
c© 2016 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Big Data (OJBD)
Volume 2, Issue 1, 2016

http://www.ronpub.com/ojbd
ISSN 2365-029X

Constructing Large-Scale Semantic Web
Indices for the Six RDF Collation Orders

Sven Groppe A, Dennis Heinrich A,
Christopher Blochwitz B, Thilo Pionteck C

A Institute of Information Systems (IFIS), University of Lübeck, Ratzeburger Allee 160,
D-23562 Lübeck, Germany, {groppe, heinrich}@ifis.uni-luebeck.de

B Institute of Computer Engineering (ITI), University of Lübeck, Ratzeburger Allee 160,
D-23562 Lübeck, Germany, blochwitz@iti.uni-luebeck.de

C Institut für Informations- und Kommunikationstechnik (IIKT), Otto-von-Guericke-Universität Magdeburg,
Universitätsplatz 2, D-39106 Magdeburg, Germany, thilo.pionteck@ovgu.de

ABSTRACT

The Semantic Web community collects masses of valuable and publicly available RDF data in order to drive the
success story of the Semantic Web. Efficient processing of these datasets requires their indexing. Semantic Web
indices make use of the simple data model of RDF: The basic concept of RDF is the triple, which hence has only 6
different collation orders. On the one hand having 6 collation orders indexed fast merge joins (consuming the sorted
input of the indices) can be applied as much as possible during query processing. On the other hand constructing
the indices for 6 different collation orders is very time-consuming for large-scale datasets. Hence the focus of this
paper is the efficient Semantic Web index construction for large-scale datasets on today’s multi-core computers. We
complete our discussion with a comprehensive performance evaluation, where our approach efficiently constructs
the indices of over 1 billion triples of real world data.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Semantic Web, RDF, index construction, external sorting, string sorting, patricia trie

1 INTRODUCTION

In order to realize the vision of the Semantic Web [38],
the World Wide Web Consortium (W3C) recommends a
number of standards. Among them are recommendations
for the data model Resource Description Framework
(RDF) [39] of the Semantic Web and the ontology
languages RDF Schema (RDFS) [9] and OWL [29].
Ontologies serve as schemas of RDF and contain im-
plicit knowledge for accompanying datasets. Hence us-
ing common ontologies enable interoperability between
heterogeneous datasets, but also proprietary ontologies
support the integration of these datasets based on their

contained implicit knowledge. Indeed one of the design
goals of the Semantic Web is to work in heterogeneous
Big Data environments. Furthermore, the Semantic Web
community and especially those organized in the Linking
Open Data (LOD) project [22] maintain a Big Data
collection of freely available and accessible large-scale
datasets (currently containing approximately 150 billion
triples in over 2,800 datasets [23, 24]) as well as links (of
equivalent entities) between these datasets.

Douglas Laney [21] coined the 3 V’s characteristics
of Big Data: Volume, Velocity and Variety1. Consider-

1 Later the community proposed an increasing number of V’s (e.g. [36]
for 7 V’s and [8] for the top 10 list of V’s).

11

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojbd

Open Journal of Big Data (OJBD), Volume 2, Issue 1, 2016

ing LOD datasets and the Semantic Web technologies,
variety of data is basically dealt with the support of
ontologies. The velocity of data can be only indirectly
seen in the ongoing increasing growth of the dataset
sizes in LOD, which are snapshots and are not typically
processed in real-time. Hence there is a need for speed-
ing up the processing of these Semantic Web datasets
addressing especially the volume characteristics.

Some (but not all) of the LOD datasets are also
available via SPARQL endpoints which can be queried
remotely [23]. However, also for these valuable large-
scale datasets (as well - of course - for those datasets
which are only available as dumps) it is often desirable to
import them to local databases because of performance
and availability reasons. An incremental update to
databases (inserting one triple after the other) will be too
time-consuming for importing large datasets and hence
will be impractical. Instead, it is essential to construct
indices from scratch in an efficient way. Efficient index
construction approaches are also needed in many other
situations, e.g. whenever databases need to be set up
from archived and previously made dumps, because of
e.g. a recovery (based on a backup) after a hardware
crash or reconfigurations of the underlying hardware
for upgrading purposes. Hence we propose an efficient
approach to speed up the index construction for large Se-
mantic Web datasets, which is one of the keys for paving
the way for the success of Semantic Web databases in the
Big Data age.

Today’s efficient Semantic Web databases [37, 27, 28,
14] use a dictionary to map the string representations of
RDF terms to unique integer ids. Using these integer ids
instead of space-consuming strings, the indices of those
Semantic Web databases do not waste much space on
external storage like SSDs and hard disks. Furthermore
and more important, processing integer ids instead of
strings is more efficient during atomic query processing
operations like comparisons and lowers the memory
footprint such that more intermediate results can be hold
in memory and less data must be swapped to external
storage especially for Big Data.

Semantic Web databases like [37, 27, 28, 14] further
use 6 indices (called evaluation indices) according to the
6 collation orders of RDF triples. This allows a fast
access to the data for any triple pattern having the result
sorted as required by fast database operations like merge
joins.

Overall this type of Semantic Web databases hence
needs to construct the dictionary and 6 evaluation in-
dices, which is very time-consuming. Our idea is to
use a very fast algorithm to construct the dictionary, but
to also smoothly incorporate the construction of the 6
evaluation indices into the generation of the dictionary.
Furthermore, we want to use the parallelism capabilities

of today’s multi-core CPUs to further speed up the index
construction.

The main contributions of this paper include:

• a new index construction approach for Semantic
Web data smoothly incorporating dictionary con-
struction and evaluation indices construction by
taking advantage of parallelism capabilities offered
by today’s multi-core CPUs, and

• a comprehensive performance evaluation and ana-
lysis of our proposed index construction approach
using large-scale real-world datasets with over 1
billion triples.

2 BASIC DATA STRUCTURES, INDICES AND
SORTING ALGORITHMS

In this section we shed light on the foundations of the
Semantic Web, its data model and its widely used index
approach. Moreover, we discuss the most important fam-
ily of external sorting algorithms, the external merge sort
algorithm. Furthermore, we shortly introduce patricia
tries which are extensively used by our new Semantic
Web index construction approach.

2.1 B+-Trees

The most widely used database index structures are
the B+-trees [11], which are search trees with self-
balancing capabilities and optimized for block-oriented
external storage. In comparison to B-trees [5], the B+-
tree stores all records in the leafs and its interior nodes
hold only keys. In this way the interior nodes maintain
more keys lowering the height of the overall search
tree. The database systems often build indices efficiently
by sorting the input data, which avoids expensive node
splitting (see [25] and extend its results to B+-trees, or
see [14]). Index construction by sorting is typically much
faster than processing unsorted data. Hence one of the
basic steps of index construction is sorting.

2.2 Semantic Web and Indices

The current World Wide Web aims at the humans as end
user: Humans easily understand text in natural language,
consider implicit knowledge and detect hidden relation-
ships. The vision of the Semantic Web [38] is a machine-
processable web [6] for the purpose of new applications
for its users. By explicitly structuring (web) information
the Semantic Web achieves simplification of automatic
processing. In order to push the idea of the Semantic
Web, in the recent years the Semantic Web initiative
of the World Wide Web Consortium (W3C) specified
a family of technologies and language standards like

12

S. Groppe, D. Heinrich, C. Blochwitz, T. Pionteck: Constructing Large-Scale Semantic Web Indices for the Six RDF Collation Orders

1 @prefix rdf: <http://www.w3.org/1999/02/22rdfsyntaxns#> .

2 @prefix rdfs: <http://www.w3.org/2000/01/rdfschema#> .

3 @prefix v: <http://www.ifis.uni-luebeck.de/vocabulary/> .

4 @prefix i: <http://www.ifis.uni-luebeck.de/instances/> .

5 v:Journal rdfs:subClassOf v:BibEntity .

6 v:Article rdfs:subClassOf v:BibEntity .

7 i:OJBD rdf:type v:Journal .

8 i:OJBD v:title "Open Journal of Big Data"^^xsd:string .

9 i:Article1 rdf:type v:Article .

10 i:Article1 v:title "Solving Big Problems"@en .

11 i:Article1 v:publishedIn i:OJBD .

12 i:Article1 v:creator i:Author_BigData .

13 i:Author_BigData v:name "Big Data Expert"^^xsd:string .

Listing 1: Example of RDF data

v:BibEntity

"Open Journal of Big Data"^^xsd:string "Solving Big Problems"@en

"Big Data Expert"^^xsd:string

rdfs:subClassOf rdfs:subClassOf

rdf:type rdf:type

v:publishedIn v:creator

v:name

v:title v:title

v:Journal v:Article

i:OJBD i:Article1 i:Author_BigData

Figure 1: RDF graph of the RDF data of Listing 1

the Resource Description Framework (RDF) [39] for
describing Semantic Web data. We introduce RDF in
the following section.

2.2.1 Resource Description Framework (RDF)

Originally designed to describe (web) resources, the Re-
source Description Framework (RDF) [39] can be used
to model any information as a set of triples. Following
the grammar of a simple sentence in natural language,
the first component s of a triple (s, p, o) is called the
subject, p is called the predicate and o the object. More
formally:

Definition (RDF triple): Assume there are pairwise
disjoint infinite sets I , B and L, where I represents the
set of IRIs, B the set of blank nodes and L the set of
literals. We call a triple (s, p, o) ∈ (I ∪ B) × I × (I ∪
B ∪ L) an RDF triple, where s represents the subject, p

the predicate and o the object of the RDF triple. We call
an element of I ∪B ∪ L an RDF term.

RDF data is typically visualized in RDF graphs by
drawing a directed labeled edge from a subject node to an
object node for each triple, where the label of the edge is
the predicate and common nodes are collapsed into one
unique node.

Listing 1 contains an example of RDF data and Fig-
ure 1 the corresponding RDF graph describing an article
in the OJBD journal.

2.2.2 Dictionary

Mapping RDF terms to integer ids lowers space require-
ments in the evaluation indices storing the input RDF
triples each of which with three integers instead of pos-
sibly large strings. Using difference encoding [27] and
avoiding to store leading zero bytes additionally saves

13

Open Journal of Big Data (OJBD), Volume 2, Issue 1, 2016

ID RDF term
0 i:Article1

1 i:Author_BigData

2 i:OJBD

3 rdfs:subClassOf

4 rdf:type

5 v:creator

6 v:name

7 v:publishedIn

8 v:title

9 v:Article

10 v:BibEntity

11 v:Journal

12 "Big Data Expert"^^xsd:string

13 "Open Journal of Big Data"^^xsd:string

14 "Solving Big Problems"@en

Table 1: Possible dictionary for the RDF terms in
Listing 1

1 11 3 10 .

2 9 3 10 .

3 2 4 11 .

4 2 8 13 .

5 0 4 9 .

6 0 8 14 .

7 0 7 2 .

8 0 5 1 .

9 1 6 12 .

Listing 2: ID triples of Listing 1 according to the
dictionary in Table 1

space. Furthermore, using ids enables space-efficient
representations of (intermediate) solutions lowering the
memory footprint: more solutions can be processed
before swapping to hard disks/SSDs starts increasing the
overall performance. For example, Listing 2 contains
the ID triples of Listing 1 according to the dictionary in
Table 1.

On the other hand using ids causes high costs for the
materializations of the RDF terms for (more seldom)
operations like sorting or relational comparisons like
<, ≤, ≥ and >, because these operations require the
string representations of the RDF terms and not the ids.
Whenever the query result is large, displaying the final
textual query result is also a costly operation. However,
especially for large-scale datasets, the advantages typi-
cally outweigh the disadvantages of using ids.

Hence, many Semantic Web query evaluators such
as RDF3X [27, 28] and Hexastore [37] as well as

LUPOSDATE [14] use dictionary indices to map RDF
terms into integer ids.

A dictionary needs two indices mapping RDF terms
into integer ids and vice versa. In Big Data scenarios the
dictionary indices typically do not fit into main memory.
LUPOSDATE uses a B+-tree for storing the mapping of
RDF terms into integer ids (and hence the key of the
B+-tree is the string representation and the value is the
integer id). The other mapping direction is maintained
in a file-based array of pointers addressing the strings of
RDF terms in a second file: For looking up the string
representation of an id the position of the pointer in the
first file is calculated by multiplying the id value with the
pointer size. Then the string can be directly accessed in
the second file according to the retrieved pointer. Hence
only two disk accesses are necessary for each lookup.

2.2.3 Evaluation Indices

Hexastore [37], RDF3X [27, 28] and LUPOSDATE [14]
maintain indices for the six collation orders SPO, SOP,
PSO, POS, OSP and OPS of RDF triples. For example,
the collation order SPO describes the order, where the
subjects (S) of triples are the primary order criterion,
the predicates (P) the secondary, and the objects (O) the
tertiary order criterion. In this way a prefix search in
the right index can directly deliver the results of a triple
pattern in any order: For example, any triple pattern
containing RDF terms in the subject and the object
position and a variable in the predicate position can be
answered by one index access performing a prefix search
in the SOP index having the subject and object as prefix
key. Furthermore, the result is ordered according to the
predicate. Supporting all 6 possible collation orders,
fast merge joins over the retrieved sorted sorted data for
several triple patterns can be most often applied. For
every collation order, for example, SPO, [37] proposes
to associate a subject key si to a sorted vector of ni

property keys, {pi1, pi2, ..., pini
}. Each property key pij

is, in its turn, linked to an associated sorted list of
ki,j object keys. These object lists (e.g. for SPO) are
shared in indices for corresponding collation orders (e.g.,
PSO). RDF3X [27, 28] and LUPOSDATE [14] just use
B+-trees as index structures for the different collation
orders, which is a simpler, faster, and hence more elegant
approach than [37]. For example, Figure 2 pictures a
B+-tree containing ID triples of Listing 2 according to
the SPO collation order.

RDF3X and LUPOSDATE use sophisticated data
structures and difference encoding to compress their
index structures by storing only the different components
of a triple in comparison to the last stored triple. Also
only the difference of the remaining components to the
corresponding ones of the previous triple are stored,

14

S. Groppe, D. Heinrich, C. Blochwitz, T. Pionteck: Constructing Large-Scale Semantic Web Indices for the Six RDF Collation Orders

 0 0 0

 4 5 7

 9 1 2

 0 1

 8 6

14 12

 2 2 9 11

 4 8 3 3

11 13 10 10

 0 1

 7 6

 2 12

S
P
O
ID

Triple

Figure 2: B+-tree containing ID triples of Listing 2
according to the SPO collation order

which reduces the number of bits necessary for the repre-
sentation of these components. RDF3X further supports
additional special aggregated indices for fast processing
of special kinds of queries, which occur only seldom, but
coming with the cost of maintaining additional indices.

In this paper we consider the construction of eval-
uation indices according to LUPOSDATE. However,
our approach can be easily modified to construct also
Hexastore or RDF3X indices by exchanging the last step
in our approach.

2.3 Heap

The smallest item from a collection can be efficiently
retrieved by using a (min-) heap (see [26]), which sup-
ports inserting as well as removing an item in logarithmic
time (in comparison to the items stored in the heap).
The internal organization of the heap is a tree, most
often a complete binary tree memory-efficiently stored
in an array. The heap condition requires the root of
each subtree to contain the smallest item of the subtree.
Hence adding an item inserts the item as leaf to the heap
tree and performs a bubble-up operation, which swaps
the item with its parent as long as it is smaller than its
parent. For removing the smallest item from the root
of the heap, the item in the most-right leaf of the bottom
level is moved to the free space in the root. Afterwards in
order to reestablish the heap condition, during a bubble-
down operation the root item is recursively swapped with
its minimum child if the minimum child is smaller than
it.

We can optimize a pair of remove- and insert-
operations and avoid one bubble-up operation by just
inserting the new item in the root and then performing a
bubble-down operation. We use this improvement during
merging the runs (see Section 3.9).

2.4 (External) Merge Sort

External sorting approaches sort data not fitting into the
main memory. One of the most widely used external

Legend:
 node with
 label kx

 edge for

c1…cy “c1…cy“
 string

kx

a2 a3

a4

aa bb

a b

a0

a1

a2 a3

a4

a b

a b

a0

a1

a

a4

b

1

2

1

2 a1

a) Trie b) Patricia Trie

Figure 3: a) Trie and an equivalent b) patricia trie
containing the strings ”aaa”, ”aab” and ”bb”

sorting approaches is (external) merge sort (see [20]),
which first generates initial runs of already sorted data.
By merging the initial runs a new round of runs is
generated until only one run containing all the data to
be sorted remains.

In contrast to binary merge phases, merging many
runs at once is more efficient. During this n-ary merge
phase, the minimum of these n open runs needs to be
determined. Recalling the described data structure of the
previous subsection, a heap is the ideal data structure for
this purpose.

Initial runs are usually generated by reading as much
data into main memory as still fit inside, sorting this data
in main memory and swapping the sorted data as run to
external storage. Fast main memory sort algorithms like
quicksort, (main memory) merge sort (and its parallel
version) and heapsort are typically chosen for sorting the
data in main memory [14].

In this paper, we propose a kind of specialized external
merge sort algorithm for constructing the 6 evaluation
indices for the 6 collation orders of RDF, which is
smoothly integrated into the dictionary construction uti-
lizing PatTrieSort [17] to be described in Section 2.6.

2.5 Patricia Tries

Tries (e.g., [1]) avoid to store common prefixes of their
contained strings (e.g., see Figure 3 a)) by maintaining
a special tree structure. Each edge in this tree is labeled
with one character, and the concatenation of the char-
acters along the path from the root to the leaf form the
stored strings in the trie. For efficient storage and access
to the stored strings, duplicates in the edge labels of a
node are not allowed, and the edges are lexicographically
ordered according to their labels.

Patricia tries are a compressed variant (see Figure 3),
where all trie nodes (except of the root node) with only
one child are melt together with their single child (and
the edge between them is removed). The label of the
incoming edge of the new node holds the concatenation

15

Open Journal of Big Data (OJBD), Volume 2, Issue 1, 2016

of its previous label and the label of the old edge to the
child. For efficient search and update operations, the
edges are sorted according to the lexicographical order
of their labels. In contrast to tries, the label in a patricia
trie can be an empty string (denoted by ∅), which occurs
if the patricia trie contains a substring of another one.

Semantic Web data typically consist of many strings
with common prefix, as often IRIs [13] are used. Thus,
patricia tries are the ideal data structure to store Semantic
Web data in main memory.

2.6 PatTrieSort

In [17], we use patricia tries for initial run generation
in an external merge sort variant for strings called Pat-
TrieSort, such that initial runs - because of the compact
representation of strings in patricia tries - are usually
larger compared to traditional external merge sort ap-
proaches consuming the same main memory size. Fur-
thermore, PatTrieSort stores the initial runs as patricia
tries instead of lists of sorted strings, as patricia tries
can be efficiently merged in a streaming fashion having a
superior performance in comparison to merging runs of
sorted strings.

We propose to use PatTrieSort for sorting the RDF
terms as preparing step for generating the dictionary. We
further propose to smoothly integrate mapping the RDF
terms of triples to ids and sorting the triples according to
the six collation orders of RDF in PatTrieSort in order to
speed up the overall index construction.

2.7 Further Related Work

While [30, 12] introduce basic sorting algorithms in
more detail, [35, 3] are appropriate as surveys on external
string sorting.

Some contributions utilize tries already for sorting
(e.g., burstsort and its variants [34, 33]). In burstsort, a
trie is dynamically constructed as strings are sorted, and
is used to allocate a string to a bucket. For full buckets
new nodes of the trie are constructed the leafs of which
are again buckets. However, these algorithms work only
in main memory for the purpose of lowering the rate of
cache miss and are not developed for external sorting.

The main idea (and conclusion) of [40] is that it is
faster to compress the data, sort it, and then decompress
it than to sort the uncompressed data. This approach re-
duces disk and transfer costs, and, in the case of external
sorts, cuts merge costs by reducing the number of runs.
The authors of [40] propose a trie-based structure for
constructing a coding table for the strings to be sorted.
In comparison, we do not use codes, but we also store
compressed runs by storing the patricia trie containing

all the entries of the run, which reduces the space on disk
and in memory, too.

The contributions in [4] lay the foundations for a
complexity analysis for I/O costs for the string sorting
problem in external memory. Its contribution covers the
discussion of optimal bounds for this problem under dif-
ferent variants of the I/O comparison model, which allow
or not allow strings to be divided in single characters in
main memory and/or on disk.

In [16], we already propose approaches to construct
indices for the 6 collation orders of RDF. However,
the proposed approaches in [16] do not construct a
dictionary and the triples are stored with the string
representations of RDF terms instead of ids.

3 CONSTRUCTING INDICES ACCORDING TO
6 RDF COLLATION ORDERS

We focus on constructing indices for Semantic Web
databases supporting dictionaries for mapping RDF
terms to integer identifiers (in order to lower space
requirements and memory footprint resulting in higher
performance for most query types) and retrieving pre-
sorted data according to the six RDF collation orders
(in order to support as many merge joins as possible).
The main tasks for index construction are hence a)
dictionary construction, b) mapping the RDF triples to
id triples using the integer ids of the dictionary and c)
constructing the evaluation indices according to the six
different collation orders of RDF. The naive way is to
separate these three main tasks in different phases during
index construction, and (even worse) to separate the
construction of the six evaluation indices into 6 different
sub-phases.

In contrast to this naive way, we propose to smoothly
integrate all these tasks in order to avoid unnecessary I/O
workload and computations.

We propose to apply a sophisticated process of 9 steps,
which we describe in the following subsections in more
detail. Figure 4 contains an overview of the overall
process including an example.

3.1 Building Patricia Tries and Mapping
Triples to Temporary IDs

According to [17] utilizing patricia tries for sorting the
RDF terms of large-scale datasets is highly efficient. In
more detail in [17] we propose the PatTrieSort approach,
which constructs patricia tries in main memory, rolls the
full patricia tries out into external storage (but storing
them as patricia tries) and finally merges them by a
merge algorithm specialized to patricia tries.

Our main idea is to smoothly integrate the remaining
tasks into PatTrieSort: the mapping of the RDF triples to

16

S. Groppe, D. Heinrich, C. Blochwitz, T. Pionteck: Constructing Large-Scale Semantic Web Indices for the Six RDF Collation Orders

4

Blocks of RDF Data

v:
rdf

0
6

11

1
1
3

2
5

10

3
4
9

4
0
2

5
2
4

6
3
8

7
7

13

v:

2
8
9

5
6
7

9
5
6

7
4
5

A

6
2
2

8
1
1

0
0
0

10
9

12

4
10
14

3
7
8

1
3
4

v:

9765

A

2

10 12 148 11103 13

v:Journal rdfs:subClassOf v:BibEntity .

v:Article rdfs:subClassOf v:BibEntity .

i:OJBD rdf:type v:Journal .

i:OJBD v:title "Open Journal of Big Data"^^xsd:string .

1. Build patricia trie and map triples to temporary IDs

2. Map to
local IDs

0 1 2 .

3 1 2 .

4 5 0 .

4 6 7 .

0 1 2 .

0 3 4 .

0 5 6 .

0 7 8 .

8 9 10 .

0 3 8 .

0 7 10 .

0 6 2 .

0 4 1 .

1 5 9 .

…

6 1 5 .

4 1 5 .

0 2 6 .

0 3 7 .

0 2 6 .

0 3 7 .

4 1 5 .

6 1 5 .

S P O

4 1 5 .

6 1 5 .

0 2 6 .

0 3 7 .

O P S

4. Sort 6 times and store runs

0 3 8 .

0 4 1 .

0 6 2 .

0 7 10 .

1 5 9 .

S P O

0 4 1 .

0 6 2 .

0 3 8 .

1 5 9 .

0 7 10 .

O P S

…3. Roll out patricia trie

5. Merge patricia tries

Dictionary

String → ID
(B+-tree)

ID → String
(Diskbased Array)

6. Generate dictionary

…
2 4 11 .

2 8 13 .

9 3 10 .

11 3 10 .

S P O

9 3 10 .

11 3 10 .

2 4 11 .

2 8 13 .

O P S

7. Determine
mapping from

local to global IDs

0 4 9 .

0 5 1 .

0 7 2 .

0 8 14 .

1 6 12 .

S P O

0 5 1 .

0 7 2 .

0 4 9 .

1 6 12 .

0 8 14 .

O P S

…

Evaluation Indices

…SPO
(B+-tree)

OPS
(B+-tree)

9. Merge runs and
generate evaluation indices

8. Map runs from
local to global IDs

ID types:
temporary

local
global

i:Article1 rdf:type v:Article .

i:Article1 v:title "Solving Big Problems"@en .

i:Article1 v:publishedIn i:OJBD .

i:Article1 v:creator i:Author_BigData .

i:Author_BigData v:name "Big Data Expert"^^xsd:string .

Figure 4: Overview of index construction process with example

17

Open Journal of Big Data (OJBD), Volume 2, Issue 1, 2016

id triples and sorting them according to the six collation
orders. We also want to save as much memory space as
possible, such that more triples can be processed block-
wise in main memory leading to larger runs of sorted
id triples stored in external storage. Hence we propose
to use id triples as early as possible: After reading a
triple according to PatTrieSort we first add the string
representations of its RDF terms (i.e., subject, predicate
and object) into the main-memory patricia trie (see step
1 in Figure 4).

In order to avoid several reads of the RDF data, we
propose to hold also the triples in main memory, sort
them before the main-memory patricia trie is rolled
out according to the six collation order and finally
write these sorted runs according to the six collation
orders to external storage. However, storing the string
representations of the RDF terms for each triple is
too space-consuming, which abolishes the advantage of
PatTrieSort of space-efficiently storing strings. Hence
we propose to transform the RDF triple to an id triple
right after reading a triple, which greatly saves main-
memory by storing only 3 integers instead of 3 strings
for each triple. However, right after reading a triple we
have not the ids of its RDF terms (because the dictionary
has not been built so far). Hence we propose to map the
RDF terms first to a temporary id, which we maintain
in the currently constructed patricia trie acting as main-
memory key-value store with the RDF terms as keys and
the temporary ids as values: We just check if the RDF
term to be mapped is already included in the currently
constructed patricia trie. In the case that the RDF term
is included we use its previously assigned temporary
id. In the other case we assign a new temporary id
(corresponding to the current number of entries in the
patricia trie) for the RDF term and store this temporary
id at the leaf of the RDF term in the patricia trie.

3.2 Mapping to Local IDs

Once the current block of triples is completely read in,
our approach maps the temporary ids (built according
to the occurrences of the RDF terms) of the loaded
triples to local ids (built according to the lexical order
of the RDF terms) (see step 2 in Figure 4). For this
purpose, we determine a mapping of the temporary ids
to the local ids by just constructing a one-dimensional
array, where the index in the array corresponds to the
temporary id and the array value at the index to the
local id (which corresponds to the position in the sorted
sequence of RDF terms). This one-dimensional array
can be constructed during one in-order traverse through
the patricia trie of RDF terms.

In one of the following steps, we want to already
generate initial runs after sorting the loaded triples,

which are later (mapped to global ids and) merged for
determining a complete sorted sequence of triples. For
this purpose, the relative order between local ids and
global ids must be the same, i.e., if a local id id1 is
smaller than another one id2 (id1 < id2), then the
same order-relation must hold for the corresponding
global ids (global(id1) < global(id2) with global is a
mapping from local to global ids). The simplest way
is to use the lexical order of the original RDF terms
(which is always implicitly given and can be determined
in different blocks of triples independently from each
other), although in general it is only important that the
dictionary is constructed according to any order. Indeed
this initial order of ids according to the lexical order of
the original RDF terms will be destroyed after updates on
the constructed indices, which typically introduce new
ids without considering the lexical order of original RDF
terms in order to avoid a costly renumbering of the old
ids.

3.3 Rolling Out Patricia Trie

Before we sort the triples with local ids according to the
six collation orders of RDF, which consumes 6 times
more main memory for maintaining the triples, we roll
out the current patricia trie to free up main memory (see
step 3 in Figure 4). It is important that the patricia trie is
swapped to external memory (like harddisk or SSD) in a
format, where the structure of the patricia tries remains,
and the nodes of the patricia trie are stored by a left-
order traversal through the patricia trie. In this way the
patricia trie does not need to be constructed again and
can be directly reused (in the later step for mapping
the local ids to global ones). Furthermore, besides
having a very compact representation of the contained
strings, the patricia trie in this form can be processed in
a streaming fashion [17], which is especially important
for a later merging of all the patricia tries for generating
the dictionary.

3.4 Sorting Runs of Triples Cccording to 6
Collation Orders

In this 4th step (see Figure 4) the loaded triples with local
ids are sorted according to the 6 collation orders. Our
idea is to use the properties of RDF and of the local id
triples for further improving the processing speed. We
observe the following properties:

• We have to sort triples composed of integers with
a limited, relatively small domain (from 0 to n −
1, where n is the number of distinct RDF terms in
the current block of RDF triples, i.e. the number
of contained RDF terms in the previously rolled out
patricia trie).

18

S. Groppe, D. Heinrich, C. Blochwitz, T. Pionteck: Constructing Large-Scale Semantic Web Indices for the Six RDF Collation Orders

• The 6 collation orders of RDF have 3 primary col-
lation order criteria (subject, predicate and object),
each of which having 2 secondary collation order
criteria (subject, predicate and object without the
primary collation order criterion).

Among the sorting algorithms Counting Sort [20, 31]
is a specialized linear runtime algorithm working on
keys with small domain. Hence we propose to use
Counting Sort for sorting the local ids triples according
to the 3 primary collation orders (subject, predicate and
object). Counting Sort has another advantage: It already
determines the borders of blocks of triples with the same
primary key in the sorted output. Hence we can use these
borders to sort blocks of triples with the same primary
key according the secondary and tertiary keys with a fast
standard sorting algorithm like quicksort [19].

We can easily parallelize sorting by

• dealing with the 3 primary collation orders in paral-
lel, and

• sorting the blocks of triples with the same primary
key in parallel.

Afterwards the 6 different runs for the six collation
orders can be swapped to external memory (like harddisk
or SSD). Inspired by [27, 28] we use difference encoding
in order to compress the data for saving space and
increasing the speed of I/O operations. Difference en-
coding does not store common components of the current
triple compared to the previous one. Furthermore, for
the different components of the triple, we only store
the difference to the previous triple, which is a smaller
number. We also only store as many bytes of an integer
id (its difference to the previous triple respectively)
as necessary (avoiding to store leading zeros). This
lightweight compression scheme is fast to compute, but
saves many I/O operations, which overall hence saves
also computation costs. All the other blocks of RDF
data are now processed in the same way (steps 1 to 4
in Figure 4).

3.5 Merging Patricia Tries

In order to construct a uniform mapping from RDF terms
(in form of strings) to global ids (in form of integers)
and vice versa (i.e., the dictionary), we need to merge
all the generated patricia tries (see step 5 in Figure 4).
We propose to use the merge algorithm of [17] working
directly on patricia tries, being very efficient and having
some extraordinary advantages: According to [17], the
merge algorithm for patricia tries can have an arbitrary
number of patricia tries as input, reads and processes
all these input patricia tries by a left-order traversal,
and stores the resultant merged patricia trie again in

a left-order traversal. Hence the merge algorithm can
merge as many patricia tries at once, as many nodes of
patricia tries can be intermediately held in main memory.
Typically there is only one merging step necessary even
for huge datasets to be sorted, which further improves
the speed of the overall algorithm.

3.6 Generating Dictionary

After the patricia tries have been merged, the dictionary
can be generated (see step 6 in Figure 4). The dictionary
consists of two indices: The first index is a B+-tree for
the mapping of the RDF terms (in form of strings) to the
global ids (in form of integer values). The second index
maintains the other mapping direction from the global
ids to the RDF terms. For fast access, this index is stored
in a file-based array of pointers addressing the strings of
RDF terms in another file. In this way there are only two
disk accesses necessary for retrieving the RDF term of a
global id: We can look up the RDF term in the second
file at the position addressed by the pointer stored at the
position calculated by multiplying the global id value
with the pointer size in the first file.

Both indices, the B+-tree (see [25] and extend its
results to B+-trees, or see [14]) as well as the file-based
array can be generated by iterating one time through the
sorted sequence of RDF terms.

Generating the dictionary indices can be parallelized
by generating the two indices in parallel.

3.7 Determining Mapping from Local to
Global IDs

After the dictionary has been generated the next step is to
determine a mapping from the local ids of the runs to the
global ids of the dictionary (see step 7 in Figure 4). As
dictionary lookups are expensive especially for masses
of lookups, we want to avoid dictionary lookups as much
as possible. For this reason, we load the rolled out
patricia tries for each run and traverse one time through
the patricia tries. For each element in a considered
patricia trie, we look up one time in the dictionary
to retrieve its global id. At the same time we build
the mapping by using an one-dimensional array, where
the index corresponds to current position in the patricia
trie (which is the local id) and we set its value to the
retrieved global id. Note that the one-dimensional array
has a range from 0 to n − 1, where n is the number
of elements contained in the patricia trie. It is hence
a very compact representation of the mapping. After
traversing the patricia trie, we can free up its resources as
we will only work with the mapping (stored in the one-
dimensional array) and do need the patricia trie of the
run any more.

19

Open Journal of Big Data (OJBD), Volume 2, Issue 1, 2016

3.8 Mapping Runs from Local to Global IDs

In the 8th step of Figure 4 we use the mapping (in form
of an one-dimensional array) determined in the previous
step to go through the corresponding run and replace
all local ids with their global ones by looking up the
mentioned one-dimensional array at the index position of
the local id. As not all mappings and runs fit into main
memory, we again swap the runs (this time containing
global ids) to external memory.

3.9 Merging Runs and Generating Evaluation
Indices

In the last step and for each collation order of RDF,
we merge all its runs containing global ids (see step
9 in Figure 4). As for large-scale datasets many runs
must be merged, we use a heap of the current triples of
each run (i.e., the heap has the size of the number of
runs). Determining the next smallest triple can be done
in logarithmic time (in relation to the number of runs)
when using a heap in comparison to a linear time for
a linear search through all current triples of the runs.
During merging, we always remove the smallest triple
of the remaining ones located in the root of the heap and
insert the next triple of that run, which is the same as
the one of the removed triple. We optimize this pair of
removing and insertion operations by first placing the
new triple in the root and then performing a bubble-
down operation in the heap, which avoids one bubble-up
operation.

For each collation order of RDF while merging, we
can build the evaluation index (in form of a B+-tree) in
one pass through the corresponding final merged run (see
[25] and extend its results to B+-trees, or see [14]).

We can parallelize this step by merging and generating
the evaluation indices in parallel for each of the six
collation orders.

4 EXPERIMENTAL ANALYSIS

We compare the runtime of our proposed index con-
struction approach for different parameters. The imple-
mentation of the index construction approach is open
source and publicly available as part of the LUPOS-
DATE project [14, 15]. We describe the configuration of
the test system in Section 4.1, the used dataset in Section
4.2 and the experimental results and analysis in Section
4.3.

4.1 Configuration of the Test System

The test system for the performance analysis uses an
Intel Xeon X5550 2 Quad CPU computer, each with
2.66 Gigahertz, 72 Gigabytes main memory, Windows

7 (64 bit) and Java 1.8. We have used a hard disk for
reading in the input data and a 500 GBytes SSD for
writing out the runs. The input data is read and parsed
asynchronously (by 8 threads) using a bounded buffer.
For saving space, we compressed the input data by using
BZIP2 [32]. Decompression is done on-the-fly during
reading in the input data. We have run the experiments
ten times and present the average execution times.

4.2 Billion Triples Challenge

The overall objective of the Semantic Web challenge is
to apply Semantic Web techniques in building online
end-user applications that integrate, combine and deduce
information needed to assist users in performing tasks
[18]. For this purpose, in last years large-scale datasets
were crawled from online sources which are used by
researchers to showcase their work and compete with
each other. The Billion Triples Challenge (BTC) dataset
of 2012 [2] consists of 1 436 545 545 triples crawled
from different sources like Datahub, DBpedia, Freebase,
Rest and Timbl. BTC is perfectly suited as example for
large-scale datasets consisting of real world data with
varying quality and containing noisy data.

Although we have used input data with over 1 billion
entries, we only use one merging step for merging the
patricia tries.

4.3 Results

Figure 5 contains the total construction times for import-
ing the whole BTC dataset of 2012 [2]. As explained
in Section 3, the RDF triples are block-wise processed
during index construction. We have varied the sizes of
RDF blocks and present the results when using block
sizes of 1, 5, 10, 25, 50 and 100 million triples. Overall
and for our test system we achieve best results for an
RDF block size of 10 million triples.

For investigating why using smaller or larger block
sizes slows down index construction, Figure 6 contains
the single times for the different phases of index con-
struction2. While the processing times of most phases
remain about the same for different block sizes or are
not significantly compared to the total index construction
time, building the patricia tries becomes slower for larger
block sizes and mapping initial runs to global ids faster,

2 In addition to the evaluation indices, LUPOSDATE constructs indices
(called histogram indices) with the help of which LUPOSDATE
efficiently determines histograms of triple pattern results [14]. Like
constructing the evaluation indices, the construction of the histogram
indices can be done in one pass through the corresponding final
merged run, and roughly takes about the same time as constructing
the evaluation indices. Please note that in our presentation of the
experimental results the times to construct the histogram indices are
included in the times to construct the evaluation indices.

20

S. Groppe, D. Heinrich, C. Blochwitz, T. Pionteck: Constructing Large-Scale Semantic Web Indices for the Six RDF Collation Orders

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 M 5 M 10 M 25 M 50 M 100 M

C
o

n
st

ru
ct

io
n

 T
im

e
 in

 S
e

co
n

d
s

Size of RDF Blocks (Number of Triples)

Building patricia tries Mapping to local IDs Local sorting Merging tries

Generating global dictionary Mapping initial runs to global ids Merging initial runs Generating evaluation indices

Figure 5: The total index construction times for different sizes of RDF blocks

i.e. we have two contrary trends for the processing times
of index construction phases for larger block sizes. We
also observed in [17] that larger block sizes increase
the times for building the patricia tries, which may be
explained by more complex computations necessary to
add a string to a fuller patricia trie in comparison to the
insertion into emptier patricia tries. For mapping initial
runs to global ids we need more lookups in the global
dictionary (for determining the global id of a given RDF
term) for smaller RDF blocks, as often used RDF terms
must be looked up for many RDF blocks containing
these RDF terms. Larger block sizes hence decrease the
number of lookups for duplicated RDF terms, as each
RDF term is only looked up at most once for each block
(see Section 3.7).

5 SUMMARY AND CONCLUSIONS

The Semantic Web with its large-scale datasets (e.g.,
those collected in the Linking Open Data (LOD) project
[23, 24]) cries for efficient index construction approaches
in order to build indexes from scratch for succeeding big
data analytics.

In this paper we propose an efficient index construc-
tion approach in order to generate a dictionary (i.e., a

mapping from the string representation of RDF terms to
unique integer ids and vice versa) and evaluation indices
according to the 6 collation orders of RDF, which are
widely used indices in Semantic Web databases. We
describe a sophisticated process, where the generation
of the evaluation indices is smoothly integrated into the
dictionary construction in order to save I/O costs as well
as computation costs. Our proposed approach is paral-
lelized in many phases of the index construction to take
advantage of the today’s multi-core CPUs. Furthermore,
the data is compressed as early as possible in order to
lower the main memory footprint and process bigger
blocks of triples in main memory (by using patricia tries
and ids as early as possible), and transfer less bytes to
and from external storage (by natively storing patricia
tries and applying difference encoding during storing the
runs). The proposed index construction approach is also
designed to apply very efficient algorithms like Counting
Sort working on small domains, which we especially
created for this purpose by introducing local ids for each
block of triples.

A comprehensive experimental analysis shows the
practical feasibility of the proposed approach by ana-
lyzing the execution times for importing over 1 billion
triples of the overall construction approach.

21

Open Journal of Big Data (OJBD), Volume 2, Issue 1, 2016

0

5000

10000

15000

20000

25000

1 M 5 M 10 M 25 M 50 M 100 M

Ti
m

e
 in

 S
e

co
n

d
s

Size of RDF Blocks (Number of Triples)

Building patricia tries Mapping to local IDs Local sorting Merging tries

Generating global dictionary Mapping initial runs to global ids Merging initial runs Generating evaluation indices

Figure 6: The processing times of the different phases of index construction for different sizes of RDF blocks

Our major contribution to the big data area is hence
on volume since our proposed approach can manage,
process and organize a large quantity of data, validated
by system design and experimental results.

Future work includes research on distributed and
hardware-accelerated index construction. Especially the
construction of the patricia tries and generating the runs
can be independently processed for each block of RDF
data and hence these steps seem to be perfectly suitable
for distributed processing and hardware-accelerating by
FPGAs and/or GPUs. First results for the generation of
patricia tries hardware-accelerated by FPGAs are already
available [7], which need to be further extended to cover
the full index construction process.

Handling large volumes of real data from various
sources may cause data quality issues. Future work
covers approaches to ensure data quality directly during
data import. Furthermore, in recent years there is an
increasing number of attacks based on data hacking and
data security breaches. In order to overcome related
problems we have to integrate methods to ensure that
data to be imported is not altered, manipulated or falsely
replicated, which we need to take care of even for
publicly freely available datasets such as those of LOD.
The development of whole systems like adapting [10] for

RDF datasets (also in the context of LOD) is one of the
key challenges in the near future.

ACKNOWLEDGEMENTS

This work is funded by the German Research Foundation
(DFG) project GR 3435/9-1.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D.
Ullman, Data structures and algorithms.
Reading, Mass.: Addison-Wesley, 1983. [Online].
Available: http://www.worldcat.org/search?qt=
worldcat org all&q=0201000237

[2] Andreas Harth, “Billion Triples Challenge 2012
Dataset,” http://km.aifb.kit.edu/projects/btc-2012/,
2012.

[3] R. Angrish and D. Garg, “Efficient string sorting
algorithms: Cache-aware and cache-oblivious,” In-
ternational Journal of Soft Computing and Engi-
neering (IJSCE), vol. 1, 2011.

[4] L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter,
“On sorting strings in external memory (extended

22

http://www.worldcat.org/search?qt=worldcat_org_all&q=0201000237
http://www.worldcat.org/search?qt=worldcat_org_all&q=0201000237

S. Groppe, D. Heinrich, C. Blochwitz, T. Pionteck: Constructing Large-Scale Semantic Web Indices for the Six RDF Collation Orders

abstract),” in Proceedings of the Twenty-ninth An-
nual ACM Symposium on Theory of Computing,
ser. STOC ’97. New York, NY, USA: ACM, 1997,
pp. 540–548.

[5] R. Bayer and E. McCreight, “Organization and
maintenance of large ordered indices,” in Proceed-
ings of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Con-
trol, ser. SIGFIDET ’70. New York, NY, USA:
ACM, 1970, pp. 107–141.

[6] T. Berners-Lee and M. Fischetti, Weaving the Web:
The Original Design and Ultimate Destiny of the
World Wide Web by Its Inventor, 1st ed. Harper
San Francisco, 1999.

[7] C. Blochwitz, J. M. Joseph, T. Pionteck, R. Back-
asch, S. Werner, D. Heinrich, and S. Groppe, “An
optimized Radix-Tree for hardware-accelerated in-
dex generation for Semantic Web Databases,” in In-
ternational Conference on ReConFigurable Com-
puting and FPGAs (ReConFig), Cancun, Mexico,
December 7 - 9 2015.

[8] K. Borne, “Top 10 Big Data Challenges A
Serious Look at 10 Big Data Vs,” Gart-
ner, https://www.mapr.com/blog/top-10-big-data-
challenges-serious-look-10-big-data-vs, 2014.

[9] D. Brickley and R. V. Guha, “Rdf vocabu-
lary description language 1.0: Rdf schema,
w3c recommendation,” http://www.w3.org/TR/rdf-
schema/, 2004.

[10] V. Chang, Y.-H. Kuo, and M. Ramachandran,
“Cloud computing adoption framework: A security
framework for business clouds,” Future Generation
Computer Systems, vol. 57, pp. 24 – 41, 2016.

[11] D. Comer, “Ubiquitous b-tree,” ACM Comput.
Surv., vol. 11, no. 2, pp. 121–137, Jun. 1979.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms (3. ed.). MIT
Press, 2009.

[13] M. Duerst and M. Suignard, “Rfc 3987: Interna-
tionalized resource identifiers (iris),” Internet En-
gineering Task Force (IETF), http://www.ietf.org/
rfc/rfc3987.txt, 2005.

[14] S. Groppe, Data Management and Query Process-
ing in Semantic Web Databases. Springer, 2011.

[15] S. Groppe, “LUPOSDATE Semantic
Web Database Management System,”
https://github.com/luposdate/luposdate, 2015,
[Online; accessed 26.1.2015].

[16] S. Groppe and J. Groppe, “External Sorting
for Index Construction of Large Semantic Web

Databases,” in Proceedings of the 25th ACM Sym-
posium on Applied Computing, Vol. II (ACM SAC
2010). Sierre, Switzerland: ACM, 2010, pp.
1373–1380.

[17] S. Groppe, D. Heinrich, S. Werner, C. Blochwitz,
and T. Pionteck, “Pattriesort - external string
sorting based on patricia tries,” Open Journal
of Databases (OJDB), vol. 2, no. 1, pp. 36–50,
2015. [Online]. Available: http://www.ronpub.
com/publications/OJDB 2015v2i1n03 Groppe.pdf

[18] A. Harth and S. Bechhofer, “A new ap-
plication award - Semantic Web Challenge,”
http://challenge.semanticweb.org/, 2014.

[19] C. A. R. Hoare, “Quicksort,” The Computer Jour-
nal, vol. 5, no. 1, pp. 10–16, 1962.

[20] D. E. Knuth, The Art of Computer Programming,
Volume III: Sorting and Searching. Addison-
Wesley, 1973.

[21] D. Laney, “3D Data Management: Controlling
Data Volume, Velocity and Variety,” Gartner,
http://blogs.gartner.com/doug-laney/files/2012/01/
ad949-3D-Data-Management-Controlling-Data-
Volume-Velocity-and-Variety.pdf, 2001.

[22] Linked Data, “Linked Data - Connect
Distributed Data across the Web,” 2016,
[Online; accessed 4.11.2016]. [Online]. Available:
http://www.linkeddata.org

[23] LOD2, “LODStats,” 2016, [Online; accessed
4.11.2016]. [Online]. Available: http://stats.lod2.
eu/

[24] LOD2, “Welcome - LOD2 - Creating Knowledge
out of Interlinked Data,” 2016, [Online; accessed
4.11.2016]. [Online]. Available: http://lod2.eu

[25] R. Miller, N. Pippenger, A. Rosenberg, and L. Sny-
der, “Optimal 2-3 trees,” in IBM Research Lab.
Yorktown Heights, NY, 1977.

[26] R. E. Miller, N. Pippenger, A. L. Rosenberg, and
L. Snyder, “Optimal 2, 3-trees.” SIAM J. Comput.,
vol. 8, no. 1, pp. 42–59, 1979.

[27] T. Neumann and G. Weikum, “RDF3X: a RISC-
style Engine for RDF,” in VLDB, Auckland, New
Zealand, 2008.

[28] T. Neumann and G. Weikum, “Scalable join pro-
cessing on very large RDF graphs,” in SIGMOD,
2009.

[29] W. OWL Working Group, OWL 2 Web Ontology
Language: Document Overview (Second Edition).
W3C Recommendation, 11 December 2012, avail-
able at http://www.w3.org/TR/owl2-overview/.

23

https://www.mapr.com/blog/top-10-big-data-challenges-serious-look-10-big-data-vs
https://www.mapr.com/blog/top-10-big-data-challenges-serious-look-10-big-data-vs
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt
https://github.com/luposdate/luposdate
http://www.ronpub.com/publications/OJDB_2015v2i1n03_Groppe.pdf
http://www.ronpub.com/publications/OJDB_2015v2i1n03_Groppe.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://www.linkeddata.org
http://stats.lod2.eu/
http://stats.lod2.eu/
http://lod2.eu
http://www.w3.org/TR/owl2-overview/

Open Journal of Big Data (OJBD), Volume 2, Issue 1, 2016

[30] R. Sedgewick and K. Wayne, Algorithms, 4th Edi-
tion. Addison-Wesley, 2011.

[31] H. H. Seward, 2.4.6 Internal Sorting by Floating
Digital Sort, Information sorting in the application
of electronic digital computers to business oper-
ations, Master’s thesis, Report R-232. Mas-
sachusetts Institute of Technology, Digital Com-
puter Laboratory, 1954.

[32] J. Seward, “bzip2 - bzip2 and libbzip2,” http://
www.bzip.org/, 2014.

[33] R. Sinha and J. Zobel, “Using random sampling to
build approximate tries for efficient string sorting,”
J. Exp. Algorithmics, vol. 10, p. 2.10, 2005.

[34] R. Sinha and J. Zobel, “Efficient trie-based sorting
of large sets of strings,” in Proceedings of the
26th Australasian Computer Science Conference
- Volume 16, ser. ACSC ’03. Darlinghurst,
Australia, Australia: Australian Computer Society,
Inc., 2003, pp. 11–18.

[35] R. Sinha and J. Zobel, “Cache-conscious sorting
of large sets of strings with dynamic tries,” J. Exp.
Algorithmics, vol. 9, Dec. 2004.

[36] M. A. u. d. Khan, M. F. Uddin, and N. Gupta,
“Seven v’s of big data understanding big data to
extract value,” in Proceedings of the 2014 Zone 1
Conference of the American Society for Engineer-
ing Education, 2014, pp. 1–5.

[37] C. Weiss, P. Karras, and A. Bernstein, “Hexastore:
Sextuple Indexing for Semantic Web Data Manage-
ment,” in VLDB, 2008.

[38] World Wide Web Consortium, “W3C Data Activity
- Building the Web of Data,” https://www.w3.org/
2013/data/, 2016.

[39] World Wide Web Consortium (W3C), “RDF/XML
Syntax Specification (Revised),” 2004, w3C Rec-
ommendation. [Online]. Available: http://www.w3.
org/2004/REC-rdf-syntax-grammar-20040210/

[40] J. Yiannis and J. Zobel, “Compression techniques
for fast external sorting,” The VLDB Journal,
vol. 16, no. 2, pp. 269–291, Apr. 2007.

24

http://www.bzip.org/
http://www.bzip.org/
https://www.w3.org/2013/data/
https://www.w3.org/2013/data/
http://www.w3.org /2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org /2004/REC-rdf-syntax-grammar-20040210/

S. Groppe, D. Heinrich, C. Blochwitz, T. Pionteck: Constructing Large-Scale Semantic Web Indices for the Six RDF Collation Orders

AUTHOR BIOGRAPHIES

Sven Groppe earned his
diploma degree in Informatik
(Computer Science) in 2002 and
his Doctor degree in 2005 from
the University of Paderborn.
He completed his habilitation
degree in 2011 in the University
of Lübeck. He worked in the
European projects B2B-ECOM,
MEMPHIS, ASG and TripCom.
He was a member of the DAWG
W3C Working Group, which

developed SPARQL. He was the project leader of the
DFG project LUPOSDATE, an open-source Semantic
Web database, and one of the project leaders of two
research projects, which research on FPGA acceleration
of relational and Semantic Web databases. He is one of
the workshop chairs of the Semantic Big Data workshop
series in conjunction with ACM SIGMOD. His research
interests include databases, Semantic Web, query and
rule processing and optimization, Cloud Computing,
peer-to-peer (P2P) networks, Internet of Things, data
visualization and visual query languages.

Dennis Heinrich received his
M.Sc. in Computer Science
in 2013 from the University of
Lübeck, Germany. At the mo-
ment he is employed as a re-
search assistant at the Institute
of Information Systems at the
University of Lübeck. His re-
search interests include FPGAs
and corresponding hardware ac-
celeration possibilities for Se-

mantic Web databases.

Christopher Blochwitz
received his M.Sc. Diploma in
Computer Science in September
2014 at the University of
Lübeck, Germany. Now he is a
research assistant/ PhD student
at the Institute of Computer
Engineering at the University of
Lübeck. His research focuses on
hardware acceleration, hardware
optimized data structures,
and partial reconfiguration of

FPGAs.

Thilo Pionteck is an asso-
ciate professor at the Universität
Magdeburg, Germany. He re-
ceived his Diploma degree in
1999 and hIs Ph.D. (Dr.-Ing.)
degree in Electrical Engineering
both from the Technische Uni-
versität Darmstadt, Germany. In
2008 he was appointed as an
assistant professor for Integrated
Circuits and Systems at the Uni-
versität zu Lübeck. From 2012
to 2014 we was substitute of the

Chair of Embedded Systems at the Technische Univer-
sität Dresden and of the Chair of ”Computer Engineer-
ing” at the Technische Universität Hamburg-Harburg.
His research work focus on adaptive system design, run-
time reconfiguration, hardware/software codesign and
network-on-chips.

25

	Introduction
	Basic Data Structures, Indices and Sorting Algorithms
	B+-Trees
	Semantic Web and Indices
	Resource Description Framework (RDF)
	Dictionary
	Evaluation Indices

	Heap
	(External) Merge Sort
	Patricia Tries
	PatTrieSort
	Further Related Work

	Constructing Indices according to 6 RDF Collation Orders
	Building Patricia Tries and Mapping Triples to Temporary IDs
	Mapping to Local IDs
	Rolling Out Patricia Trie
	Sorting Runs of Triples Cccording to 6 Collation Orders
	Merging Patricia Tries
	Generating Dictionary
	Determining Mapping from Local to Global IDs
	Mapping Runs from Local to Global IDs
	Merging Runs and Generating Evaluation Indices

	Experimental Analysis
	Configuration of the Test System
	Billion Triples Challenge
	Results

	Summary and Conclusions

