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ABSTRACT

Many data analysis programs are often expressed in terms of array operations in sequential loops. However, these
programs do not scale very well to large amounts of data that cannot fit in the memory of a single computer and they
have to be rewritten to work on Big Data analysis platforms, such as Map-Reduce and Spark. We present a novel
framework, called SQLgen, that automatically translates sequential loops on arrays to distributed data-parallel
programs, specifically Spark SQL programs. We further extend this framework by introducing OSQLgen, which
automatically parallelizes array-based loop programs to distributed data-parallel programs on block arrays. At
first, our framework translates the sequential loops on arrays to monoid comprehensions and then to Spark SQL.
For SQLgen, the SQL is over coordinate arrays while for OSQLgen, it is over block arrays. As block arrays are
more compact than coordinate arrays, computations on block matrices are significantly faster than on arrays in the
coordinate format. Since not all array-based loops can be translated to SQL on block arrays, we focus on certain
patterns of loops that match an algebraic structure known as a semiring. Many linear algebra operations, such
as matrix multiplication required in many machine learning algorithms, as well as many graph programs that are
equivalent to a semiring can be translated to distributed data-parallel programs on block arrays using OSQLgen,
thus giving us a substantial performance gain. Finally, to evaluate our framework, we compare the performance
of OSQLgen with GraphX, GraphFrames, MLlib, and hand-written Spark SQL programs on coordinate and block
arrays on various real-world problems.
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1 INTRODUCTION

Many industrial and scientific organizations are
generating and processing large amounts of data for
business and research purposes. These organizations
are rapidly shifting towards data-driven decision-
making and statistical data analysis involving pattern
discovery, anomaly detection, and hypothesis testing,
by running various clustering and dimensionality
reduction algorithms to gain insights into datasets. The
data used in these data analysis algorithms come in

different forms of arrays, such as vectors, matrices,
and tensors. Programmers often write data analysis
programs that operate on these array data using loops,
which are inherently sequential since they access and
update the array elements incrementally, one at a
time. Furthermore, many of these algorithms exhibit
better performance when operating on mutable arrays,
compared to other immutable data structures. More
importantly, scientists and data analysts are mostly
familiar with imperative programming languages, such
as C and Python, and they often use numerical analysis
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tools that are based on arrays, such as MATLAB and
NumPy, and implement algorithms from linear algebra
and data analysis textbooks that are expressed using
loops and arrays.

The massive amount of data generated by scientific
organizations, such as NASA and CERN, are used to
solve complex research problems and make important
scientific discoveries, which are increasingly data-
driven. Moreover, many companies are also collecting
massive data to make business decisions using machine
learning (ML) tools, such as Deep Neural Networks
(DNN). It has been shown that these ML algorithms
give more accurate results when they work on larger
amounts of training data. The most popular machine
learning frameworks today, TensorFlow [18] and
PyTorch [36], utilize specialized hardware, such as
GPUs, TPUs, and SIMD accelerators, to parallelize
algorithms and accelerate computations. These
frameworks utilize the computing resources better
when these resources are scaled up to a single high-
end computer, rather than scaled out to multiple
commodity computers. Although both Tensorflow
and PyTorch implement some deep learning algorithms
using distributed evaluation, neither of these systems
provide a distributed linear algebra library to implement
customized machine learning algorithms. There
are recent systems though, such as, Horovod [40],
BigDL [10], and TensorFlowOnSpark [48], that
implement deep learning algorithms using scalable
distributed algorithms. Furthermore, there are systems
that implement linear algebra operations in a relational
database system using SQL or relational algebra [8,
24, 28] to let programmers write ML algorithms
on conventional database systems. There are also
frameworks, such as Map-Reduce [13], Spark [49],
and Flink [7], commonly known as Data-Intensive
Scalable Computing (DISC) Systems, that are designed
for processing data on a larger scale. These systems
utilize resources better than current ML frameworks
when these resources are scaled out to computer clusters.
Apache Spark [49] improves the Hadoop performance
by maintaining intermediate results in the memory of the
compute nodes instead of storing them on disk. Spark
is also more expressive by supporting more operations
in the Spark API, such as filter and join. These
operations allow programmers to build rich pipelines
of computations to do complex mathematical data
processing in a concise way.

As the need to process and analyze large amounts of
data on DISC systems is increasing, many organizations
now want to convert their sequential programs into
distributed programs. Therefore, the scientists and
developers who are mostly familiar with array-based
imperative programming languages and tools have to

learn a new programming paradigm and rewrite their
programs to run on DISC systems. This rewriting
process slows down the development and deployment
process and is non-trivial since the programmers need
to address the intricacies and avoid the pitfalls inherent
to these frameworks to get optimal performance. The
lack of expertise in a particular framework may result
in erroneous or suboptimal programs. Furthermore, to
achieve flexibility and better performance, instead of
using libraries, such as MLlib [32], programmers may
often want to write ad-hoc array-based programs that
are specific to their needs. Consequently, instead of
rewriting these ad-hoc programs by hand to run on
a particular DISC platform, one solution can be to
use an automatic translation system that will translate
sequential programs with loops to distributed data-
parallel programs.

Our goal is to design a framework that will translate
array-based loops to a declarative domain-specific
language (DSL), more specifically, Spark SQL [3], to
evaluate these programs in a DISC platform to analyze
Big Data. At first, loops are translated to equivalent
monoid comprehensions [19] and then to Spark SQL.
Not all loops can be translated to SQL. One such case is
when an array is read and updated in the same loop. For
example, we reject the update V [i] := V [i−1]+V [i+1]
inside a loop over i because V is read and updated in
the same loop. But, unlike most related work, we can
translate incremental updates of the form V [e1] +=e2,
for some commutative operation + and some terms
e1 and e2. This is accomplished by collecting all
the e2 values across the loops, grouping these values
by e1, aggregating each group using +, and replacing
V with the result. That is, the effects of evaluating
this incremental update multiple times across loops are
captured by a single SQL query that calculates V in one
shot. We chose Spark SQL as our target language since
it is in general more efficient than the Spark Core API
because it takes advantage of existing extensive work
on SQL optimization for relational database systems.
In Spark SQL, datasets are expressed as DataFrames,
which are distributed collection of data, organized into
named columns. Operations from the Spark Core API,
on the other hand, are higher-order with arguments
that are functions coded in the host language and
compiled to bytecode, which cannot be analyzed during
program optimization. Hence, Spark DataFrames can
find and apply optimizations that are very hard to detect
automatically when the same program is written in the
Spark Core API. Consequently, sequential loops perform
better when they are translated to Spark SQL instead of
Spark RDD operations.

Our first framework, called SQLgen, translates array-
based sequential loops to Spark SQL on arrays stored in
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the coordinate storage format (as distributed collections
of index-value pairs). Although straightforward,
this storage format is space inefficient and adds a
communication overhead during data shuffle. Our
second framework, called OSQLgen, uses an efficient
compact array storage format, namely a block matrix,
which is a distributed collection of non-overlapping
dense array blocks. In Spark, a block matrix is
implemented as a distributed collection of fixed-sized
dense square tiles. This storage format reduces not
only the required storage but also the communication
cost of a distributed algorithm, since the amount of data
that needs to be transferred over the network is smaller.
Thus, OSQLgen, which translates sequential loops to
Spark SQL on block arrays, is orders of magnitude
faster than SQLgen and other related approaches that
are based on the coordinate format. Unfortunately,
generating SQL code on block arrays from an arbitrary
monoid comprehension is very hard in general because
some operations may require multiple blocks from an
array to construct a single block of the result. For
example, matrix rotation in which every row is rotated,
requires two input blocks for each output block. To
alleviate the complexity of this problem, we focus on
certain patterns of monoid comprehensions that can
be translated to Spark SQL on block arrays that look
similar to SQL on coordinate arrays, except that the
arithmetic operations in the query must now work on
array blocks instead of values. These patterns are
based on an algebraic structure called a semiring, which
has already been used successfully to capture general
graph algorithms. Consequently, OSQLgen not only
can translate array operations that match a semiring,
but it is also very suitable for translating general graph
algorithms expressed in loops to SQL on block arrays.

Our frameworks, SQLgen and OSQLgen, have been
implemented on Spark DataFrames and the code is
written in Scala using compile-time reflection. The
source language used to express sequential loops with
array operations is the same proof-of-concept language
used in DIABLO [19], while the target language is Spark
SQL. Our framework can be easily extended to work
with other imperative programming languages, such as
C or Java, and generate code for other DISC systems that
support SQL, such as Apache Flink [7].

The contributions of this paper are summarized as
follows:

• We present a novel framework, called SQLgen, for
translating array-based loops to Spark SQL that is
able to handle all array programs that satisfy some
simple recurrence restrictions.

• We evaluate SQLgen on a variety of data analysis
and machine learning programs and we compare

its performance relative to DIABLO and to hand-
written Spark programs expressed in the Spark Core
API (RDDs) and in Spark SQL.

• We extend SQLgen to handle block arrays, in a
novel framework, called OSQLgen, for translating
array-based loop programs to optimized Spark SQL
programs on block arrays that is able to handle
many important programs including many graph
algorithms that satisfy the properties of a semiring.

• We compare the performance of OSQLgen on real-
world problems relative to GraphX, GraphFrames,
MLlib, and hand-written Spark SQL programs on
coordinate and block arrays.

2 RELATED WORK

With the rise of Big Data and the prevalence of array-
based loop programs, there have been significant efforts
in the area of High-Performance Computing (HPC) to
automatically parallelize loops with array operations.
The key challenge in achieving this is the existence of
loop carried dependencies, also known as recurrences.
A recurrence occurs when there is a dependency between
the iterations of a loop. For example, the update V [i] :=
V [i − 1] + V [i + 1] on array V inside a loop over i is
a recurrence since the values of V read in one iteration
of the loop depend on the updated values of V in the
previous iterations. In most parallelization frameworks,
the loops without recurrences are simply those that
are “embarrassingly parallel” (DOALL). DOALL [23]
translates sequential loops when there is no recurrence.
To handle some recurrences, DOACROSS [9] rewrites
a loop with a recurrence to separate the dependent and
independent parts of an iteration. The independent part
is run in parallel and merged with the dependent part
which is run sequentially. DOPIPE [15], distributes an
iteration with a loop-carried dependency over multiple
synchronized loops where each step starts when there is
sufficient data available from the previous step.

Even though there have been significant efforts to
parallelize the loop-based programs in HPC, there has
been very little work to automatically parallelize loops
in DISC systems, with the notable exceptions of MOLD,
CASPER, and DIABLO. MOLD [37] is a translator of
sequential Java code to parallel/distributed Scala code
that can be executed either on a single computer using
parallel Scala collections or on a cluster of computers
using Spark. Like SQLgen and DIABLO, it uses
group-by operations to parallelize certain loops with
recurrences. However, MOLD uses a template-based
rewriting system to match specific templates of Java
loops. It uses a heuristic search to find the matching
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templates for each program fragment and to generate
the output Spark program. CASPER [2] translates
sequential Java code into semantically equivalent Map-
Reduce programs. It uses a program synthesizer to
search over the space of sequential program summaries,
expressed as IRs, and a theorem prover based on Hoare
logic to prove that the derived Map-Reduce programs
are equivalent to the original sequential programs. Our
system differs from both MOLD and CASPER as
it translates loops directly to parallel programs using
simple meaning preserving transformations, without
requiring to search for rules to apply. DIABLO [19]
translates array-based loops to parallel programs using
simple meaning preserving transformations. Unlike
MOLD and CASPER, it does not use any search
mechanisms, which makes the translation process
fast. The transformation stage is separated from
the optimization stage and optimization is done using
a small set of rewrite rules. However, DIABLO
lacks a comprehensive cost-based query optimizer.
Furthermore, both MOLD and DIABLO translate
sequential loops to RDD operations based on the Spark
Core API. A Resilient Distributed Dataset (RDD) is an
immutable distributed collection of elements of data,
partitioned across a cluster of nodes. Unfortunately,
working with RDDs has some performance pitfalls.
One such pitfall is that RDD operations, such as
map and flatMap, take functions as arguments that
are compiled to bytecode, which cannot be optimized
at run-time. Spark has addressed these shortcomings
by providing two additional APIs, called DataFrames
and Datasets [3]. Our work improves DIABLO by
replacing its back-end engine with Spark SQL which
utilizes database query optimization techniques. The
Spark SQL generated by SQLgen is often faster than the
Spark RDD programs generated by DIABLO because
Spark SQL is optimized by a relational-style cost-
based query optimizer, called Catalyst, that can generate
very efficient physical plans that are evaluated in a
very efficient execution engine, called Tungsten, that
substantially improves memory management and pushes
performance closer to the limits of modern hardware.
Furthermore, all these systems, including SQLgen,
generate Spark code that works on arrays in coordinate
format, that is, as distributed collections of index-value
pairs, while OSQLgen generates Spark code for block
arrays, which are distributed collections of dense array
blocks. Block arrays have shown to be far more compact
and faster to process in a distributed environment than
arrays in coordinate format.

Many array-processing systems use special storage
techniques, such as array tiling, to achieve better
performance on certain array computations. TileDB [35]
is an array data storage management system that

performs complex analytics on scientific data. It
organizes array elements into ordered collections called
fragments, where each fragment is dense or sparse,
and groups contiguous array elements into data tiles
of fixed capacity. SciDB [41] is a large-scale data
management system for scientific analysis based on an
array data model with implicit ordering. The SciDB
storage manager decomposes arrays into a number of
equal sized and potentially overlapping chunks, in a
way that allows parallel and pipeline processing of array
data. Similar to SciDB, ArrayStore [42] stores arrays
into chunks, which are typically the size of a storage
block. One of their most effective storage methods is
a two-level chunking strategy with regular chunks and
regular tiles. SciHive [20] is a scalable array-based
query system that enables scientists to process raw array
datasets in parallel with a SQL-like query language.
SciHive maps array datasets in NetCDF files to Hive
tables and executes queries via Map-Reduce. Based on
the mapping of array variables to Hive tables, SQL-like
queries on arrays are translated to HiveQL queries on
tables and then optimized by the Hive query optimizer.
SciMATE [47] extends the Map-Reduce API to support
the processing of the NetCDF and HDF5 scientific
formats, in addition to flat-files. TensorFlow [18] is
a dataflow language for machine learning that supports
data parallelism on multi-core machines and GPUs but
has limited support for distributed computing for certain
ML algorithms. Linalg [6] (now part of Spark’s MLlib
library) is a distributed linear algebra and optimization
library that runs on Spark. It consists of fast and scalable
implementations of standard matrix computations for
common linear algebra operations, such as matrix
multiplication and factorization. One of its distributed
matrix representations, BlockMatrix, treats the matrix as
dense blocks of data, where each block is small enough
to fit in memory on a single machine. Linalg allows
matrix computations to be pushed from the JVM down
to hardware via the Basic Linear Algebra Subprograms
(BLAS) interface. SystemML [4] is a machine learning
(ML) library built on top of Spark. It supports a
high-level specification of ML algorithms that simplifies
the development and deployment of ML algorithms by
separating algorithm semantics from underlying data
representations and runtime execution plans. Distributed
matrices in SystemML are partitioned into fixed size
blocks, called Binary Block Matrices.

There has also been some recent work on combining
linear algebra with relational algebra to let programmers
implement ML algorithms on relational database
systems [8, 24]. The work by Luo et al. [28] adds a
new attribute type to relational schemas to capture arrays
that can fit in memory and extends SQL with array
operators. Although their system evaluates SQL queries
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in Map-Reduce, the arrays are not fully distributed.
Instead, large matrices must be split into multiple rows
as indexed tiles while the programmer is expected to
write SQL code to implement matrix operations by
correlating these tiles using array operators in SQL. This
makes it hard to specify some matrix operations, such
as matrix inversion. The PArADISE [30, 31] framework
evaluates a set of ML algorithms and linear algebra
operations using SQL in a parallel relational database
system. It transforms ML algorithms, such as the Hidden
Markov Model written in R, to a sequence of SQL
queries that can be executed in parallel in a parallel
DBMS. However, the translation from R to SQL is not
completely automated while the language restrictions in
R make the system more complex. The system described
in [17] derives SQL queries from imperative code in
a non-distributed setting. Unlike our work, this work
addresses aggregates, inserts, and appends to lists but
does not address array updates.

Over the past few decades, there have been various
efforts to unify graph algorithms. Some of these
studies found that many graph algorithms are repetitive
steps that have a traversal pattern similar to matrix
multiplication and can be represented using an algebraic
structure called a semiring [1, 25, 44]. Based on
this representation, researchers have proposed general
optimized implementations for various graph algorithms.
For example, Takahashi et al. [43] have implemented
graph algorithms using block matrix multiplication
implemented in a parallel system. More recently,
researchers in parallel systems have standardized an
interface for graph algorithms that are based on
semirings under a project called GraphBLAS [12].
The goal of this project is to isolate users from low-
level implementation details for optimal parallelization.
Similarly, Ekanadham et al. [16] proposed a similar
interface, called GPI, for graph algorithms that are
based on semirings on Spark. Nevertheless, the vertex-
centric approach, first introduced in Pregel [29], remains
the most popular framework for graph processing on
DISC systems and includes systems, such as Spark
GraphX [21] and GraphFrames [11]. Our system
OSQLgen [34] differs from both GraphBLAS and GPI
as it works on graph algorithms that are expressed as
sequential loop programs, thus making it unnecessary for
the programmers to learn the API introduced by related
work and can still get good performance.

3 BACKGROUND

Our earlier work, called DIABLO (a Data-Intensive
Array-Based Loop Optimizer) [19], translates array-
based loops to monoid comprehensions, which in turn

are translated to Spark programs expressed in the Spark
Core API. The syntax of the loop-based language used
as the source of the translations is given in Figure 1.
It resembles the syntax of some loop-based imperative
languages, such as, C and Java. DIABLO can translate
any array-based loop expressed in this loop-based
language to an equivalent Spark program as long as this
loop satisfies some simple syntactic restrictions, which
are more permissive than the recurrence restrictions
imposed by many current systems.

Sparse arrays in DIABLO are represented as
distributed collections of tuples that contain the indices
and value of a single array element. For example,
a sparse matrix M is represented as a bag of tuples
((i, j), v) such that v = Mij . When two arrays are used
together in the body of a loop, such as in A[i] ∗B[i+1],
this term is translated to a join between A and B so
that the index of A is equal to the index of B plus 1.
Incremental updates, on the other hand, are translated to
group-bys. For example, the cumulative effects of an
update A[e] += v throughout a loop are done in bulk
by grouping the values v across all loop iterations by
the array index e (that is, by the different destination
locations) and by summing up these values for each
group. Then the entire vector A is replaced with these
sums.

Loop-based programs are translated to monoid
comprehensions starting from small expressions to
more complex expressions which result in nested
comprehensions. After that, nested comprehensions are
normalized using normalization transformations. The
syntax of comprehension is as follows:

{{{ e ||| q1, . . . , qn }}},

which consists of comprehension head e and a list of
qualifiers. Qualifiers can be a generator, a let-binding
qualifier, a condition qualifier, and a group-by qualifier.
In the list of qualifiers, qi is defined as follows:

Qualifier:
q ::= p← e generator

| let p = e let-binding
| e condition
| group by p [ : e ] group-by

Pattern:
p ::= v pattern variable

| (p1, . . . , pn) tuple pattern.

The domain e of a generator p ← e must be a bag.
This generator draws elements from this bag and, each
time, it binds the pattern p to an element. A condition
qualifier e is an expression of type boolean. It is used
for filtering out elements drawn by the generators. A let-
binding let p = e binds the pattern p to the result of
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Expression:
e ::= d a destination (L-value)
| e1 ? e2 any binary operation ?
| (e1, . . . , en) tuple construction
| 〈A1= e1, . . . , An= en 〉 record construction
| const constant (int, float, . . . )

Destination:
d ::= v variable

| d.A record projection
| v[e1, . . . , en] array indexing

Statement:
s ::= d+= e incremental update
| d := e assignment
| var v : t = e declaration
| for v = e1, e2 do s iteration
| for v in e do s traversal
| while (e) s loop
| if (e) s1 [ else s2 ] conditional
| { s1; . . . ; sn} statement block

Figure 1: Syntax of loop-based programs

e. A group-by qualifier uses a pattern p and an optional
expression e. If e is missing, it is taken to be p. The
group-by operation groups all the pattern variables in the
same comprehension that are defined before the group-
by (except the variables in p) by the value of e (the
group-by key), so that all variable bindings that result
to the same key value are grouped together. After the
group-by, p is bound to a group-by key and each one
of these pattern variables is lifted to a bag of values.
The result of a comprehension {{{ e ||| q1, . . . , qn }}}
is a bag that contains all values of e derived from the
variable bindings in the qualifiers. Comprehensions are
translated to algebraic operations that resemble the bulk
operations supported by many DISC systems, such as
groupBy, join, map, and flatMap. These operations are
then translated to calls to the underlying DISC platform,
such as calls to the Spark Core API.

For example, the product C of two square matrices A
and B such that Cij =

∑
k Aik ∗ Bkj can be expressed

as follows in our loop-based language:

for i = 0, d− 1 do
for j = 0, d− 1 do {
C[i, j] = 0.0;
for k = 0, d− 1 do {
C[i, j] +=A[i, k] ∗B[k, j]);

}
}

This program is translated to a single assignment that
replaces the entire content of the matrix C with a new
content, which is calculated using DISC operations.
More specifically, it is translated to the following
assignment:

C := {{{ ((i, j),+/v) ||| ((i, k),m)← A,
((k′, j), n)← B, k = k′,
let v = m ∗ n,
group by (i, j)}}}.

the comprehension retrieves the values Aik ∈ A and
Bkj ∈ B as ((i, k),m) and ((k′, j), n) so that k = k′,
and sets v = m ∗ n = Aik ∗ Bkj . After we group the
values by the matrix indices i and j, the variable v is
lifted to a bag of numerical values Aik ∗ Bkj , for all k.
Hence, the aggregation +/v will sum up all the values
in the bag v, deriving

∑
k Aik ∗ Bkj for the ij element

of the resulting matrix. This comprehension is translated
to a join between M and N followed by a reduceByKey
operation in Spark.

The DIABLO recurrence restrictions are more
permissive than those imposed by many current systems
and are statically checked at compile-time. For a loop
to be parallelizable, many systems require that an array
should not be both read and updated in the same loop.
But they also reject incremental updates, such as V [i] +=
1, because such an update reads from and writes to the
same vector V . DIABLO relaxes these restrictions by
accepting incremental updates as long as there are no
other recurrences present. However, the destination of
a non-incremental update must be a different location
at each loop iteration, which is in general impossible to
assert at compile time. Instead, if the update destination
is an array indexing, DIABLO requires that the array
indices be affine and completely cover all surrounding
loop indices. An affine expression takes the form c0 +
c1 ∗ i1 + · · ·+ ck ∗ ik, where i1, . . . , ik are loop indices
and c0, . . . , ck are constants. This restriction does not
hold for incremental updates, which allow arbitrary array
indices in a destination as long as the array is not read in
the same loop.

4 THE SQLGEN FRAMEWORK

In our earlier work, DIABLO translates loop-based
programs to monoid comprehensions, which in turn are
translated to the monoid algebra, are optimized, and then
translated to Java byte code that calls the Spark Core
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API. The goal of SQLgen is to improve the performance
of these translations by translating the generated monoid
comprehensions directly to Spark SQL queries, thus
taking advantage of the Catalyst optimizer used by
Spark SQL, which is more powerful than the DIABLO
optimizer used for optimizing the monoid algebra.

Consider, for example, the product C of two square
matricesAn×n andBn×n such thatCij =

∑
k Aik∗Bkj ,

given in Section 3. As we have seen in Section 3, this
operation is calculated by the following comprehension:

{{{ ((i, j),+/v) ||| ((i, k),m)← A,
((k′, j), n)← B, k = k′,
let v = m ∗ n,
group by (i, j)}}}.

SQLgen translates this comprehension to the following
Spark SQL query, where matrices are represented as
tables A, B, and C with schema (( 1, 2), 2):

select struct(A. 1. 1, B. 1. 2) as 1,
sum(A. 2 ∗B. 2) as 2

from A join B on A. 1. 2 = B. 1. 1
groupby A. 1. 1, B. 1. 2.

Here, the tables A and B are joined on the column 1. 2
of matrix A and on column 1. 1 of matrix B and then
grouped by the column 1. 1 of matrix A and column
1. 2 of matrix B. Finally, the sum of the product of the

values for each group is calculated, giving the entries of
matrix product as the final result.

The output of our translations is a sequence of
statements c that has the following syntax:

Target Code:
c ::= v := s assignment
| {c1; . . . ; cn} code block

where s is a Spark SQL query generated from a
comprehension, which is assigned to a variable v.
Multiple assignments can be grouped in a code block c.

In DIABLO, a sparse array, such as a sparse vector or
a matrix, is represented by a key-value map (also known
as an indexed set), which is a bag of type {{(K,T )}},
where K is the array index type and T is the array value
type. SQLgen translates these vectors and matrices to
DataFrames in Spark SQL. Basically, a sparse array is
translated to a relational table with two columns: the first
column is a tuple that contains the index elements and
the second column is the element value, which can be a
primitive type or a composite type. For example, a vector
V of type {{(Long,Double)}} in DIABLO is mapped to a
table V of schema

( 1 : Long, 2 : Double),

while a matrix M of type {{((Long,Long),Double)}} in
DIABLO is mapped to a table M of schema

( 1 : Struct( 1 : Long, 2 : Long), 2 : Double),

where the index column is nested with the row index
column referred to as 1. 1 and the column index referred
to as 1. 2.

Although Spark SQL supports very powerful syntax
and features, SQLgen uses only a small fraction of the
language, which makes it easy to switch to a different
SQL-based system. The syntax of Spark SQL generated
by our translator is as follows:

select expression [as alias]
[, expression [as alias], ...]

from (relation [alias] |
relation [alias] join relation [alias]
on boolean expression
[join relation [alias]
on boolean expression ...])

[where boolean expression
[and boolean expressionand ...]]

[groupby expression [, expression, ...]]

where alternatives are shown in parenthesis
(. . . | . . . | . . .) and optional parts in square brackets
[. . .]. Expressions in the select clause contain column
names and may contain an aggregate function. In
the from clause, a relation can be a table or a view.
To simplify our translation, we assume that the input
programs will only have for-loops but no while-loops.
We have also restricted our generated SQL queries to
use inner joins and no subqueries.

4.1 Translation to SQL

We translate comprehensions in two steps: pattern
compilation and comprehension translation. During
the pattern compilation step, we remove the pattern
variables from the comprehensions. Then in the
comprehension translation step, we translate the
transformed comprehensions to Spark SQL programs.

4.1.1 Pattern Compilation

Pattern variables in a comprehension are defined in the
generators and used in the rest of the comprehension.
However, SQL does not support patterns. To address
this problem, we eliminate patterns by substituting
each pattern with a fresh variable and by creating an
environment ρ that binds the variables in the pattern
to terms that depend on the fresh variable. The fresh
variable is also used as the alias for the SQL table. For
example, if there is a generator ((i, j), v) ← e in a

7
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comprehension, we replace it with x ← e, where x is
a fresh variable, and we create an environment ρ = [i→
x. 1. 1, j → x. 1. 2, v → x. 2], which expresses i,
j, and v in terms of x. (The term x. n returns the nth
element of the tuple x.) Given a term x and a pattern
p, the semantic function CJpKx returns a binding list that
binds the pattern variables in p in terms of x such that
p = x:

CJ(p1, . . . , pn)Kx = CJp1Kx. 1 ++ · · ·++ CJpnKx. n
(1)

CJvKx = [v → x] (2)

where ++ merges bindings. For our example, after
applying (1) on ((i, j), v), we get the bindings:

CJ((i, j), v)Kx = CJ(i, j)Kx. 1 ++ CJvKx. 2
= CJiKx. 1. 1 ++ CJjKx. 1. 2 ++ CJvKx. 2.

Then, applying Rule (2), we get

CJ((i, j), v)Kx = [i→ x. 1. 1,
j → x. 1. 2, v → x. 2].

Before the translation to SQL, we eliminate the patterns
from a comprehension as follows. For each generator
p ← e′, and any sequences of qualifiers q1 and q2 in a
comprehension, we do the following transformation:

{{{ e ||| q1, p← e′, q2 }}} = {{{ ρ(e) ||| q1, x← e′, ρ(q2)}}}
(3)

where x is a fresh variable and ρ = CJpKx, which
expresses the variables in p in terms of the fresh variable
x. The ρ(e) and ρ(q2) replace all occurrences of the
variables in e and q2 using the binding ρ. For example,
the comprehension

{{{ (i, a+ b) ||| (i, a)← A, (j, b)← B, i == j }}}

is translated to:

{{{ (x. 1, x. 2 + y. 2) ||| x← A, y ← B, x. 1 == y. 1}}}.

4.1.2 Comprehension Translation

The next step is the translation of a comprehension to
SQL using the semantic function SQL, which takes the
comprehension as input and translates it to a Spark SQL
query:

SQLJ{{{h ||| q }}}K = selecth

fromQJqK

wherePJqK

groupby GJqK (4)

where h refers to comprehension head and the semantic
functionsQ, P , and G translate a list of qualifiers to SQL
tables and joins, predicates, and group-by expression.
They are described next in this section.

The comprehension head h is translated to a select
clause. For a total aggregation over a comprehension,
such as ⊕/{{{h ||| . . . }}}, the monoid ⊕ is applied to the
translation of the header h in the select clause. For
example, the header of +/({{{ v ||| (i, v) ← V }}}) is
translated to select sum(v).

We use the semantic function Q to translate the
generators in a comprehension to SQL from clauses. If
there are pairs of generators in the qualifiers correlated
with a join condition, we translate each such pair to a
join clause along with a join condition. In the following
rules, semantic function Q takes a list of qualifiers as
input, identifies joins, and creates a SQL join clause with
a join condition:

QJq1, v1 ← e1, q2, v2 ← e2, q3, e3 = e4, q4K =

QJq1, (v1, v2)← (e1 join e2 on e3 = e4), q2, q3, q4K
(5)

where e3 = e4 must correlate the variables v1 and v2,
that is, e3 must depend on v1 only and e4 must depend
on v2 only, or vice versa. The remaining generators are
translated to table traversals:

QJv ← e, qK = e v, QJqK (6)
QJe, qK = QJqK (7)
QJ K = ∅ (8)

where (6) collects the generators that are not joined with
any other table as simple table traversals. If there is more
than one such table, this corresponds to a cross product,
which is not supported by Spark SQL.

The semantic function P is used to collect condition
qualifiers. It takes a list of qualifiers and translates them
to a list of SQL conditions:

PJe, qK = eandPJqK (9)
PJp← e, qK = PJqK (10)

PJ K = ∅ (11)

The semantic function G collects the group-by keys.
Currently, our translation algorithm accepts at most one
group-by qualifier. G takes a list of qualifiers as input
and returns an optional group-by key:

GJgroupby p, qK = p (12)
GJp← e, qK = GJqK (13)

GJe, qK = GJqK (14)
GJ K = ∅ (15)
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4.2 Examples of Program Translation

Consider a loop-based program that sums up the values
of an array, written as follows:

sum := 0;
for i = 1, 10 do sum+= V [i];

Here, the values of an array V are summed and assigned
to a variable sum. The comprehension of this program
is:

sum := +/({{{ v ||| (i, v)← V, inRange(i, 1, 10)}}})

where the predicate inRange(i, 1, 10) returns true if 1 ≤
i ≤ 10. Before the translation to SQL, we eliminate
the patterns from the comprehension. The only pattern
in the comprehension is (i, v), which is replaced with a
fresh variable x. Then, using Rules (1) and (2) we get
CJ(i, v)Kx = [i → x. 1, v → x. 2]. Therefore, using
Rule (3), the comprehension is transformed to:

sum := +/({{{x. 2 ||| x← V, inRange(x. 1, 1, 10)}}})

To generate the equivalent SQL query, we use (4)
to translate the transformed comprehension to SQL
where the semantic functions take the qualifiers of the
transformed comprehension as their input.

select sum(x. 2)
from QJx← V, inRange(i, 1, 10)K
where PJx← V, inRange(i, 1, 10)K
groupby GJx← V, inRange(i, 1, 10)K

= select sum(x. 2)
from V x
where 1 <= x. 1andx. 1 <= 10

Consider now the following loop-based program:

for i = 1, 10 doW [K[i]] += V [i];

For each different key k in K, this program sums the
values Vi associated with the same key Ki = k and
stores the results in array W . The comprehension of the
above program is:

W := {{{ (a,+/v) ||| (i, v)← V, inRange(i, 1, 10),
(m, a)← K, i = m,
group by a}}}

In this comprehension, there are two generators V andK
containing the patterns (i, v) and (m, a). After replacing
the patterns with fresh variables x and y and applying
Rules (1) and (2), we get: CJ(i, v)Kx = [i → x. 1, v →
x. 2] and CJ(m, a)Ky = [m → y. 1, a → y. 2]. Then

the patterns are removed from the comprehension using
Rule (3):

W := {{{ (y. 2,+/x. 2) ||| x← V,
inRange(x. 1, 1, 10),
y ← K,x. 1 = y. 1,
group by y. 2}}}

Then, we apply (4) where the header of the
comprehension (y. 2,+/x. 2) is translated to
y. 2, sum(x. 2). Then, using Rules (5)-(8), the
semantic function Q is applied to the transformed
comprehension in the from clause:

select y. 2, sum(x. 2)
from QJx← V, inRange(x. 1, 1, 10),

y ← K,x. 1 = y. 1,
groupby y. 2K

where PJqK
groupby GJqK

= select y. 2, sum(x. 2)
from V x joinK y onx. 1 = y. 1
where PJqK
groupby GJqK

Using Rules (9)-(11), we get:

select y. 2, sum(x. 2)
from V x joinK y onx. 1 = y. 1
where PJx← V, inRange(x. 1, 1, 10),

y ← K, x. 1 = y. 1,
groupby y. 2K

groupby GJqK
= select y. 2, sum(x. 2)

from V x joinK y onx. 1 = y. 1
where 1 ≤ x. 1andx. 1 ≤ 10
groupby GJqK

Then, using Rule (12), we get:

select y. 2, sum(x. 2)
from V x joinK y onx. 1 = y. 1
where 1 ≤ x. 1and 10 ≤ x. 1
groupby GJx← V, inRange(x. 1, 1, 10),

y ← K,x. 1 = y. 1,
groupby y. 2K

= select y. 2, sum(x. 2)
from V x joinK y onx. 1 = y. 1
where 1 ≤ x. 1andx. 1 ≤ 10
groupby y. 2

The final translation is an assignment that assigns the
result of the generated SQL query to the DataFrame table
W .

As yet another example, consider the matrix
multiplication between the matrices M and N , which is

9
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stored in the matrix R:

for i = 0, 10 do
for j = 0, 10 do {
R[i, j] = 0.0;
for k = 0, 10 do {
R[i, j] +=M [i, k] ∗N [k, j]);
}
}

It is translated to the following comprehension:

R := {{{ ((i, j),+/v) ||| ((i, k),m)←M,
((k′, j), n)← N, k = k′,
let v = m ∗ n,
group by (i, j)}}}.

To keep this example simple, we omit the inRange
qualifiers. In the comprehension above, the patterns
((i, k),m) and ((k′, j), n) are replaced with fresh
variables x and y. Then, after applying Rules (1) and (2),
we get the following bindings: CJ((i, k),m)Kx = [i →
x. 1. 1, k → x. 1. 2, m → x. 2], CJ((k′, j), n)Ky =
[k′ → y. 1. 1, j → y. 1. 2, n → y. 2]. Then,
these patterns are eliminated using Rule (3) and the
comprehension is transformed to:

R := {{{ ((x. 1. 1, y. 1. 2), (+/v)) ||| (x←M,
y ← N, x. 1. 2 = y. 1. 1,
let v = x. 2 ∗ y. 2,
group by (x. 1. 1, y. 1. 2)}}}.

Then, we can get the equivalent SQL using
Rule (4). In the select clause, we get,
struct(x. 1. 1, y. 1. 2), sum(x. 2 ∗ y. 2) where v
is substituted by the let-binding expression. Next,
the semantic function Q is applied to the transformed
comprehension in the from clause. Using Rules (5-8),
we get:

select struct(x. 1. 1, y. 1. 2),
sum(x. 2 ∗ y. 2)

from QJx←M,y ← N, x. 1. 2 =
y. 1. 1, groupby x. 1. 1, y. 1. 2K

groupby GJqK
= select struct(x. 1. 1, y. 1. 2),

sum(x. 2 ∗ y. 2)
from M x joinN y onx. 1. 2 = y. 1. 1
groupby GJqK

Next, we apply the semantic function P to the
transformed comprehension in the where clause, which
is not shown here. Then, we apply semantic function
G to the transformed comprehension in the group by

clause. Using Rule (12), we get:

select struct(x. 1. 1, y. 1. 2),
sum(x. 2 ∗ y. 2)

from M x joinN y onx. 1. 2 = y. 1. 1
groupby GJx←M,y ← N,

x. 1. 2 = y. 1. 1,
groupby x. 1. 1, y. 1. 2K

= select struct(x. 1. 1, y. 1. 2),
sum(x. 2 ∗ y. 2)

from M x joinN y onx. 1. 2 = y. 1. 1
groupby x. 1. 1, y. 1. 2

The final translation is an assignment that assigns the
result of the generated SQL query to table R.

5 THE OSQLGEN FRAMEWORK

In SQLgen, matrices and vectors are represented
using a coordinate format which accompanies each
nonzero element with its row and column indices.
Although straightforward, this storage format is space
inefficient and adds a communication overhead during
data shuffle. Instead, one can use an efficient compact
array storage format, such as a block matrix, which is
a distributed collection of non-overlapping dense array
blocks. In Spark, a block matrix can be implemented
as an RDD of fixed-sized dense square tiles of type
RDD[((Int, Int),Array[Double])], where each block
((i, j),A) has block coordinates i and j and values stored
in the dense matrix A, which has a fixed size N ∗N , for
some constant N . This storage format is more compact
and it reduces the communication cost of a distributed
algorithm since the amount of data that needs to be
transferred over the network is smaller.

Consider the matrix multiplication algorithm again,
given in Section 3 where the coordinate arrays A, and B
are represented as tables with schema A((i, k),m), and
B((k′, j),n). If the matrices A and B are of size n × n,
then during the join, each row of the input matrices is
copied n times which is also known as replication rate
(r). Instead, we can store the matrices as block matrices
with schemaAb((I,K),M) andBb((K ′, J), N), where
I , K, K ′ and J are block coordinates and M and N
are array blocks. Then, the replication rate r to compute
the product CbIJ =

∑
K AIK ∗ BKJ is

√
n times less

than the coordinate approach [38]. Furthermore, the
multiplication between the array blocks can be pushed
down to CPU/GPU using efficient Basic Linear Algebra
Subprograms (BLAS) routines [5]. Hence, the block
matrix approach is superior to the coordinate approach in
terms of space, communication, and computation time.
Unfortunately, generating SQL code on block arrays
from an arbitrary comprehension is very hard in general
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Table 1: Semirings for graph algorithms

Semirings Applications
+(A ∗B) All-pairs shortest path
+(A ∗ b) PageRank
max(A ∗B) Maximum reliability path
min(max(A, B)) Minimum spanning tree
max(min(A, B)) Maximum capacity path

because some operations may require multiple blocks
from an array to construct a single block of the result.
To address this problem, we focus on certain patterns
of comprehensions that can be directly translated to
Spark SQL on block arrays that look similar to SQL on
coordinate arrays, except that the arithmetic operations
in the query must now work on array blocks instead of
values.

Over the past few decades, researchers have proposed
solutions to generalize graph algorithms in a form
similar to the matrix multiplication algorithm. These
algorithms are represented using a general algebraic
structure called a semiring, where the + and ∗ operations
of matrix multiplication are replaced with an additive
monoid ⊕ and a multiplicative monoid ⊗, respectively.
Formally, a semiring (S,⊕,⊗, 0, 1) is an algebraic
structure defined over a set S, equipped with two
monoids: an additive monoid (⊕, 0) : S × S → S
with identity 0 and a multiplicative monoid (⊗, 1) :
S × S → S with identity 1. The additive monoid must
be associative and commutative and the multiplicative
monoid needs to be associative and distribute over the
additive monoid. For example, in terms of a semiring,
the matrix multiplication algorithm between matrices A
and B can be represented as +(A ∗ B), where ⊕ and ⊗
are equal to + and ∗, respectively. Similarly, the classical
graph algorithm problem all-pairs-shortest-path can be
represented in terms of the semiring min(G+G) where
G is the transition matrix of the input graph G. Some
other well-known algorithms that fall under this umbrella
are shown in Table ??. On the other hand, the block
matrix multiplication can also be represented in terms of
the semiring (S,+b, ∗b, 0, 1), where the set S consists
of N × N blocks and +b, and ∗b represent addition
and multiplication of blocks. We will show that, the
algorithms that can be expressed in terms of semirings
and are based on scalar operations can also be expressed
in terms of semirings that are based on block operations.
We have provided a proof of equivalency in terms of
comprehensions in Appendix A. Given this equivalency,
an array-based loop program that is equivalent to a
semiring can be translated to a DISC program on block
arrays so it can leverage the performance benefits of

block implementation.
Our goal is to capitalize on this performance gain

based on semiring and implement this in our framework
SQLgen [33]. This can be done by translating array-
based loop programs that are equivalent to semirings to
programs on block arrays expressed in Spark SQL [3].
At first, loops are translated to equivalent monoid
comprehensions, as in SQLgen, but instead of directly
translating the comprehensions to Spark SQL programs,
we check if a comprehension is equivalent to a semiring.
In that case, we translate the comprehension to a Spark
SQL program on block arrays. If the comprehensions are
not equivalent to a semiring, we translate the programs to
a Spark SQL program by following the rules of SQLgen.

Let’s consider one iteration of the all-pairs shortest
path algorithm on an input graph G written using arrays
and loops. A graph G is represented by a transition
matrixGwhereGij = distance between the nodes i and j
withGii = 0. When there is no path between two nodes,
the distance is initialized to +∞.

var R : matrix[Double] = matrix();
for i = 0, n− 1 do
for j = 0, n− 1 do {
for k = 0, n− 1 do {
//update
R[i, j] := min(R[i, j], G[i, k] +G[k, j]);
}
//assignment

G[i, j] := R[i, j];
}

The above program consists of two key steps: the update
step and the assignment step. In the update step, for
each vertex, the algorithm finds the minimum distance
path among other vertices, and in the assignment step,
the updated graph replaces the existing graph.

SQLgen translates this all-pairs shortest program to a
comprehension as follows:

R := {{{ ((i, j),min/v) ||| ((i, k),m)← G,
((k′, j), n)← G, k = k′,
let v = m+ n,
group by (i, j)}}}

This comprehension retrieves the values Gik ∈ G and
Gkj ∈ G in coordinate format as triples ((i, k),m)
and ((k′, j), n) so that k = k′, and sets v = m +
n = Gik + Gkj . After we group the values by
the indices i and j, the variable v is lifted to a bag
of numerical values Gik + Gkj , for all k. Hence,
the aggregation min/v will return the minimum of
all the values in the bag v, deriving mink{Aik +
Bkj} for the ij element of the resulting array.
Since this comprehension is equivalent to a semiring
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comprehension, we translate this comprehension to a
semiring comprehension on block arrays. At first, the
array G is converted to block array Gb with nested
schema ((I : Int, J : Int),V : Array[Double]) where I ,
J represents block indices and V represents a block. The
scalar operations min, and + are replaced with block
min (minb) and block addition (+b), respectively:

Rb := {{{ ((X. 1. 1, Y. 1. 2), (minb/V )) |||
X ← Gb, Y ← Gb,X. 1. 2 = Y. 1. 1,
letV = X. 2 +b Y. 2,
group by (X. 1. 1, Y. 1. 2)}}}.

Similar to SQLgen, the input to our translation system
is monoid comprehensions and the output is a list of
statements c where we added while loop for iterations.

5.1 OSQLgen Storage System

An array in OSQLgen is stored in a relational table with
two columns: the first column is a nested struct column
of StructType that contains the block coordinates and
the second column is a block of values. For example,
a vector V of type double is stored in a table V with
schema ( 1 : Int, 2 : Vector), where 1 is the
block coordinate. The Vector is in memory and can
be either dense or sparse. A dense Vector is of type
Array[Double] while a sparse vector is is stored as a pair
of arrays of equal size: (indices : Array[Int], values :
Array[Double]). For example, a vector (1.0, 0.0, 2.0)
is stored in dense format as [1.0, 0.0, 2.0] and in sparse
format as ([0, 2], [1.0, 2.0]). A matrix M , on the other
hand, of type is stored a table M with schema

( 1 : Struct( 1 : Int, 2 : Int), 2 : Matrix),

where column 1 is the block coordinates (row and
column coordinates) and 2 is the block. The Matrix
block can be either dense or sparse. The dense matrix
is stored in the column-major format as Array[Double].
For example, the following matrix:1.0 2.0

3.0 4.0
5.0 6.0


is stored in Matrix as [1.0, 3.0, 5.0, 2.0, 4.0, 6.0]. The
sparse matrix is represented in Compressed Sparse
Column (CSC) format as a triple of arrays:

(colPtrs : Array[Int], rowIndices : Array[Int],
values : Array[Double])

where the values array contains all the non-zero entries
of the matrix in a column-major order, rowIndices array
contains the row indices of the values in the values array,

and colPtrs contains the pointers to the first elements
of each column appended by the number of non-zero
elements in the matrix. For example, the following
matrix: 1.0 0.0

0.0 3.0
2.0 0.0


is stored with values = [1.0, 2.0, 3.0], rowIndices =
[0, 2, 1], and colPointers = [0, 2, 3].

5.2 Mapping to Block Matrix

We use the following mapping to transform a coordinate
matrix A to a block matrix:

{{{ ((I, J),matrix(m)) ||| ((i, j), v)← A,
let I = i/N, let J = j/N,
letm = ((i%N, j%N), v),
group by (I, J)}}}

In the head of this comprehension, we have the
coordinates (I, J) of the block and a call to a function
matrix(m), which takes a list of coordinates of form
((i, j), v) and returns an array representing a dense
matrix. This function is implemented as follows in Scala:

def matrix(L : List[(i, j), v)]) : Array[T] ={
val V = Array.ofDim[T](N ∗N);
for {((i, j), v) ← L}
V(i + N ∗ j) := v;

V;
}

For a vector B, we use the following mapping to
transform a coordinate vector to a block vector:

{{{ (I, vector(m)) ||| (i, v)← B, let I = i/N,
letm = (i%N, v),
group by I }}},

where the function vector(m) takes a list of index-value
of form (i, v) and returns an array representing a dense
vector. This function is defined as follows:

def vector(L : List[(i, v)]) : Array[T] ={
val V = Array.ofDim[T](N);
for {(i, v) ← L}
V(i ∗N) := v;

V;
}

5.3 Translation of Semiring Operations to SQL

In our framework, the array-based graph programs that
match a semiring structure are translated to Spark SQL
programs on block arrays. These graph programs
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generally consist of two steps: update, and assignment,
which are repeated until a stopping condition is met.
In the update step, a new graph is constructed from an
existing graph, and in the assignment step, the updated
graph replaces the existing graph. These two steps
generate two comprehensions inside a code block in our
framework. We provide a new semantic function S to
pattern-match a semiring (the update step) in the input
comprehension and transform the input comprehensions
to comprehensions on block arrays. Next, we apply
pattern compilation to remove the patterns from the
comprehensions, as it was done in SQLgen.

We provide a semantic function B to translate the
comprehension on block arrays to a Spark SQL query
on block arrays. In our framework, a comprehension
between two arrays A, B that is equivalent to a semiring
has the following structure:

{{{ (g,⊕/v) ||| (i,m)← A, (j, n)← B,
ρ1(i) = ρ2(j), let v = m⊗ n,
group by g : f(i, j)}}},

where ⊕ and ⊗ form a semiring. This comprehension
retrieves the key-value pairs (i,m), and (j, n) from
generators A and B, where i and j are tuples that
contain indices of the generators. In the join condition
(ρ1(i) = ρ2(j)), functions ρ1 and ρ2 are applied on
the indices of A and B to get the columns on which
the generators are joined. The let-binding qualifier sets
v to the multiplicative monoid ⊗ applied to the values
of the generators. Then, the values are grouped by the
key g which depends on the indices of the generators
(indicated as a function f of the indices). Finally, the
comprehension head contains a key-value pair where the
key is the group-by key and the value is calculated by
applying additive monoid ⊕ on v.

For each code block, we pattern-match the derived
comprehension using the semantic function S to check
if it is equivalent to a semiring. If it does, the
comprehension on coordinate arrays is transformed to
comprehension on block arrays:

SJ{{{ (g,⊕/v) ||| (i,m)← A, (j, n)← B, ρ1(i) = ρ2(j),

let v = m⊗ n,group by g : f(i, j)}}}K =
{{{ (G,⊕b/V ) ||| (I,M)← Ab, (J,N)← Bb,

ρ1(I) = ρ2(J), letV =M ⊗b N,

group by G : f(I, J)}}} (16)

The coordinate matrices A and B of type
{{((Long,Long),Double)}} in Rule (16) are
transformed to block matrices Ab and Bb of type
{{((Int, Int),Array[Double])}}, where I and J represent
the coordinates of each block M of Ab and N of Bb,

respectively. If the generator B is a vector of type
{{(Long,Double)}}, it is transformed to block vector Bb
of type {{(Int,Array[Double])}}, where J represents
the index of the block, and N represents the values of
the block. The updated graph computed using rule (16)
replaces the current graph using the following rule:

SJ{{{h ||| x← A}}}K = {{{H ||| X ← Ab}}}, (17)

where h and H refer to the headers of coordinate and
block matrices respectively.

The coordinate arrays are then mapped to block
arrays using the mappings described in Section 5.2.
Then pattern compilation is applied on the transformed
comprehension using a semantic function described in
section 4.1.1. For example, the comprehension:

{{{ ((I, J),⊕b/V ) ||| ((I,K),M)← Ab,
((K ′, J), N)← Bb,K = K ′,
letV =M ⊗b N,
group by (I, J)}}}

is translated to:

{{{ ((X. 1. 1, Y. 1. 2),⊕b/V ) ||| (X ← Ab, Y ← Bb,

X. 1. 2 = Y. 1. 1, letV = X. 2⊗b Y. 2,

group by (X. 1. 1, Y. 1. 2)}}}.

Finally, the transformed comprehensions are translated
to SQL programs on block arrays using the semantic
function B:

BJ{{{ (G,⊕b/V ) ||| ((X ← Ab, Y ← Bb,K = K ′,

letV =M ⊗b N, groupby G}}}K =
′′select struct(G), tile sum(

collect list(mult tiles(M,N)))

from AbX join BbY on K = K ′

groupby G′′ (18)

Here, the user-defined functions tile sum, and
mult tiles represent additive, and multiplicative
monoids on block arrays respectively. The
implementations of these user-defined functions are
provided by our framework. We provide four different
implementations of mult tiles: multiplication between
dense matrices, multiplication between sparse matrices,
multiplication between dense and sparse matrices,
and multiplication between sparse and dense matrices.
We also provide four different implementations of
mult tiles between a matrix and vector. For example,
the multiplicative monoid between two dense matrices
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∗b is defined as:

def mult tiles(M : Array[T],N : Array[T])
:Array[T] = {

val V = Array.ofDim[T](N ∗N);
for {i← 0untilN ; j ← 0untilN}{

V[i + N ∗ j] := ⊕zero

for {k ← 0untilN}
V[i + N ∗ j] := V[i + N ∗ j] ⊕

(M[i + N ∗ k]⊗N[k + N ∗ j]);
}
V ;
}

User-defined function tile sum applies additive monoid
after aggregating the blocks using built-in function
collect list. We provide two different implementations
of tile sum for a sequence of both dense and sparse
matrices and vectors. For example, the additive monoid
+b for a sequence of dense matrices is defined as:

def tile add(M : List[Array[T]) : Array[T] ={
val V = Array.ofDim[T](N ∗N);
for {x←M ; i← 0untilN ; j ← 0untilN}

V[i + N ∗ j] := V[i + N ∗ j]⊕ x(i + N ∗ j);
V;
}

We also translate basic linear algebra operations, such as
matrix transpose to SQL program on block arrays. Let’s
consider the comprehension of the transpose of matrix
M :

{{{ ((j, i),m) ||| ((i, j),m)←M }}}.
At first, matrixM is mapped to the block matrixMb and
then is translated to following SQL program:

select struct(X. 1. 2, X. 1. 1),
tile transpose(X. 2)

from MbX.

We also provide special functions when the header of the
comprehension in Rule (17) contains scalar operation on
a column. For example, for the addition of a constant c
to the value column we provide the following function:

def vec sum(M : Array[T], c : Double)
: Array[T] ={

val V = Array.ofDim[T](N ∗N);
for {i← 0untilN}
V (i) := V (i) + c;
V;
}

5.4 Examples of Program Translation

Let’s consider one iteration of all-pairs shortest path
computation of an input graphGwritten using arrays and

loops. A graph G is represented by a transition matrix
where Gij = distance between node i and j, Gii = 0 and
Gij = +∞ if there is no edge between i and j.

var R : matrix[Double] = matrix();
for i = 0, n− 1 do
for j = 0, n− 1 do {
for k = 0, n− 1 do {
R[i, j] := min(R[i, j], G[i, k] +G[k, j]);
}
G[i, j] := R[i, j];
}

The derived comprehensions of this program are:

R := {{{ ((i, j),min/v) ||| ((i, k),m)← G,

((k′, j), n)← G, k = k′, let v = m+ n,

group by (i, j)}}} (19)
G := R (20)

We apply the semantic function S on them which
transforms the comprehensions on coordinate arrays
to comprehensions on block arrays using Rules (16)
and (17):

Rb := {{{ ((I, J),minb/V ) ||| ((I,K),M)← Gb,

((K ′, J), N)← Gb, K = K ′,

letV =M +b N,group by (I, J)}}} (21)
Gb := Rb (22)

Then pattern compilation is applied to remove the
patterns:

Rb := {{{ ((X. 1. 1, Y. 1. 2), (minb/V )) ||| (X ← Gb,

Y ← Gb,X. 1. 2 = Y. 1. 1, letV = X. 2+b

Y. 2, group by (X. 1. 1, Y. 1. 2)}}} (23)
Gb := Rb (24)

Then, the transformed comprehension (23) is translated
to Spark SQL program on block arrays using Rule (18):

Rb := select struct(X. 1. 1, Y. 1. 2), tile min(

collect list(min tiles(X. 2,Y. 2)))

from GbX join GbY on X. 1. 2 = Y. 1. 1

groupby X. 1. 1, Y. 1. 2 (25)

As a second example, let’s consider one iteration of
PageRank computation of a graph using the following
array equation: r′ = βMr + (1 − β)/n. At first, the
rank vector r is initialized to 1/n, where n is the total
number of nodes in the graph. The value (1 − β)/n is
assigned to variable a which corresponds to a random
jump to a random page with probability (1 − β). In the
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transition matrix M , Mij has value 1/k if the page j
has k outgoing edges. Then M is multiplied with β and
assigned to the variable G:

var s : vector[Double] = vector();
for i = 0, n− 1 do {
s[i] := 0;
for j = 0, n− 1 do {
s[i] += G[i, j] ∗ r[j];
}
r[i] := s[i] + a;
}

The comprehensions derived from this program are:

s := {{{ (i,+/v) ||| ((i, k),m)← G, (k′, n)← r,

k = k′, let v = m ∗ n, group by i}}} (26)
r := {{{ (i, v + a)) ||| (i, v)← s}}} (27)

These comprehensions are transformed to
comprehensions on block arrays by applying the
semantic function S using Rules (16) and (17):

sb := {{{ (I,+b/V ) ||| ((I,K),M)← Gb,

(K ′, N)← rb, K = K ′, letV =M ∗b N,
group by I }}} (28)

rb := {{{ (I, V +b a)) ||| (I, V )← sb}}} (29)

Then pattern compilation is applied to remove the
patterns using formulas from our earlier work:

sb := {{{X. 1. 1,+/V ) ||| (X ← Gb, Y ← rb,

letV = X. 2 ∗b Y. 2, X. 1. 2 = Y. 1,

group by X. 1. 1)}}} (30)
rb := {{{ (X. 1, X. 2 + a) ||| X ← sb}}} (31)

The first transformed comprehension (30) is translated to
Spark SQL program on block arrays using Rule (18):

sb := select X. 1. 1, tile sum(collect list(

mult tiles(X. 2,Y. 2)))

from GbX join rbY on X. 1. 2 = Y. 1

groupby X. 1. 1 (32)

For the second comprehension, the header contains
a scalar operation in the second column, which is
translated to a block operation using the special function
vec sum:

rb := select X. 1,X. 2 + a
from QJX← sbK
where PJX← sbK
groupby GJX← sbK

= select X. 1, vec sum(X. 2 + a)
from sbX

6 PERFORMANCE EVALUATION

Our translation system SQLgen is implemented on top
of DIABLO [19]. At first, array-based loops are
translated to monoid comprehensions, and then the
monoid comprehensions are translated to Spark SQL by
SQLgen.

6.1 Evaluation of SQLgen

We evaluated the performance of SQLgen on 12 different
programs and compared it with equivalent DIABLO
programs, hand-written RDD-based Spark programs,
and Spark SQL programs. The platform used in our
experiments is the XSEDE Comet cloud computing
infrastructure at SDSC (San Diego Supercomputer
Center) [46]. Each program was run on a cluster of
10 nodes where each node is equipped with 24 core
Xeon E5-2680v3 processor with 2.5GHz clock speed,
128GB RAM and 320GB SSD. The programs were run
on Apache Spark 2.2.0 on Apache Hadoop 2.6.0. Each
Spark executor on Spark was configured to have 4 cores
and 23 GB RAM. Hence, there were 24/4 = 6 executors
per node, giving a total of 60 executors, from which 2
were reserved. The input data for each program were
randomly generated. Each program was evaluated 4
times on each of 5 different sizes of datasets. From the
4 iterations over each dataset, the results from the first
iteration were ignored to avoid the possible overhead due
to the JIT warm-up time. So, each data point in the plots
represents the mean time on the rest of the 3 iterations.
The input dataset size was calculated by multiplying the
length of the dataset by the size of each serialized dataset
element. For example, the size of a serialized RDD of the
key-value pair RDD[(Long, Double)] is 47 bytes. So, the
size of 100 key-value pairs is 47*100 = 4700 bytes. The
performance results are shown in Fig. 1.

Sum (A) and Word Count (B): Sum aggregates a
dataset that contains random data. The largest dataset
used had 2 × 108 elements and size 27.19 GB. Word
Count counts the number of occurrences of strings with
4 characters in a dataset with 1000 different strings.
The largest dataset used had 8 × 107 elements and size
11.47 GB. For these two experiments, all four modes of
evaluation had similar performance.

GroupBy (C) and GroupByJoin (D): GroupBy groups
a dataset by its first component and sums up the second
component. The first components were random long
integers with 10 duplicates on average. The largest
dataset used had 2 × 108 elements and size 35.39
GB. The speedup range of SQLgen was 2.8×−3.1×
with an average speedup of 3× compared to DIABLO.
GroupByJoin joins two datasets, groups the result by
some component, and returns the sum of another
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Figure 2: Performance of SQLgen relative to DIABLO, hand-written Spark RDD code, and Spark SQL code

component in each group. The join keys of both
datasets were random long integers with 10 duplicates
on average. The largest datasets had 2 × 107 elements
and size 2.72 GB each. For this experiment, the speedup
range of SQLgen was 4.4×−16.7× with an average
speedup of 9.3× compared to DIABLO.

Histogram (E): Histogram calculates the frequency of
values in a dataset containing RGB values (0-255). The
largest dataset used had 9× 107 elements and size 16.93
GB. For this experiment, the speedup range of SQLgen

was 2.04×−2.34× with an average speedup of 2.1×
compared to DIABLO.

String Match (F): String Match matches a list of keys
with a file containing strings and counts the number
of occurrences of the keys in the file. The largest file
containing the strings had 15×107 strings and size 21.51
GB and keys were broadcast to the worker nodes. In
this experiment, the hand-written RDD-based program
was the fastest and the speedup range of SQLgen was
1.5×−1.9× with an average speedup of 1.7× compared
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to DIABLO.
Matrix Addition (G) and Matrix Multiplication(H):

The matrices used for addition and multiplication were
pairs of square matrices of the same size. Although
sparse, all matrix elements were provided, were placed
in random order, and were filled with random values
between 0.0 and 10.0. The largest matrices used in
matrix addition had 7000×7000 elements and size 10.59
GB each, while those in multiplication had 4000× 4000
elements and size 3.46 GB each. For matrix addition,
the speedup range of SQLgen was 12.8×−24× with
an average speedup of 18.9× compared to DIABLO.
Multiplication on DIABLO and the hand-written RDD-
based program was very slow, so it was only run on 2
datasets and the speedup of SQLgen were 14.6× and
21.75× respectively compared to DIABLO. For the rest
of the datasets, SQLgen has similar performance to the
hand-written Spark SQL program.

Linear Regression (I): Linear Regression takes a
dataset of 2-D points and calculates the intercept and
the slope coefficient that models the dataset. The data
used were points (x+ dx, x− dx), where x is a random
double between 0 and 1000, and dx is a random double
between 0 and 10. The largest dataset used had 12 ×
107 elements and size 21.57 GB. For this experiment,
the speedup range of SQLgen was 3.4×−5.2× with an
average speedup of 4.3× compared to DIABLO and
has similar performance to the hand-written RDD-based
program and the Spark SQL program.

PCA (J): Given a set of data points in the form
of a matrix, PCA calculates the mean vector and the
covariance matrix. The largest dataset had 6000 × 400
elements and size 0.52 GB. PCA on DIABLO was
very slow, so it was only run on 3 datasets with 30,
40, and 50 columns and the speedup range of SQLgen
was 27.7×−78.9× with an average speedup of 53.8×
compared to DIABLO. For the next two datasets, where
the number of columns was increased to 400, SQLgen
has an average speedup of 9.2× compared to the hand-
written RDD-based program.

Matrix Factorization (K): This program is one
iteration of matrix factorization using gradient descent.
For our experiments, we used the learning rate a = 0.002
and the normalization factor b = 0.02. The matrix
to be factorized, R, was a square sparse matrix n ∗ n
with random integer values between 1 and 5, in which
only 10% of the elements were provided (the rest were
implicitly zero). The derived matrices P and Q had
dimensions n ∗ 2 and 2 ∗ n, respectively, and were
initialized with random values between 0.0 and 1.0. The
largest matrix R used had 6000 × 6000 elements and
size 7.68 GB. For this experiment, the speedup range of
SQLgen was 2.9×−4.6×with an average speedup of 4×
compared to DIABLO.

PageRank (L): This program computes one iteration
of the PageRank algorithm that assigns a rank to each
vertex of a graph, which measures its importance relative
to the other vertices in the graph. The graphs used in
our experiments were synthetic data generated by the
RMAT (Recursive MATrix) Graph Generator using the
Kronecker graph generator parameters a=0.30, b=0.25,
c=0.20, and d=0.25. The number of edges generated
was 10 times the number of graph vertices. The largest
graph used had 2× 107 vertices, 2× 108 edges, and had
size 36.32 GB. For this experiment, the speedup range of
SQLgen was 5.4×−14.2× with an average speedup of
7.5× compared to DIABLO.

From all these experiments, we can see that
the programs generated by SQLgen have similar
performance to the hand-written Spark SQL programs.
For many graphs shown in Fig. 1, the SQLgen lines
coincide with that of the hand-written Spark SQL
lines, which implies that the derived SQL queries from
SQLgen are equivalent (although not equal) to the hand-
written SQL queries and the translation time of loops
to Spark SQL programs is insignificant. On the other
hand, compared to hand-written RDD-based programs
and the programs generated by DIABLO, SQLgen is
significantly faster except for the simple programs Sum
and Word Count, where the performance of all four
programs was similar.

6.2 Evaluation of OSQLgen

Our solution to generate optimized queries based
on semirings is integrated into our existing system
SQLGen [33] which in turn is implemented on top of
DIABLO [19]. The input programs are translated to
monoid comprehensions and then to optimized SQL
programs. The generated query is compiled to bytecode
at compile-time, which in turn is embedded in the
bytecode generated by the rest of the Scala program.

In the first part, we evaluated the performance of
our system on matrix-matrix multiplication, matrix-
vector multiplication, and linear regression on synthetic
datasets. We compared the performance of our system
with MLlib, hand-written SQL programs on coordinate
and block arrays. In the second part, we evaluated the
performance of our system on all-pairs shortest path,
and PageRank on synthetic datasets. We compared
the performance of our system with GraphX [21],
GraphFrames [11], handwritten Spark SQL programs on
coordinate, and block arrays. The platform used in our
experiments is the XSEDE Expanse cloud computing
infrastructure at SDSC (San Diego Supercomputer
Center) [45]. Each program was run on a cluster of
5 nodes where each node is equipped with 128 core
AMD EPYC 7742 processor with 2.5GHz clock speed,

17



Open Journal of Big Data (OJBD), Volume 6, Issue 1, 2022

1000 2000 3000 4000 5000 6000
Dimension of Matrix (x × x)

0

20

40

60

80

100

To
ta
l T
im
e 
(s
ec
s)

(A) DMDM

MLlib
SQLIJV
SQL Block
OSQLgen

1000 2000 3000 4000 5000 6000
Dimension of Matrix (x × x)

0

5

10

15

20

25

30

35

40

(B) DMSpM

MLlib
SQLIJV
SQL Block
OSQLgen

1000 2000 3000 4000 5000 6000
Dimension of Matrix (x × x)

0

10

20

30

40

(C) SpMDM

MLlib
SQLIJV
SQL Block
OSQLgen

1000 2000 3000 4000 5000 6000
Dimension of Matrix (x × x)

0

10

20

30

40

To
ta
l T

im
e 
(s
ec
s)

(D) SpMSpM

MLlib
SQLIJV
SQL Block
OSQLgen

2000 4000 6000 8000 10000 12000
Dimension of Matrix (x × x)

0

5

10

15

20

25

30

35

40

(E) DMDv

SQLIJV
SQL Block
OSQLgen

2000 4000 6000 8000 10000 12000
Dimension of Matrix (x × x)

0

10

20

30

40

(F) DMSpv

SQLIJV
SQL Block
OSQLgen

2000 4000 6000 8000 10000 12000 14000 16000
Dimension of Matrix (x × 128)

0

10

20

30

40

To
ta
l T

im
e 
(s
ec
s)

(G) SpMDv

SQLIJV
SQL Block
OSQLgen

2000 4000 6000 8000 10000 12000
Dimension of Matrix (x × x)

0

10

20

30

40

To
ta
l T

im
e 
(s
ec
s)

(H) SpMSpv

SQLIJV
SQL Block
OSQLgen

200000 300000 400000 500000 600000
Dimension of Matrix (x × 128)

0

5

10

15

20

25

(I) Linear Regression

MLlib
SQLIJV
SQL Block
OSQLgen

Figure 3: Performance of OSQLgen on linear algebra operations relative to MLlib, hand-written Spark SQL
on programs on coordinate and block arrays

256 RAM and 1TB SSD. The programs were run on
Apache Spark 3.0.1 on Apache Hadoop 3.2.0. Each
Spark executor on Spark was configured to have 30
cores and 60 GB memory. So there were 4 executors
per node, giving a total of 20 executors, from which 2
were reserved. The input data for each program were
generated using GraphX synthetic graph generators.
Each program was evaluated 4 times on each of 5
different sizes of datasets. From the 4 iterations over
each dataset, the results from the first iteration were
ignored to avoid the possible overhead due to the JIT
warm-up time. Hence, each data point in the plots in
Figure 3 and Figure 4 represents the mean time on the
rest of the 3 iterations.

First, we compared the performance of OSQLgen on
some linear algebra operations as shown in Figure 3.

Matrix-matrix Multiplication: We compared the
performance of OSQLgen on matrix product of two
matrices with four different combinations: Dense-

Dense (DMDM), Dense-Sparse (DMSpM), Sparse-
Dense (SpMDM), and Sparse-Sparse (SpMSpM). The
dense matrices were complete and the sparse matrices
had 87.5% sparsity. Each program was run for 5 sizes
of input datasets with each array block of size 1024,
except SQL programs on coordinate arrays which were
run for first 2 datasets because it was very slow. The
largest dense matrix generated in these experiments had
5, 120×5, 120 elements and the largest sparse matrix had
640× 640 elements. For these experiments, the average
speedups of OSQLgen were 2.09× (DMDM), 2.06×
(DMSpM), 2.41× (SpMDM), and 2.5× (SpMSpM)
over MLlib programs and 10.86× (DMDM), 40.22×
(DMSpM), 38.02× (SpMDM), and 37.7× (SpMSpM)
over handwritten Spark SQL programs on coordinate
arrays and had similar performance to the hand-written
Spark SQL program on block arrays.

Matrix-vector Multiplication: We compared the
performance of OSQLgen on the products of matrices
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Figure 4: Performance of OSQLgen on graph algorithms relative to GraphX, GraphFrames, and hand-
written Spark SQL on coordinate and Block arrays

and vectors with four different combinations: Dense-
Dense (DMDv), Dense-Sparse (DMSpv), Sparse-Dense
(SpMDv), and Sparse-Sparse (SpMSpv). In these
experiments, we couldn’t compare the performance
of our system with Spark MLlib since Spark MLlib
doesn’t have block vector. The dense matrices and
vectors were complete and the sparse matrices and
vectors had 87.5%, and 50% sparsity respectively. Each
program was run for 5 sizes of input datasets with
each array block of size 2048. The largest dense
matrix generated in these experiments had 12, 288 ×
12, 288 elements and the largest sparse matrix had
1536 × 1536 elements. On the other hand, the
largest dense vector generated in these experiments
had 12, 288 elements and the largest sparse matrix had
6144 elements. For these experiments, the average
speedups of OSQLgen were 9.13× (DMDv), 8.53×
(DMSpv), 14.5× (SpMDv), and 30.18× (SpMSpv) over
handwritten Spark SQL programs on coordinate arrays
and had similar performance to the hand-written Spark
SQL program on block arrays.

Linear Regression: We compared the performance
of OSQLgen for one iteration of the linear regression
algorithm using the following formula: theta = theta−
(a∗1/m∗XT )×(X×theta−y) where a,m, theta and
y represent learning rate, number of examples, parameter
and label vector respectively. The feature matrix,
parameter and label vector were all dense. Each program
was run for 5 sizes of input datasets with each array

block of size 128. The largest dense matrix generated
in these experiments had 131072 × 128 elements. For
these experiments, the average speedups of OSQLgen
were 8.44×, and 5.44× over MLlib and handwritten
Spark SQL program on coordinate arrays respectively
and had similar performance to the hand-written Spark
SQL program on block arrays.

Next, we compared the performance of OSQLgen on
some graph algorithms as shown in Figure 4. In the
first set of experiments, we compare the performance
of graph algorithms on different graph sizes by keeping
the block size and number of iterations fixed. In the
second set of experiments, we compare the performances
of graph algorithms on different numbers of iterations
and by keeping the graph size and block size fixed.

PageRank: This program assigns a rank to each
vertex of a graph using the PageRank algorithm which
measures its importance relative to the other vertices in
the graph. We compare the performance of OSQLgen
with the PageRank algorithms provided by the GraphX,
GraphFrames, and hand-written Spark SQL program on
coordinate and block arrays.

The input graph used in experiment A was generated
by the GraphX log-normal graph generator with
parameters, mean of out-degree distribution, µ = 4.0,
and standard deviation of out-degree distribution, σ =1.3.
The largest graph generated in this experiment had 220

vertices and 227(approx.) edges. Each program was
run for 8 iterations for 5 sizes of input datasets, except
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GraphFrames which was run for the first 3 datasets
because it was very slow. For this experiment, the
speedup ranges of OSQLgen were 1.81×-2.28×, 5.1×-
5.9×, and 2.1×-3.3× with average speedups of 2.01×,
5.21×, and 2.62× over GraphX, GraphFrames, and
handwritten Spark SQL program on coordinate arrays
respectively and had similar performance to the hand-
written Spark SQL program on block arrays.

In experiment B, we evaluate the performance of
OSQLgen with the increasing number of iterations (up
to 18) for a fixed size of input graph with 218 vertices
and 225(approx.) edges generated by GraphX log-
normal graph generator with the same parameters as in
experiment A. For this experiment, the speedup ranges of
OSQLgen were 1.58×-2.07×, 3.8×-12.7×, and 2.6×-
6.7× with average speedups of 1.84×, 6.55×, and
4.02× over GraphX, GraphFrames, and handwritten
Spark SQL program on coordinate arrays respectively
and had similar performance to the hand-written Spark
SQL program on block arrays. In experiment C, we use
GraphX R-MAT (Recursive MATrix) graph generator
with parameters a=0.45, b=0.15, c=0.15, d=0.25 for
our input datasets. The largest graph generated in this
experiment had 219(approx.) vertices and 225 edges.
Each program was run for 8 iterations for 3 sizes of
input datasets for GraphX, GraphFrames, and Spark
SQL on coordinate arrays and 5 sizes of input dataset
for OSQLgen, and hand-written Spark SQL programs on
block arrays. For this experiment, the speedup ranges
of OSQLgen were 3.91×-22.01×, 5.02×-25.21×, and
29.43×-44.05× with average speedups of 12.14×,
14.06×, and 36.37× over GraphX, GraphFrames, and
handwritten Spark SQL program on coordinate arrays
respectively and had similar performance to the hand-
written Spark SQL program on block arrays.

In experiment D, we evaluate the performance of
OSQLgen with increasing number of iterations (up to
18) for a fixed size of input graph with 215 vertices
and 223(approx.) edges generated by GraphX R-
MAT graph generator with the same parameters as in
experiment C. Each program was run for 5 sizes of
input datasets except hand-written Spark SQL programs
on coordinate arrays which were run for 4 sizes of
input datasets. For this experiment, the speedup ranges
of OSQLgen were 8.58×-12.8×, 11.41×-14.29×, and
10.48×-99.01× with average speedups of 10.46×,
12.73×, and 39.10× over GraphX, GraphFrames, and
handwritten Spark SQL program on coordinate arrays
respectively and had similar performance to the hand-
written Spark SQL program on block arrays.

All-pairs Shortest Path: This program computes the
shortest cost path among all pairs of vertices. The input
graph used in experiment E was synthetic data generated
by the GraphX log-normal graph generator with the

same parameters as in experiment A. We compare the
performance of OSQLgen with hand-written programs
written in GraphX, GraphFrames, and Spark SQL
program on coordinate, and block arrays. The largest
graph generated in this experiment had 211 vertices and
218(approx.) edges. The rest of the entries between the
edges were filled with 0 if it was in between a vertex
to itself else they are filled with ∞. The total number
of edges of our largest graph was 222. Each program
was run for 2 iterations for 3 sizes of input datasets for
GraphX, GraphFrames, and Spark SQL on coordinate
arrays and 5 sizes of input datasets for OSQLgen, and
hand-written Spark SQL programs on block arrays.
Since the size of the first 3 datasets are significantly
smaller than the last two datasets the data points of
the first 3 experiments are very close to each other in
the figure. For this experiment, the speedup ranges
of OSQLgen were 5.97×-20.53×, 5.25×-6.4×, and
5.02×-6.77× with average speedups of 12.1×, 5.8×,
and 5.93× over GraphX, GraphFrames, and handwritten
Spark SQL program on coordinate arrays respectively
and had similar performance to the hand-written Spark
SQL program on block arrays.

In experiment F, we evaluate the performance of
OSQLgen with increasing number of iterations (up to
10) for a fixed size of input graph generated by GraphX
log-normal graph generator with the same parameters
as in experiment A. The largest graph generated in this
experiment had 1.5×28 vertices and 215(approx.) edges.
The rest of the entries between the edges were filled with
0 if it was in between a vertex to itself else they are
filled with∞. The total number of edges of our largest
graph was 9× 214. Each program was run for for 3 sizes
of input datasets for GraphX, GraphFrames, and Spark
SQL on coordinate arrays and 5 sizes of input datasets
for OSQLgen, and hand-written Spark SQL programs on
block arrays. For this experiment, the speedup ranges
of OSQLgen were 25.51×-36.23×, 3.87×-6.19×, and
5.02×-9.16× with average speedups of 29.3×, 5.1×,
and 7.56× over GraphX, GraphFrames, and handwritten
Spark SQL program on coordinate arrays respectively
and had similar performance to the hand-written Spark
SQL program on block arrays.

Finally, we compared the performance of OSQLgen
for linear regression, PageRank, and all-pairs shortest
path problems on real datasets as shown in Figure 5.
For linear regression, we used Car dataset from
Craigslist [39] and Housing dataset of England and
Wales [22]. In these experiments, all the systems
performed similar except MLlib which performed slower
than other systems on Housing dataset. For PageRank
algorithm, we used Google web graph [26] and twitter
dataset [27]. In these experiments, GraphX, OSQLgen,
and hand-written Spark SQL program on block arrays
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Figure 5: Performance of OSQLgen on graph algorithms on real datasets relative to GraphX, GraphFrames,
MLlib and hand-written Spark SQL on coordinate and Block arrays

performed faster than GraphFrames and SQL program
on coordinate arrays. For all-pairs shortest path problem,
we have used USA and New York road graphs [14].
In these experiments, OSQLgen performed similar to
hand-written Spark SQL program on block arrays and
significantly faster than GraphX, GraphFrames and SQL
program on coordinate arrays.

From all these experiments, we see that programs
generated by OSQLgen have similar performance to
the hand-written Spark SQL programs on block arrays
and perform significantly faster than MLlib, GraphX,
GraphFrames, and Spark SQL programs on coordinate
arrays.

7 CONCLUSION AND FUTURE WORK

We have presented two frameworks for translating
programs on very large arrays, SQLgen and OSQLgen.
These frameworks translate array-based loop programs
to Spark SQL queries. SQLgen translates these
programs to SQL queries on coordinate arrays, while
OSQLgen translates them to more efficient SQL queries
on block arrays, provided that these programs match
a semiring pattern. The block computations used
in OSQLgen queries are implemented as user-defined
functions (UDF) over blocks. As a future work, we plan
to extend our methods to translate loop-based programs
to other SQL-based systems, such as Flink SQL. Since
Spark has recently started providing GPU support, as
a future work, we plan to implement our UDFs that
implement block operations on GPUs. We also plan to
use a real imperative language to express array-based
loops, such as Java or C++.
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APPENDIX A: CORRECTNESS PROOF

Block arrays: for k-dimensional arrays we have k-

dimension blocks of size

k︷ ︸︸ ︷
D ∗D ∗ ... ∗D = Dk for fixed

D. A block array Ab is converted to a coordinate array
A using mapping G:

G(Ab) = {{{ (I ∗D + i,m) ||| (I, A)← Ab,
(i,m)← F (A)}}}

where F converts a block to a coordinate list:

F (A) = {{{ (i, A[i]) ||| i← 0 ... D}}}

When k = 2, we have:

G(Ab) = {{{ ((I ∗D + i, J ∗D + j),m) |||
((I, J),M)← Ab, ((i, j),m)← F (M)}}}

where F (M) is:

{{{ ((i, j),M [i, j]) ||| i← 0 ... D, j ← 0 ... D}}}

The mapping of application of additive monoid on two
block arrays to coordinate array is defined as:

F (M ⊕b N) = {{{ ((i, k),m⊕ n) ||| ((i, j),m)

← F (M), ((i′, j′), n)← F (N),

i = i′, j = j′ }}}
= {{{ ((i, k),M [i, j]⊕N [i, j]) |||

i← 0 ... D, j ← 0 ... D}}}

The mapping of application of multiplicative monoid on
two block arrays to coordinate array is defined as:

F (M ⊗b N) = {{{ ((i, j),⊕/v) ||| ((i, k),m)← F (M),

((k′, j), n)← F (N), k = k′, let

v = m⊗ n, group by (i, j)}}}
= {{{ ((i, j),⊕/v) ||| i← 0 ... D,

k ← 0 ... D, j ← 0 ... D, k = k′,

letM [i, k]⊗N [k, j],

group by (i, j)}}}

The semiring comprehension q on k-dimensional
coordinate arrays A, and B is defined as:

q(A,B) = {{{ (k,⊕/v) ||| (i,m)← A, (j, n)← B,
ρ1(i) = ρ2(j), let v = m⊗ n,
group by k : f(i, j)}}}

when k = 2, q(A,B) equals:

{{{ ((i, j),⊕/v) ||| ((i, k),m)← A, ((k′, j), n)← B,
k = k′, let v = m⊗ n,group by (i, j)}}}

The semiring comprehension Q on block arrays Ab, and
Bb is:

Q(Ab,Bb) = {{{ (K,⊕b/V ) ||| (I,M)← Ab,
(J,N)← Bb, ρ1(I) = ρ2(J),
letV =M ⊗b N,
group by K : f(I, J)}}}

When k = 2, Q(Ab,Bb) equals to:

{{{ ((I, J),⊕b/V ) ||| ((I,K),M)← Ab,
((K ′, J), N)← Bb,K = K ′,
letV =M ⊗b N,group by (I, J)}}}

Theorem 1 Given the block arrays Ab, and Bb,
the semiring comprehension q on these arrays after
applying G is equivalent to G applied to the semiring
comprehension Q on Ab, and Bb:

∀Ab,Bb : q(G(Ab), G(Bb)) = G(Q(Ab,Bb))

where G maps block arrays to coordinate arrays.

Proof: We have provided the proof for k = 2,⊕ =
+,⊕b = +b,⊗ = ∗,⊗b = ∗b:

q(G(Ab), G(Bb))

= {{{ ((i, j),+/v) ||| ((i, k),m)← G(Ab),

((k′, j), n)← G(Bb), k = k′, let v = m ∗ n,
group by (i, j)}}}

= {{{ ((I ∗D + i, J ∗D + j),+/v) ||| ((I,K),M)

← Ab, ((i, k),m)← F (M), ((K ′, J), N)

← Bb, ((k′, j), n)← F (N),

K ′ ∗D + k′ = K ∗D + k, let v = m ∗ n
group by (i, j)}}}

= {{{ ((I ∗D + i, J ∗D + j),+/v) ||| ((I,K),M)

← Ab, ((i, k),m)← F (M), ((K ′, J), N)

← Bb, ((k′, j), n)← F (N),K = K ′,

letk = k′, v = m ∗ n,group by (i, j)}}}
(since K ′ ∗D + k′ = K ∗D + k and

k, k′ < D implies K=K′ and k=k′)
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= {{{ ((I ∗D + i, J ∗D + j),+/v) |||
((I,K),M)← Ab, ((K ′, J), N)← Bb,

K = K ′,group by (I, J),

((i, k),m)← F (M), ((k′, j), n)← F (N),

k = k′, let v = m ∗ n,group by (i, j)}}}
(since I = i/D and J = j/D, then

group by (i, j) implies group by (I, J))

= {{{ ((I ∗D + i, J ∗D + j),+/v) |||
((I, J), V )← Q(Ab,Bb), V =M ∗b N,
((i, k),m)← F (M), ((k′, j), n)← F (N),

k = k′, let v = m ∗ n,group by (i, j)}}}
= {{{ ((I ∗D + i, J ∗D + j),+/v) |||

((I, J), V )← Q(Ab,Bb), V =M ∗b N,
((i, j), v)← F (M ∗b N)}}}

= {{{ ((I ∗D + i, J ∗D + j),+/v) |||
((I, J), V )← Q(Ab,Bb), ((i, j), v)← F (V )}}}

= G(Q(Ab,Bb)) �
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