While
there has been previous work with similar intentions,
notably Sapphire [49] and Ray [35], they are targeting
slightly different problems. Sapphire focuses on a
framework for mobile-cloud systems. Ray focuses on

highly parallelized data analytics and machine learning.
Both assume homogeneous nodes, and in the case of
Ray, in-data center computation. We envision that future
IoT applications will span over a heterogeneous set of
hardware platforms, from physical IoT devices over
close-by edge-nodes to traditional cloud computing, and
that such setting needs strong framework support.

Towards these goals, we propose Nandu, a first design
and prototype of a distributed execution framework
for IoT applications using adaptive actors [26], which
enables highly dynamic, autonomous and edge-centric
application partitioning and task scheduling. Nandu
provides:

• Transformation of regular, sequential coding style
programs into distributed actors.

• A programming model that allows developers to
easily specify application wide Quality of Service
(QoS) requirements and function-level developer
hints, consisting of adaptable function parameters
(or even multiple function implementations) and
their expected utility towards the overall application
goal.

• Dynamic actor adaptation that uses these
developer hints and then optimizes actor
adaptation throughout the lifetime of an application
using strategies of (1) actor migration, (2) data
degradation and (3) actor degradation.

In contrast to previous work [32, 49], Nandu
considers different adaptation strategies to best conform
to developer provided non-functional Quality of Service
(QoS) requirements (e.g., latency, energy, memory use)
under a changing execution context. Instead of only
considering device-(edge)-cloud architectures, Nandu’s
worldview is informed by distributed nodes that may
exchange tasks in a P2P fashion. The main contributions
of this paper are:

• We derive the requirement of framework supported
task adaptation for IoT applications from an
exemplary use case (Section 2).

• A survey of popular actor systems, considering
common IoT requirements (Section 3).

• The design of Nandu, an IoT tailored actor based
distributed execution platform (Section 4).

• A prototype implementation and evaluation that
show the advantages of Nandu (Section 5).

71



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

F5
F4

F1

F2

F3

C5 C4

C1

C2

C3

Distributed Adaptive Components
Static Partitioning

into Functions

Figure 1: From monolithic application logic to distributed adaptive components

2 MOTIVATION

Worldwide disasters have affected 1.7 billion people and
killed 0.7 million between 2005 and 2014 according
to numbers by the UN [43]. Information and
communication technology (ICT) has been applied in
academia and industry to help reduce these numbers.
For example, by providing resilient ad-hoc network
infrastructure for disaster response [23] or detecting
natural disasters, like eruptions of a volcano by
deploying wireless sensor nodes [45]. In the event of
a disaster, drones are used to locate people in need
for help or directly provide support, e.g., in the form
of dropping defibrillator devices [15]. We consider a
similar application scenario to motivate our work.

2.1 Application Scenario

Semi-autonomous drones, equipped with a monocular
and an infrared camera are used by rescue teams to locate
people in a difficult to access area in the aftermath of a
natural disaster (see Figure 2).

This scenario might require multiple, concurrent
running tasks:

T1 (Visual) Simultaneous Localization and Mapping.
(V) SLAM based drone navigation requires near real-
time sparse point cloud construction and vision-based
localization [21].

T2 3D Model Reconstruction and Semantic
Understanding. The 3D model and semantic
understanding (e.g., road detection) is needed to help
first responders to navigate to the disaster survivors.
Pre-disaster infrastructure might not be accessible
anymore (e.g., due to earthquake, flooding).1

T3 Infrared based Detection. Use thermal infrared
camera to detect humans and animals.

1 After the Haiti earthquake in 2010, volunteers used recent
satellite data to manually (re-) create accurate mapping on
OpenStreetMap (see https://wiki.openstreetmap.org/
wiki/WikiProject_Haiti).

T4 People Detection. Detect people using computer
vision algorithms on pictures taken with the drone’s
visual-optical camera.

Developing such systems is hard because of the
diverse task requirements and dynamically changing
networking and energy state:

Placement. T1 needs to run on the drone for real-time
location feedback. T1, T2, and T3 can either run on the
drone or be offloaded to the edge or cloud, because they
are not as time critical as T1. When scheduling tasks, T4
should be a high priority task that happens only when T3
detects objects, while T2 is a continuous but low priority
task.

Latency. Each task has different latency requirements.
While T2 can be postponed until when resources are
available, T1 is mandatory for a correct drone navigation
and needs to be executed near real-time. To find
survivors in a timely manner [15], T3 and T4 also require
high responsiveness.

Accuracy. T1 requires high accuracy to avoid drone
accidents, while the people detection performed in T3
and T4 can trade accuracy for a quicker response time.

Energy. Compared to the edge and cloud, the drone is
restricted by its limited battery. It must find a good trade
off for energy consumption between local computation
and offloading.

Network Connection. Since wireless signal can be
impacted by various factors (e.g., interference, distance),
the system should constantly monitor the network
conditions and adjust accordingly.

Ultimately, to work well, such distributed systems
need to adapt and allocate concurrently running tasks
dynamically during runtime. We derive the following
key design goals.

72

https://wiki.openstreetmap.org/wiki/WikiProject_Haiti
https://wiki.openstreetmap.org/wiki/WikiProject_Haiti


J. Fürst, M. F. Argerich, K. Chen, E. Kovacs: Towards Adaptive Actors for Scalable IoT Applications at the Edge

The Cloud

WiFi, TV White Space…

Fiber LTE Car processing unit, Laptop,
Smartphone, Smart Glasses
or any combination of these.

Edge Server

Camera3G

Disaster
Victim

Car Edge

Figure 2: Drone supported disaster management. (Drones are used to timely detect disaster survivors, provide
support, and notify first responders. Mobile network infrastructure might be damaged or overloaded.)

2.2 Key Design Goals

(1) Dynamic discovery mechanism. Mobile IoT
devices like drones or smartphones need to discover
close-by available computational resources in order
to distribute their tasks. E.g., multiple drones
might distribute tasks among them according to their
capabilities.

(2) Abstract execution mechanism away from
application logic. To simplify development,
programmers should be able to implement their
application in a sequential, non-distributed way, as we
envision most of them to be non-experts in distributed
programming. Programmers are only required to make
annotations (e.g., can this function be offloaded or not?)
to their functions to transform the application into a
distributed one.

(3) Dynamic adaptation. The runtime needs to
dynamically adapt and migrate application tasks,
depending on the current execution context. Adaptation
mechanisms might require hints for the runtime in the
form of annotations from the programmer that allow the
application to dynamically adjust function parameters
or choose different task implementations (e.g., slow
and accurate or fast and less accurate people detection
algorithm) to maximize the utility under the current
context (e.g., node computational resources, node load,
networking, battery level) and according to application
requirements (e.g., latency).

3 ACTOR MODEL

In the actor model, actors are treated as the universal
primitive of computation. They can communicate with
each other only through message passing. When an actor
receives a message it can perform some local processing,
create new actors and send itself messages [26]. This
simple model provides strong guarantees for highly
concurrent systems and has been successfully applied to
widely used distributed systems.2 As such it provides
a good foundation for a prospective execution model
for highly distributed systems of IoT. We now briefly
survey existing actor systems and their applicability for
IoT systems (Section 3.1).

Erlang [22] is a functional programming language
that follows the actor model. Actors need to be
explicitly created at a specified location (i.e., either on
the caller’s server or on a remote server). Processes
(actors) communicate with each other via asynchronous
message passing both locally and remotely. Erlang does
not support process migration. In traditional Erlang,
scaling is constrained by the fact that processes need
to be created explicitly and that connections are shared
between all nodes, requiring data structures quadratic
in the number of nodes at every machine. Chechina et
al. [11] propose the scalable distributed Erlang library

2 E.g., Spark relies on the actor model for distributed computing.
Microsoft is scaling their actor based Orleans system up to millions
of actors in a data center [7].

73



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

to overcome these bottlenecks by dividing nodes into
smaller groups and providing a more implicit process
placement.

Akka [1] is a popular actor framework on top of the
JVM written in Scala. Since version 2.10.0, Scala uses
Akka as the default actor library [27]. Like Erlang,
Akka adopts the “Let it crash” model for resilience.
Akka cluster provides a cluster membership service
that relies on a Gossip protocol similar to Amazon’s
distributed key-value store Dynamo [19]. Akka cluster
uses heartbeats in a 1 s interval and the Phi Accrual
Failure Detector [25] to calculate the probability for a
node being unreachable. Programmers can tweak failure
detection by setting a threshold value. Lightbend has
successfully run an Akka cluster with 2400 nodes on
Google Compute Engine [36].

Orleans [7] adds in contrast to Erlang and Akka the
abstraction of virtual actors (grains). The virtual actor
abstraction removes the need for the programmer to
explicitly create or destroy actors. Actors always exist
virtually and their instances are dynamically created
by the Orleans runtime on an available server when a
message is passed to an actor. Likewise, actors are
torn down when they are no longer needed. The virtual
to physical actor mappings are stored in a one-hop
distributed hash table (DHT) and a large local cache on
every server to avoid the otherwise additional network
hop for each message that is sent. Actors can be
stateless with potentially many instances or restricted to
a single activation. Stateless actors allow Orleans to
automatically scale out hot actors by creating multiple
instances.

3.1 Problems with Existing Actor Systems

Existing actor systems provide a simple model for
abstracting concurrent computation. However, they
are generally intended for in data center—or even for
single machine—computation. Only recently, there
are some efforts to extend them to geo-distributed
data centers [6]. Actor based systems assume
(mostly) reliable and uniform network communication.
Last, actor programming frameworks require that
programmers adjust their programming style to actor
programming, a programming model unfamiliar to many
developers.

Opposed to in data center computation, IoT systems
often rely on wireless communication, which can be
unreliable and not timely. Further, IoT and edge
platforms are heterogeneous and are more limited in their
resources compared to a server in a data center.

Actors of IoT systems need to adapt themselves
according to the current context (network and
computational resources). Part of this adaptation

Nandu Application Library

F1 F2 F3

Function Calls

A1 A2 A3

Local and Remote Calls

Nandu Node

Function and 
Data Cache Scheduler Discovery

(1
) F

ro
nt

en
d

(2
) B

ac
ke

nd

Figure 3: Nandu architecture overview. (Regular
functions are intercepted by the Nandu application
library and then scheduled as Nandu actors by a local
scheduler, either locally or on a remote node.)

should be strategies such as data or task degradation.
Further, we argue that because of the potentially wide
group of IoT developers, to gain traction, a good
framework should enable developers to use common
sequential programming style and not expose them
directly to actor programming.

In the following, we port the actor model to edge-
centric IoT systems by introducing the concept of
adaptive actors.

4 TOWARDS ADAPTIVE ACTORS FOR
SCALABLE IOT APPLICATIONS

We now describe our design of Nandu, an actor based
distributed execution framework and programming
model, tailored for highly dynamic, autonomous and
edge-centric IoT applications.

4.1 System Overview

Figure 3 depicts the overall proposed architecture of
Nandu. Conceptually, we divide it into two parts (1) the
application library (frontend) and (2) the node (backend),
which are only loosely coupled. The main primitive of
Nandu is a node. Each Nandu node can host a variable
number of actors. Actors can communicate with other
actors on the same node and with actors on remote nodes.

This communication is provided by the hosting node.
Nodes communicate with each other through Remote
Procedure Calls (RPC). Inspired by Orleans [7] model

74



J. Fürst, M. F. Argerich, K. Chen, E. Kovacs: Towards Adaptive Actors for Scalable IoT Applications at the Edge

of virtual actors, our model abstracts the physical actor
location away by using a distributed hashing table (DHT)
to keep track of current node-actor mappings. This will
allow actors to potentially migrate during the runtime of
an application. If a function depends on local device I/O
(e.g., camera stream, or an actuator), the corresponding
actor is bound to the device as well.

To use Nandu, developers only need to import our
library and then implement their application logic in
a sequential, non-distributed way. They then can
annotate (a subset of) functions to enable a conversion
of these functions to adaptable actors. Practically, we
achieve this transformation to actors by creating a Nandu
object for each annotated function that contains the
serialized function logic, the function input parameters
and adaptation hints. Actors are next scheduled by
Nandu either locally or on a remote node. The scheduler
performs this decision based on the hints provided by
the programmer, profiling of previous executions of the
same function and based on its current state of available
Nandu nodes (e.g., is there a node close-by with free
resources). We plan to use a distributed hashing table
to propagate the same state across distributed nodes.

We assume annotated functions to be stateless. In case
of a node failure or network partition, we simply re-
create the respective actor. For time-critical functions
that require high reliability, Nandu can execute a
function on multiple nodes and only take the first
available result. Nandu uses a cache in form of an in-
memory KV-Store to cache actors and input data.

4.2 Programming Model

Our programming model allows existing programs
to be swiftly transformed into distributed, adaptive
actors, while only exposing developers to a traditional,
sequential coding style.

We achieve the transformation of ordinary functions
to actors by enabling developers to annotate functions
using the decorator design pattern, which provides an
interception point to the Nandu application library.
Annotated functions need to be self-contained, i.e., they
need to contain necessary dependencies (e.g., necessary
import statements) and not refer to variables outside
the function scope. When an annotated function is
invoked, instead of executing it as usual, we return a
promise [31], that then serves as input for subsequent
function invocations and thus implicitly enables us to
link the output of one actor to the input of another.
Promise constructs (also known as futures) are included
in standard libraries of many major programming
languages (e.g., C++. Java, Python). This makes our
approach applicable to a wide range of implementation
and systems. The function logic itself is scheduled

1 from nandu import adapt
2 @adapt(offload = True,
3 size = {640: 10, 480: 9, 320: 6, 240: 3})
4 def resize_image(img, img_id, size = 640):
5 import imutils
6 return(imutils.resize(
7 img, width=min(size, img.shape[1])),
8 img_id)

Listing 1: Nandu programming model. (Developers
can annotate functions with hints for the runtime on
what parameters to adapt dynamically. In this example,
the image size is adapted and the function is potentially
offloaded dynamically.)

locally or remotely and is executed when its input
becomes available (i.e., the output of a previous function
has been computed and thus the promise becomes
available).

To enable actor adaptations, function decorators allow
developers also to specify function utility and adaptation
parameters as hints to the Nandu scheduler. As
an example, Listing 1 shows a code snippet using
our Nandu prototype implemented in Python. The
offload=True parameter explicitly allows the Nandu
scheduler to place the actor remotely. The size
dictionary parameter represents a selection of possible
size parameter values together with their expected
utility towards the application goal (i.e., greater image
sizes will provide better accuracy). Nandu uses such
hints to support its scheduling and adaptation decisions
as we describe now.

4.2.1 Developer Hints

Developers assign adaptation hints for the overall
application as well as for different functions.

Overall application hints. These hints represent non-
functional requirements that should be achieved by the
application or application components, e.g., “overall
people detection pipeline should occur in ≤ 1 s”. As
such, they must define a measurable proxy that captures
a requirement well.

Individual function hints. These hints indicate that
a function is adaptable, which of its parameters can
be adapted, and what the expected utility of different
adaption values is. Utility represents the impact
of different parameter values towards achievement of
the overall application requirements, which cannot be
measured by the system itself. For example, depending
on the function logic and the specific parameter, this

75



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Table 1: Execution context and possible adaptations

Task Execution Context Possible Adaptation

Search a suspect in a crowd using
surveillance cameras and face
recognition.

Many people in camera view.
Face-recognition slow, latency
outside requirements.

Degrade parameters of classifier to
perform faster.

Predict maintenance of CNC
machine in a factory in near
real-time.

Required AI accelerator (GPU or
dedicated ASIC) not available on
edge.

Migrate to cloud-node equipped
with AI accelerator.

Estimate room occupancy through
wireless connected CO2 sensors to
determine HVAC set-points.

Poor network bandwidth, it is not
possible to send all the data in real
time.

Reduce sampling rate or aggregate
data within an interval, before
sending it, to reduce bandwidth
usage.

utility value can represent the accuracy of a predictive
model; any Quality of Experience (QoE) measure,
such as the user-perceived quality of different media
compression levels; or any other performance measure.
For the application scenario from Section 2, the
developer might for example specify different classifiers
and assign them utility values according to their expected
accuracy results. Application hints together with
individual function hints and online actor profiling allow
us then to optimise the overall application utility through
actor adaptation.

4.3 Adaptation

To capture different IoT execution contexts, Nandu uses
three adaptation strategies: (1) actor migration, where
actors are migrated to more powerful nodes, (2) data
degradation, where actor input is degraded in order to
adapt the application to changing network conditions
or available resources and (3) actor degradation, where
a different actor implementation is selected (e.g., a
different classifier).

Any of these strategies might be a viable way to
adapt a distributed application to the current execution
context: Migration is intended for when a stable network
link is available and data movement between actors
is small; data degradation helps to mitigate varying
network bandwidths, either during a single deployment
(e.g., network bandwidth changes during the lifetime
of an application) or for different deployment scenarios
(e.g., the same application is deployed to wireless and
wired devices); actor degradation is able to adapt a task
to available computing resources, e.g., when additional
load occurs or when a network link to a higher power
node becomes unavailable and execution needs now
occur on a lower power node (e.g., the drone from the

scenario described in Section 2). Table 1 gives further
examples of applications and their execution context
dependent adaptations.

Nandu selects and executes these adaptation strategies
by combining developer provided adaptation hints with
online actor profiling, while using overall non-functional
application requirements as a target for optimization
(e.g., latency).

4.3.1 Optimization

Nandu optimizes adaptation by combining the developer
hints introduced in Section 4.2.1 with online profiling
to establish cost and utility of each actor execution.
Nandu assigns a utility value for each actor execution.
This utility value represents how well the actor performs
according to non-functional application requirements
that cannot be measured: accuracy, QoE or other
performance measures. In addition, a cost value
represents how much effort is involved in the task
execution. This cost is monitored by Nandu through
online profiling. In this work we focus on latency costs,
however the same model can also be applied to other
measurable cost factors depending on application wide
QoS requirements: e.g. bandwidth, CPU or energy use.

The Nandu Optimizer is in charge of finding the
best adaptation strategy, using the previously defined
adaptation mechanisms (function annotations) to deliver
the highest possible utility with the defined cost
constraints in the current context (e.g. current available
CPU or network bandwidth).

Finding the best strategy is a complex task due
to the large number of combinations of adaptation
mechanisms. To solve this problem, without adding a
substantial overhead to the overall system, we currently
use a simple heuristic value selection algorithm for

76



J. Fürst, M. F. Argerich, K. Chen, E. Kovacs: Towards Adaptive Actors for Scalable IoT Applications at the Edge

Algorithm 1 Simplified parameter selection logic
oldParams = {...} . previous function parameters
windowSize = 20 . tunable velocity parameter to fit application
i = 0

function DECORATOR(oldParams)
if MMEAN(ObservedCosts, windowSize) > Constraint then

params = DEGRADE(oldParams); i = 0
else

if i >windowSize then
params = UPGRADE(oldParams); i = 0

else
params = oldParams; i++

end if
end if

end function

dynamic parameters (depicted in Algorithm 1). When an
actor receives input and is executed, we monitor and save
its execution time and input parameters. We then use
these statistics to estimate the cost for future executions
using a given set of parameter values. For example, in
the scenario from Section 2, the cost is the time that it
takes to process each image, from the moment the image
is captured to the moment when the result of the people
detection step is obtained.

When an actor is executing, Nandu chooses the
parameter values that it expects will yield the best
cost-utility trade-off (e.g., latency-accuracy). Selecting
a parameter value not only affects the execution of
the actor itself, but also the execution of subsequent
actors. Our model thus estimates the cost for the whole
execution pipeline. Practically, we estimate this cost by
calculating the moving mean of the last K executions. If
no profiling data is present for a given set of parameter
values, 0 is returned to encourage the exploration of
unknown sets of values. The window size is a parameter
for our optimization model that can be configured to
meet the expected velocity of the application (i.e. how
swiftly Nandu should adapt to changing execution costs).
More formally, the estimated cost is calculated as:

N∑
f=0

(
1

WS

WS∑
k=0

cf(params=P )) (1)

Where N is the overall number of actors for the
processing job, WS is the window size for which we
calculate the moving mean (in our case WS = 20)
and cf(params=P ) is the cost of running function f with
parameters P .

As described in Section 4.2, developers provide hints
in form of parameter-value pairs to Nandu. During

optimization, these hints are used to maximize the
overall application utility. For instance, in our example,
we specify different image resolutions and how they
affect application accuracy. For the initial execution
of an actor, we sort parameter values by descending
accuracy, and start profiling the cost for each value in
this order during runtime. In our example, Nandu will
first select the image size that yields the highest accuracy
because no profile data exists yet. During the next
iteration, Nandu estimates the cost by using its profiled
data; if this profiled cost (i.e., the latency in our example)
is less than the cost target, Nandu continues to use this
parameter value, otherwise it selects the next best value
to lower the cost. This process continues until the cost
target is met with the highest possible accuracy.

5 IMPLEMENTATION AND EVALUATION

We have implemented a prototype of Nandu in Python
3.6 to show that our programming model provides a
simple abstraction for distributed IoT programming and
that our adaptation strategies can support application
requirements under dynamic conditions. Because we
focus our evaluation on the benefit of our programming
model and the benefit of dynamic adaptation, we
currently use static host addresses instead of a DHT
based and fully decentralized system. We use Python
decorators to allow developers to specify adaptation
hints and Python’s future statement as placeholder for
a function output. This allows us to schedule the
different actors before their final input is available as
described further in Section 4.2. To serialize function
logic we use cloudpickle [16], which allows us to
serialize Python objects not supported by pickle module
in the Python standard library. Cloudpickle has been
applied previously to Spark based big data processing

77



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Capture 
Image

Resize 
Image

Detect 
People

Application
Pipeline

Figure 4: Simplified people detection pipeline

applications [47]. We have build an RPC server and
client using the Python’s asyncio module that runs on
each Nandu node and abstracts message passing and
serialization away from the Nandu application library.
When a node receives a new message, we de-serialize
it, and pass the resulting Nandu object to the scheduler,
which decides on its execution.

We also implemented a simplified version of
the Computer Vision-based people detection example
introduced in Section 2 using OpenCV that consists of
two devices: (a) the drone, which goal is to detect people
in a stream of images in collaboration with (b) an edge
device (see Figure 4).

The image processing pipeline is divided in three main
steps: (1) capture the image, (2) resize the image, and (3)
detect people in the image. Each step is performed by a
different function; (1) and (2) are run on the drone while
(3) might be migrated to the edge component. We use the
pre-trained HOG + LinearSVM model from OpenCV [9]
to implement the people detection step.

5.1 Experimental Setup

We use mininet [34], a simple network emulator, to
simulate different network environments. Despite its
simplicity, researchers have been able to reproduce
the results of more than 40 networking papers with
mininet [46]. Mininet does not explicitly simulate
a wireless network setting, however our wireless
application scenario is just an example of a changing
network (e.g., recently, Zhang et al. [48] have shown
wide bandwidth and RTT variances for Internet scale
applications). This is why, without loss of generality,
we only simulate different bandwidths to show how
Nandu can adapt under different network conditions.
As for dataset, we use a subset of the INRIA Person
Dataset [18] with 410 images. The subset was created
by selecting all the images with a size larger than 700 kB
from the positive samples and images larger than 600 kB
from the negative samples. The different thresholds
were chosen to have a fairer split between positive and
negative samples for our use case.

5.2 Latency-Accuracy Trade-offs

Using mininet, we simulate different network speeds:
5, 10, 20, 50 and 100Mbps. To understand the
latency accuracy trade-off, and to establish a baseline for
Nandu’s adaptive optimization, we then run experiments
for static wireless link-image size pairs. Figure 5 depicts
our measured latency values. As expected, latency is
determined by two variables: (1) network link speed and
(2) image sizes.

Moving on to the quality of the received results,
Table 2 shows what accuracy we achieve with different
image sizes and the HOG + LinearSVM classifier. For
our application, we are only interested in detecting
people, and not in the exact number of people.
Therefore, we also classify results where the number of
people is not exact as correct. From our results, we see
that accuracy is relatively stable across image sizes and
between 83 and 91%.

Our experiments reveal two important insights:
(1) applications can gain accuracy and retain latency
requirements by adapting to different networking
conditions, and (2) developers implementing their
application without Nandu would need to manually pick
an—application requirements dependent—adequate
image resize parameter that is not optimal for all
execution contexts or implement custom optimization
strategies. With these insights, we now evaluate Nandu’s
performance for changing execution contexts.

5.3 Input Degradation

For evaluating Nandu’s input degradation strategy, we
annotate the resize function of our simple people
detection pipeline with Nandu developer hints as shown
in Listing 1, adding only one additional line of code. We
further set the overall QoS requirement to 1 s latency.
Then we run the application again for the same network
speeds as in Section 5.2.

As we can see in Figure 6, the size, to which
images were resized by Nandu, varies according to
the available network bandwidth: as bandwidth grows,
Nandu uses higher resolution images in order to keep the
highest accuracy possible while not exceeding the target
latency requirement of the overall application. Note
that, because we are using a discrete set of parameter
values as input to Nandu, the optimizer is not able to
pick an optimal image size value for some network
speeds. E.g., Nandu selects both, 480 px and 640 px for
100Mbps, because perceived latencies of 480 px are 1 s,
while latencies of 640 px are slightly larger than 1 s—an
optimal value would be somewhere in between.

Figure 7 depicts the distribution of the completion
times of our runs. Even with the sub-optimal, discrete

78



J. Fürst, M. F. Argerich, K. Chen, E. Kovacs: Towards Adaptive Actors for Scalable IoT Applications at the Edge

05Mbps 10Mbps 20Mbps 50Mbps 100Mbps
Wireless Link

0

1

2

3

4

La
te

nc
y 

(s
)

Image Width (px)
240 320 480 640

Figure 5: Network link speeds and experienced latency. (Different network speeds result in highly different
latency results. No single image width works for all network speeds if application requirements should be met.)

0
5

0
b

p
s

1
0

0
b

p
s

2
0

0
b

p
s

5
0

0
b

p
s

1
0

0
0

b
p

s

WLreless LLnN

0

50

100

150

200

250

300

350

400

450

1
u

m
b

e
r 

o
I 

Lm
a
g

e
s

Image WLdWh (px)
240 320 480 640

Figure 6: Selected image sizes for application runs. (Nandu selects the best possible size among the discrete set
of supplied parameter values in developer hints according to application requirements and execution context.)

0.0 0.5 1.0 1.5 2.0 2.5

Completion Time (s)

0

50

100

150

200

250

300

350

N
u

m
b

e
r 

o
f 

im
a
g

e
s

Wireless Link
5Mbps 10Mbps 20Mbps 50Mbps 100Mbps

Figure 7: Stacked completion times of application runs. (The majority of images is processed in≤ 1 s according
to application requirements specified by the developer)

79



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Table 2: Accuracy for different image sizes. (Larger
image sizes result in higher accuracy.)

Image Size (px) 240 320 480 640

Accuracy (%) 86.1 88.3 88.8 90.73

Table 3: Mean latencies and accuracy results for
different network speeds

Wireless Link (Mbps) 5 10 20 50 100

Mean Time (s) 0.82 0.76 0.72 0.69 0.85

Accuracy (%) 87.3 88.8 86.8 88.8 90.0

Table 4: Accuracy and proportional processing time
of HOG descriptor with different scale values using
480px images

Classifier accuracy Low Medium High

Scale 1.30 1.15 1.05

Accuracy (%) 80.7 85.7 88.8

Proportional proc. time (%) 100 145 351

size selection, the great majority of images were
processed in ≤ 1 s. This is in strong contrast to our
results in Figure 5, where some size values result in
latencies above 3 s—a three-fold violation of application
latency requirements.

Further, Table 3 shows that our mean accuracy over
all bandwidth speeds is 88.34%, which is higher than
what we might achieve with a static parameter selection
(e.g., Table 2 shows that picking an image size of
230 px, results in an accuracy of only 83.6%). It
also shows the accuracy increases with higher available
bandwidth, because it can transmit more images with
higher resolution.

5.4 Actor Degradation

Next we look actor degradation as an adaptation
strategy by implementing a low, medium and high
accuracy method of the HOG + LinearSVM classifier
by modifying the value of the parameter scale, for the
detectMultiScale method of the HOG detector.
To be able to detect people close to the camera, as
well as people further away, HOG calculates features for
different scales of the same image. A smaller scale value
results in more steps, while a larger value results in less
steps. The resulting classifiers and their accuracy and
latency results can be seen in Table 4. We then place
the people detection actor on the edge node. We create

additional load for two time intervals using stress
(options: -c 2, spawning two sqrt() processes) a
simple workload generator for Linux [44]. We set the
overall QoS again to 1 s.

Figure 8 shows the result of this experiment. At
the beginning, Nandu uses the high accuracy method.
When CPU resources need to be shared with stress,
it degrades first to the medium accuracy method and
then to the low accuracy method to reach its latency
goals. When additional load at the node is again reduced
(at 180 s), Nandu returns quickly to its high accuracy
method. Overall, Nandu achieves a mean accuracy of
84.88% and a mean latency of 0.76 s.

5.5 Actor Migration

To evaluate Nandu’s actor migration strategy, we again
use stress to simulate additional load, this time on the
drone (see Figure 9). This increases latency of the people
detection task above QoS requirements and thus triggers
an actor migration from drone to edge (40 s). When load
is reduced, Nandu migrates the actor back to the drone
dynamically (at 110 s and finally at 180 s). Overall,
Nandu achieves a medium latency of 0.70 s across all of
our experiments. Note, that accuracy is not influenced by
actor migration, as we are solely adapting the placement
of computation.

Nandu decides dynamically and fine-grained on
migration, depending on available CPU resources on
the Drone. To evaluate this, we again use mininet to
evaluate different CPU shares by restricting available
CPU bandwidth on the drone host (mininet relies on the
CFS bandwidth control of the Linux kernel [42], which
allows to explicitly set an upper CPU bandwidth limit
for a process). Figure 10 depicts the actor placement
distribution for different CPU shares. For smaller shares,
actors are placed pre-dominantly on the edge server,
while from 40% upwards, actors are solely placed on
the drone.

5.6 Adaptation Overhead

Finally, to evaluate the adaptation overhead of Nandu
we compare the execution time of a Nandu actor with
an ordinary Python function (1000 repetitions). This
experiment results in a time difference of 4ms for a
single execution. The overhead is mainly due to the
added execution time for the annotation decorator, which
is invoked for each call. Despite that, this small overhead
results in fewer lines of code (LoC).

80



J. Fürst, M. F. Argerich, K. Chen, E. Kovacs: Towards Adaptive Actors for Scalable IoT Applications at the Edge

0 50 100 150 200 250
0

20

40

60

80

100
C

PU
 u

sa
ge

 (%
)

Nandu Stress (other processes)

0 50 100 150 200 250
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y 

(s
)

Method used
High accuracy method Medium accuracy method Low accuracy method

Figure 8: Actor degradation. (Increased load on the hosting node leads to increased latency after 60s and to
dynamic actor adaptation to stay in QoS specified latency requirements.)

0 50 100 150 200 250
0

20

40

60

80

100

C
PU

 u
sa

ge
 (%

)

Stress (other processes) Response Time 

0 50 100 150 200 250
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y 

(s
)

Execution Node
Edge Drone

Figure 9: Actor migration. (Additional load on the drone dynamically triggers an actor migration to the edge.)

81



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

10% 20% 30% 40%
Drone CPU Share

0

100

200

300

400

N
um

be
r 

of
 im

ag
es

Placement
Drone
Edge

Figure 10: Placement distribution. (Nandu allocates actors dynamically on drone and edge according to available
CPU resources.)

6 DISCUSSION

Overall, these results show that Nandu is able to adapt
to different networking and computing conditions by
dynamically applying its adaptation strategy in unison
with developer provided hints and overall application
latency requirements. Because we use a discrete set
of values for adaptation, the results are sub-optimal.
Applying more advanced optimization strategies and a
more fine-grained selection of input parameters (e.g., in
our application for the image resolution) is a topic for
future work. Specifically, we are currently exploring two
different techniques: (1) Discrete Optimization and (2)
Reinforcement Learning.

Because the decisions of task migration and
degradation are discrete and the input degradation
could be discrete or continuous, it is necessary to
frame the problem in the discrete domain, as a discrete
optimization problem. To define the adaptation problem
as such, we consider the utility as our objective function,
and our non-functional requirements as the constraints.
Another approach that we consider is reinforcement
learning. In this case, our system is seen as an agent;
its state is seen as the current context and its own
performance, in terms of utility and cost; an action is a
change in its optimization strategy; and the reward for
performing this action, is the improvement (or decrease)
in its performance that this action had.

Our current model puts the responsibility of assigning
utility values to different adaptation options on the
developer. For different input degradations (e.g., image
resolutions, frame rate) this can be achieved easily.
However, the relationship between accuracy results and
different ML based classifiers might sometimes be not
obvious. We therefore consider to add an off-line
profiling phase to our system, where we obtain accuracy
values for different classifiers by using a testing data set
as input (i.e., including ground truth values).

For node discovery, we are currently exploring several
options: (1) Traditional service-discovery protocols like
Avahi, Bonjour, Zeroconf for local network discovery;
(2) a (local) message broker (e.g., MQTT); (3) Named
Data Networking (NDN/CCN) principles for node
discovery, similar to the work in [30], a Nandu node
could simply send interest packets containing the name
of the actor into the network to allow close-by nodes to
perform the execution opportunistically and return the
result in a NDN data packet.

7 RELATED WORK

There are several related research fields to our work. We
now discuss a selection of relevant works.

7.1 Distributed Execution Frameworks

In [32], the authors develop MagnetOS, a programming
model for ad hoc networks where a thin distributed
operating system layer makes the entire network appear
to applications as a single virtual machine. MagnetOS
then dynamically partitions a set of communicating Java
objects in a sensor network with a focus on energy
efficiency.

Sapphire [49] requires programmers to specify per-
object deployment managers which aid in runtime
object placement decisions, while abstracting away
complexities of inter-object communication. Sapphire
only focuses on mobile-cloud systems and leaves
deployment decisions to the developer (application and
deployment logic is split). In our system, deployment is
decided by the runtime based on local and global system
context.

Beam [40, 39] is a framework that simplifies IoT
applications by letting them specify “what should be
sensed or inferred”, without worrying about “how it is
sensed or inferred.” Beam introduces the abstraction

82



J. Fürst, M. F. Argerich, K. Chen, E. Kovacs: Towards Adaptive Actors for Scalable IoT Applications at the Edge

of an inference graph to decouple applications from the
mechanics of sensing and drawing inferences.

Rivulet [4] is a fault-tolerant distributed platform for
running smart-home applications that can handle typical
failures like link losses, network partitions, sensor
failures, and device crashes. It provides distributed
platform for running smart-home applications on
heterogeneous consumer appliances.

FogFlow [13] develops a programming model for edge
computing where developers provide a directed acyclic
graph and declarative granularity and stream shuffling
hints for stream processing. FogFlow then manages task
allocation of data processing tasks over cloud and edges
for minimal latency and low bandwidth consumption.

In [38, 20] the authors develop the concept of
tasklets, which are fine-grained computation units that
are executed by a distributed run-time according to
developer specified Quality of Computation (QoC)
goals. Tasklets are similar to our approach in
that they can be used to offload small computation
tasks. However, our Nandu run-time further adapts the
execution logic of a task dynamically according to QoS
requirements and developer hints. Results are retrieved
as promises opposed to blocking calls.

Ray [35] focuses on large-scale machine learning
and reinforcement learning applications by allowing
data scientists to easily parallelize existing applications.
Dask distributed [2] is an effort out of the SciPy
community with similar goals. Both approaches focus
on simplifying and accelerating data science applications
and an in-cluster computation. Our focus is on dynamic
IoT-edge systems. Recently, [30] proposes NFaaS:
named function as a service, in which close-by services
(e.g., edge-hosted) are discovered by clients by the
means of content centric networking principles (NDN).
Their work is orthogonal to ours, as NDN can be used
to discover close-by nodes more efficiently than using
overlay networks.

7.2 Code Offloading

Code offloading approaches have been applied
extensively in the mobile computing domain due
to the limited on-device compute capabilities. [37]
motivates the idea of cloudlets as means to overcome
mobile resource limitations and latency limitations of
cloud computing. Cloudlets are VM-based computing
resources that can be used seamlessly by close-by
mobile applications. MAUI [17] follows with an
implementation of such a system for .NET on Windows
mobile that shows superior performance compared
to solely on-device computing strategies. Both
CloneCloud [14] and COMET [24] use VMs to parallel
execute tasks in the cloud. Our work is inspired by the

performance gains achieved with such code-offloading
techniques, but with Nandu we argue that in the IoT
domain, tasks need not only be offloaded, but also
adapted dynamically by the run-time.

7.3 Programming Abstraction

The goal of a good programming abstraction should be
to enable programmers to express what they want their
program to do, without specifying all details on how to.
Senergy [28] is a framework for programming mobile
applications. It supports programmers in automating
common latency, power, accuracy trade-offs by letting
them specify a priority among them. ENT [10]
provides a type-based proactive and adaptive mode-
based energy management at the application level, where
developers characterize energy behavior of different
program fragments with modes. In Nandu, we combine
these ideas of run-time supported task adaptation with
fine grained task migration.

Policy based network management [41] can provide
further useful abstractions by applying policy based
management to networking. Policies are defined
as rules that define the states and behaviors of the
network. This allows for simple, dynamic adaptations
in large-scale distributed systems, without modifying
the implementations. Nandu follows an orthogonal
approach, where the execution framework has fine-
grained control over distributed applications logic. To
enable this fine-grained control, we have focused on IoT
applications, the programming model and on framework
support for different adaptation strategies (migration,
task degradation and input degradation). Integrating
policy based network management into our system can
be an additional useful adaptation modality and create
synergy between application and networking layer as has
been shown in [29].

8 CONCLUSION AND FUTURE WORK

We presented Nandu, an adaptive, actor based execution
environment for distributed IoT applications. Nandu
enables applications at the edge of the network to
dynamically use available resources like envisioned
in edge-computing, while freeing developers from
the tedious and complex tasks of distributed system
development. Applications dynamically adapt to the
current execution context, like network link quality and
available computational resources, through an interplay
of developer provided hints and local schedulers at each
participating node. Our prototype is able to adhere
to application latency requirements while maximizing
achieved accuracy dynamically.

83



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Nandu is actively ongoing research in our group, and
we see much potential for additions and future work. In
similar fashion to [33], which applies machine learning
to adaptive video streaming, we are actively investigating
the application of reinforcement learning for scheduling
decisions in the IoT space. Another aspect for our future
work is to improve Nandu’s security principles. We are
looking in actor isolation techniques, e.g., through the
use of individual actor unikernels. For node discovery,
we are exploring Named Data Networking (NDN/CCN)
principles for node discovery, similar to the work in [30],
where the system sends interest packets into the network
that contain the name of functions and returns the result
in data packets.

REFERENCES

[1] Akka, “Build highly concurrent, distributed, and
resilient message-driven applications on the jvm,”
https://github.com/akka/akka, 2018.

[2] Anaconda, Inc, “Dask: Distributed computation in
python,” https://github.com/dask/distributed, 2018.

[3] G. Ananthanarayanan, P. Bahl, P. Bodı́k,
K. Chintalapudi, M. Philipose, L. Ravindranath,
and S. Sinha, “Real-time video analytics: The
killer app for edge computing,” Computer, vol. 50,
no. 10, pp. 58–67, 2017.

[4] M. S. Ardekani, R. P. Singh, N. Agrawal, D. B.
Terry, and R. O. Suminto, “Rivulet: a fault-
tolerant platform for smart-home applications,”
in Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference. ACM, 2017, pp. 41–54.

[5] N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga,
H. Youssef, C. A. Boano, and M. Alves, “Radio
link quality estimation in wireless sensor networks:
A survey,” ACM Transactions on Sensor Networks
(TOSN), vol. 8, no. 4, p. 34, 2012.

[6] P. A. Bernstein, S. Burckhardt, S. Bykov,
N. Crooks, J. M. Faleiro, G. Kliot, A. Kumbhare,
M. R. Rahman, V. Shah, A. Szekeres et al., “Geo-
distribution of actor-based services,” Proceedings
of the ACM on Programming Languages, vol. 1, no.
OOPSLA, p. 107, 2017.

[7] P. A. Bernstein, S. Bykov, A. Geller, G. Kliot, and
J. Thelin, “Orleans: Distributed virtual actors for
programmability and scalability,” MSR-TR-2014–
41, 2014.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli,
“Fog computing and its role in the internet of
things,” in Proceedings of the first edition of
the MCC workshop on Mobile cloud computing.
ACM, 2012, pp. 13–16.

[9] G. Bradski and A. Kaehler, “Opencv,” Dr. Dobb?s
journal of software tools, vol. 3, 2000.

[10] A. Canino and Y. D. Liu, “Proactive and
adaptive energy-aware programming with mixed
typechecking,” in Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 2017, pp.
217–232.

[11] N. Chechina, P. Trinder, A. Ghaffari, R. Green,
K. Lundin, and R. Virding, “The design of scalable
distributed erlang,” in Proceedings of the 24th
Symposium on Implementation and Application of
Functional Languages (IFL 2012), 2012, p. 461.

[12] K. Chen, J. Fürst, J. Kolb, H.-S. Kim, X. Jin,
D. E. Culler, and R. H. Katz, “Snaplink: Fast and
accurate vision-based appliance control in large
commercial buildings,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 1, no. 4, p. 129, 2018.

[13] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs,
K. Terasawa, and A. Kitazawa, “Fogflow: Easy
programming of iot services over cloud and edges
for smart cities,” IEEE Internet of Things Journal,
2017.

[14] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and
A. Patti, “Clonecloud: elastic execution between
mobile device and cloud,” in Proceedings of the
sixth conference on Computer systems. ACM,
2011, pp. 301–314.

[15] A. Claesson, A. Bäckman, M. Ringh, L. Svensson,
P. Nordberg, T. Djärv, and J. Hollenberg, “Time
to delivery of an automated external defibrillator
using a drone for simulated out-of-hospital cardiac
arrests vs emergency medical services,” Jama, vol.
317, no. 22, pp. 2332–2334, 2017.

[16] C. contributors, “cloudpickle,” https://github.com/
cloudpipe/cloudpickle, 2018.

[17] E. Cuervo, A. Balasubramanian, D.-k. Cho,
A. Wolman, S. Saroiu, R. Chandra, and P. Bahl,
“Maui: making smartphones last longer with code
offload,” in Proceedings of the 8th international
conference on Mobile systems, applications, and
services. ACM, 2010, pp. 49–62.

[18] N. Dalal and B. Triggs, “Inria person dataset,”
Online: http://pascal. inrialpes. fr/data/human,
2005.

[19] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: amazon’s highly available key-value

84

https://github.com/akka/akka
https://github.com/dask/distributed
https://github.com/cloudpipe/cloudpickle
https://github.com/cloudpipe/cloudpickle


J. Fürst, M. F. Argerich, K. Chen, E. Kovacs: Towards Adaptive Actors for Scalable IoT Applications at the Edge

store,” in ACM SIGOPS operating systems review,
vol. 41, no. 6. ACM, 2007, pp. 205–220.

[20] J. Edinger, D. Schäfer, C. Krupitzer,
V. Raychoudhury, and C. Becker, “Fault-avoidance
strategies for context-aware schedulers in pervasive
computing systems,” in Pervasive Computing
and Communications (PerCom), 2017 IEEE
International Conference on. IEEE, 2017, pp.
79–88.

[21] J. Engel, J. Sturm, and D. Cremers, “Scale-
aware navigation of a low-cost quadrocopter with
a monocular camera,” Robotics and Autonomous
Systems, vol. 62, no. 11, pp. 1646–1656, 2014.

[22] Erlang, “Build massively scalable soft real-time
systems,” http://www.erlang.org/, 2018.

[23] S. M. George, W. Zhou, H. Chenji, M. Won, Y. O.
Lee, A. Pazarloglou, R. Stoleru, and P. Barooah,
“Distressnet: a wireless ad hoc and sensor
network architecture for situation management
in disaster response,” IEEE Communications
Magazine, vol. 48, no. 3, 2010.

[24] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke,
Z. M. Mao, and X. Chen, “Comet: Code offload
by migrating execution transparently.” in OSDI,
vol. 12, 2012, pp. 93–106.

[25] N. Hayashibara, X. Defago, R. Yared, and
T. Katayama, “The/spl phi/accrual failure detector,”
in Reliable Distributed Systems, 2004. Proceedings
of the 23rd IEEE International Symposium on.
IEEE, 2004, pp. 66–78.

[26] C. Hewitt, “Actor model of computation: scalable
robust information systems,” arXiv preprint
arXiv:1008.1459, 2010.

[27] V. Jovanovic and P. Haller, “The scala actors
migration guide,” http://docs.scala-lang.org/
overviews/core/actors-migration-guide.html.

[28] A. Kansal, S. Saponas, A. Brush, K. S.
McKinley, T. Mytkowicz, and R. Ziola, “The
latency, accuracy, and battery (lab) abstraction:
programmer productivity and energy efficiency
for continuous mobile context sensing,” ACM
SIGPLAN Notices, vol. 48, no. 10, pp. 661–676,
2013.

[29] V. Karagiannis and A. Papageorgiou, “Network-
integrated edge computing orchestrator for
application placement,” in Network and Service
Management (CNSM), 2017 13th International
Conference on. IEEE, 2017, pp. 1–5.

[30] M. Król and I. Psaras, “Nfaas: named function
as a service,” in Proceedings of the 4th ACM

Conference on Information-Centric Networking.
ACM, 2017, pp. 134–144.

[31] B. Liskov and L. Shrira, Promises: linguistic
support for efficient asynchronous procedure calls
in distributed systems. ACM, 1988, vol. 23, no. 7.

[32] H. Liu, T. Roeder, K. Walsh, R. Barr, and
E. G. Sirer, “Design and implementation of a
single system image operating system for ad hoc
networks,” in Proceedings of the 3rd international
conference on Mobile systems, applications, and
services. ACM, 2005, pp. 149–162.

[33] H. Mao, R. Netravali, and M. Alizadeh, “Neural
adaptive video streaming with pensieve,” in
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM,
2017, pp. 197–210.

[34] Mininet Team, “Mininet,” http://mininet.org/,
2018.

[35] R. Nishihara, P. Moritz, S. Wang, A. Tumanov,
W. Paul, J. Schleier-Smith, R. Liaw, M. Niknami,
M. I. Jordan, and I. Stoica, “Real-time machine
learning: The missing pieces,” in Proceedings of
the 16th Workshop on Hot Topics in Operating
Systems. ACM, 2017, pp. 106–110.

[36] P. Nordwall, “Running a 2400 akka nodes cluster
on google compute engine,” 2013.

[37] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies, “The case for vm-based cloudlets in
mobile computing,” IEEE pervasive Computing,
vol. 8, no. 4, 2009.

[38] D. Schafer, J. Edinger, J. M. Paluska, S. VanSyckel,
and C. Becker, “Tasklets:” better than best-
effort” computing,” in Computer Communication
and Networks (ICCCN), 2016 25th International
Conference on. IEEE, 2016, pp. 1–11.

[39] C. Shen, R. P. Singh, A. Phanishayee, A. Kansal,
and R. Mahajan, “Beam: Ending monolithic
applications for connected devices.” in USENIX
Annual Technical Conference, 2016, pp. 143–157.

[40] R. P. Singh, C. Shen, A. Phanishayee, A. Kansal,
and R. Mahajan, “A case for ending monolithic
apps for connected devices.” in HotOS, 2015.

[41] M. Sloman, “Policy driven management for
distributed systems,” Journal of network and
Systems Management, vol. 2, no. 4, pp. 333–360,
1994.

[42] P. Turner, B. B. Rao, and N. Rao, “Cpu bandwidth
control for cfs,” in Linux Symposium, vol. 10.
Citeseer, 2010, pp. 245–254.

85

http://www.erlang.org/
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html
http://mininet.org/


Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

[43] United Nations Office of Disaster Risk Reduction,
“The economic and human impact of disasters
in the last 10 years,” www.unisdr.org/files/42862
economichumanimpact20052014unisdr.pdf.

[44] A. Waterland, “stress,” https://people.seas.harvard.
edu/∼apw/stress/, 2014.

[45] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo,
J. Johnson, J. Lees, and M. Welsh, “Deploying
a wireless sensor network on an active volcano,”
IEEE internet computing, vol. 10, no. 2, pp. 18–25,
2006.

[46] L. Yan and N. McKeown, “Learning networking
by reproducing research results,” ACM SIGCOMM
Computer Communication Review, vol. 47, no. 2,
pp. 19–26, 2017.

[47] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica, “Spark: Cluster
computing with working sets.” HotCloud, vol. 10,
no. 10-10, p. 95, 2010.

[48] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and
E. A. Lee. (2018) AWStream: Adaptive Wide-Area
Streaming Analytics. [Online]. Available: https://
nebgnahz.github.io/awstream-paper/awstream.pdf

[49] I. Zhang, A. Szekeres, D. Van Aken, I. Ackerman,
S. D. Gribble, A. Krishnamurthy, and H. M.
Levy, “Customizable and extensible deployment
for mobile/cloud applications.” in OSDI, vol. 14,
2014, pp. 97–112.

AUTHOR BIOGRAPHIES

Jonathan Fürst is a visiting
researcher at NEC Laboratories
Europe and a postdoctoral
researcher at the IT University
of Copenhagen. He has
been working with software
controllable micro grids, sensor
networks, IoT systems and
Building Management Systems
(BMS) in non residential

buildings. During 2014 he was a visiting researcher at
UC Berkeley in the Software Defined Buildings (SDB)
group. His current research focuses on developing
better abstractions to program and run IoT applications
efficiently from edge to cloud.

Mauricio Fadel Argerich
is a research intern at NEC
Laboratories Europe. He is
a student from the Master’s
Degree in Data Science at La
Sapienza, Università di Roma,
and has previously obtained the
degree of Information Systems
Engineer at the Universidad
Tecnologica Nacional in
Argentina. He has worked

as a software engineer with different technologies
and carried out a research project in Automatic Link
Generation as a visiting student at the University of
Auckland in 2013. He is currently working on his thesis
on leveraging machine learning for IoT applications.

Kaifei Chen is a Ph.D.
candidate in Computer Science
at the University of California,
Berkeley. He is in the Building-
Energy-Transportation Systems
group. His research is focused
on mobile computing, indoor
localization, sensor networks,
and ubiquitous computing. He
obtained a bachelor degree
in Computer Science and

Technology from University of Science and Technology
of China. He was a visiting student in Carnegie Mellon
University Silicon Valley Campus in 2010, an intern
in Microsoft Research Asia in 2011, and an intern in
Microsoft Research Redmond in 2014.

Ernö Kovacs holds a Ph.D.
from the University of Stuttgart.
At NEC Laboratories Europe, he
is a Senior Manager for “Cloud
Services and Smart Things”.
His group works on Cloud
Computing, IoT analytics, self-
organisation and context-aware
services. He was a leading
architect in the SPICE and in the

MAGNET Beyond project. He is currently contributing
to the FIWARE, FIESTA and Mobinet projects. He was
an advisor to the Singapore Smart Nation program in
the Functional Specification round table and was leading
NECs engagement in the Safe City Singapore test bed.

86

www.unisdr.org/files/42862_economichumanimpact20052014unisdr.pdf
www.unisdr.org/files/42862_economichumanimpact20052014unisdr.pdf
https://people.seas.harvard.edu/~apw/stress/
https://people.seas.harvard.edu/~apw/stress/
https://nebgnahz.github.io/awstream-paper/awstream.pdf
https://nebgnahz.github.io/awstream-paper/awstream.pdf

	Introduction
	Motivation
	Application Scenario
	Key Design Goals

	Actor Model
	Problems with Existing Actor Systems

	Towards Adaptive Actors for Scalable IoT Applications
	System Overview
	Programming Model
	Developer Hints

	Adaptation
	Optimization


	Implementation and Evaluation
	Experimental Setup
	Latency-Accuracy Trade-offs
	Input Degradation
	Actor Degradation
	Actor Migration
	Adaptation Overhead

	Discussion
	Related Work
	Distributed Execution Frameworks
	Code Offloading
	Programming Abstraction

	Conclusion and Future Work

