
c© 2021 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 7, Issue 1, 2021

http://www.ronpub.com/ojiot
ISSN 2364-7108

Realizing the Digital Twin Transition
for Smart Cities

Jonathan Fürst, Bin Cheng, Benjamin Hebgen

NEC Laboratories Europe GmbH, Kurfürsten-Anlage 36, Heidelberg, Germany,
{jonathan.fuerst, bin.cheng, benjamin.hebgen}@neclab.eu

ABSTRACT

The digital twin transition for cities is expected to improve, among others, living quality, carbon footprint and
generate new business opportunities across different organizations. However, as cities consist of many separate
entities that are in close and frequent interaction with each other, it is not possible to simply apply digital twin
concepts from the engineering and manufacturing domains in a silo-ed fashion for each entity. In this paper, we
distill the requirements and challenges to develop digital twins for smart cities based on a typical smart city use
case. We follow with a first systematic approach to address them in a data-driven fashion to realize the digital twin
transition for cities.
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1 INTRODUCTION

Digital twins have seen increasing attention beyond
their originally intended application in the context of
aerospace engineering and quickly been picked up by
the manufacturing domain as part of the so-called
Industry 4.0 revolution [22]. Recently, the concept
is being further adapted to diverse domains such as
Health [3] or applied in Smart Cities for collaborative
urban planning [7]. While the original concept has
been focused mainly on a—potentially very precise—
simulation of physical objects or systems together with
updates through sensor data to make predictions about
the underlying object (e.g., fatigue prediction [1]), the
adaption of the digital twin concept to the Internet of

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2021) in conjunction with the
VLDB 2021 conference in Copenhagen, Denmark. The proceedings
of VLIoT@VLDB 2021 are published in the Open Journal of
Internet of Things (OJIOT) as special issue.

Things and in particular to Smart Cities brings new
challenges and opportunities. Opposed to previous
application areas of digital twins, cities are complex
cyber-physical human ecosystems that consists of many
different organizations. The underlying data is highly
distributed, of high variety and there exists no single
data ownership, making the digital twin transition
challenging.

In order to realize the digital transition, for cities,
we need to move from domain specific digital twins,
to a network of connected digital twins across different
sectors. In order to scale to a whole city, we need to move
from their manual construction to a (semi-) automated,
data-driven generation, replacing sophisticated physical
simulations with data-driven AI techniques.

The underlying foundation for this digital twin
transition is data. Data needs to be harmonized across
different data silos in order to enable a distributed
knowledge graph across data silos, enabling the
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virtualization of physical city processes, which happen
across many organizations.

In this paper, we present challenges and a first
systematic approach to enable digital twins for the
Internet of Things (IoT) in the Smart City domain. Our
approach is data driven, mapping and adapting existing
concepts and methods from the database community to
realize Digital Twins for Smart Cities. In summary our
findings and contributions are the following:

• Data to build digital twins in smart cities is
usually created at the edges of the network, often
by various sensors that are connected via low-
bandwidth interfaces. We thus need to move from
traditional Big Data processing in the cloud (Spark,
Hadoop etc.) to data processing at the edges, both
for performance reasons and for privacy reasons.
For our digital twin platform, we utilize FogFlow,
an open-source and standards based cloud-edge
platform that supports serverless computing [5, 4].

• Data in a city is owned by different entities. For
example, each city department and many businesses
collect and store their own data in a silo-ed
fashion. This is in strong contrast to a city being
in the real world a complex ecosystem in which
many entities are in constant interaction with each
other and many city goals require the cooperation
of different organizations. Thus, to enable the
promises of the digital twin transition, data cannot
be created and stored in a centralized fashion, but
needs to be distributed/federated across different
owners of data silos, giving data owners fine-
grained access control. Knowledge graphs have
proven successful in large scale data representations
(e.g., Google Knowledge Graph [9], Amazon
Product Graph [10]) and are a natural choice
to represent the network of humans, objects and
their interactions in a city. In our platform, we
achieve a federated knowledge graph through the
linked data standard and protocol NGSI-LD [14]
and an implementation of Scorpio, an NGSI-LD
broker supporting federation across multiple broker
instances [21].

• Data integration has been addressed by many works
of the database community [12], moving recently
to machine learning based techniques [11]. The
digital twin transition for cities also poses a data
integration problem as data is generated by multiple
different organizations, often in an ad hoc fashion.
However, compared to many other data integration
problems, data cannot just be integrated centrally
as there exist many legal and data confidentiality
issues (e.g., the recent European GDPR law). In

our method, we instead apply a privacy preserving
linking/mapping on schema level, without revealing
instance data (e.g., the actual sensor data is not
revealed).

• Last, we recognize the need for a paradigm shift
from purely simulation based digital twins to
increasingly data-driven digital twins in order to
scale the digital twin concept to a city level. In a
city, digital twin behavior, such as prediction tasks
can often be implemented using machine learning
techniques. As domain experts are often not data
scientists and the manual creation of labeled data
poses a bottleneck for IoT, we propose a weak-
supervision interface for domain experts to infuse
knowledge [18]. Interactive techniques such as
active learning can further be used to enable ML
for the digital twin long tail.

In the following, we first motivate digital twins with
a smart city use case and derive requirements. We
identify open challenges and then present our systematic
approach for a twin transition in an open ecosystem.

2 DIGITAL TWINS ACROSS SILOS

We start with a concrete use case on smart cities to
explain how digital twins are expected to work from the
user’s perspective and then introduce our definition of
digital twins for the purpose of enabling efficient data
sharing and utilization across data silos. Based on that,
we analyze the requirements of IoT platforms to realize
the transition from purely data-oriented sharing to twin-
oriented sharing.

2.1 Use Case

In a physical environment like smart city or smart
campus many things like parking lots, cameras, or
vehicles are already connected, but very often they are
isolated in different data silos and it is hard for them
to share and exchange contextual information in time.
These silos are now becoming the biggest barrier for us
to achieve the real smartness of IoT devices. Creating
the digital twins of those connected devices at a virtual
twin layer across data silos could be a promising solution
to break the data silos and enable easy and efficient data
sharing and utilization.

Take smart parking as an example. As illustrated
in Figure 1, in a smart city there exists usually many
parking sites, including public parking sites managed
by the city (Silo-A) and private parking sites managed
by a private company (Silo-B). When someone drives
to the city center for shopping with an advanced
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Figure 1: Digital twins across data silos

vehicle, such as an electric car, she/he likes to receive
a timely recommendation on where to park. In this
case, the driver might expect that the twin of the
car communicates with the twins of all parking lots
in the destination area, together with the road traffic
information on the way, to figure out the best parking
lot to park and keep the driver informed timely. When
the car arrives at the entry point of the parking site, a
connected camera can capture the plate number of the car
and then trigger the parking gate to open automatically.
Also, the car can guide the driver to the right parking
lot that has been reserved by the car on behalf of the
driver. With the help of the digital twins that live at
the twin layer to link those isolated data silos, the entire
process could be carried out efficiently and seamlessly
with minimal interference from the car driver.

2.2 Concept of Digital Twins

To enable efficient data sharing and exchange across
data silos, we propose to abstract the concept of a
digital twin as illustrated in Figure 2. A digital twin
consists of a standard based data presentation plus a set
of atomic services. Its data presentation is presented
by a twin entity with the semantically annotated data
schema. Each twin can have a set of atomic services
around the data entity to update, enrich, and maintain its
data presentation, including:

• Synchronization service to enable the bi-
directional data transformation and synchronization
between the twin entity of a twin and its
corresponding physical object. The service is
responsible for dealing with the heterogeneity and
interoperability of communication protocol and
data model on both sides. E.g., a building twin
needs to be updated based on sensor values from
the Building Management System (BMS), handling
various protocols such as ModBus or BACnet and
potentially inconsistent data models.

Twin Entity
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Device A

Internal 
Service

External 
Service

Twin Entity
(B)
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Service

Digital Twin A

APPs

Digital Twin B

Figure 2: Elements of a digital twin

• Internal service to take a set of existing properties
as inputs to perform some data analytics and then
use the generated analytics result to create or update
a property for the same twin entity. E.g., an
internal service might use signal strength data from
WiFi or Bluetooth sources to estimate building
occupancy [28].

• External service to take the input data from other
twin entities to perform some data analytics and
then use the generated analytics result to create or
update a new property for the local twin entity. E.g.,
the building twin might query the mobility twins
of the building users to predict the arrival times of
people in order to then actuate the HVAC system
accordingly.

With our design, the data sharing and exchange
between digital twins or with the upper layer twin
applications can be achieved via a unified and
standardized interface of data entities. All atomic
services could stay behind the actual data usage of twin
entities to make sure that the twin entity can always
reflect the latest view of a digital twin with the required
information.

2.3 Requirements

We analyze the requirements of creating the designed
digital twins for cross-silo data sharing. Here we exclude
the security related requirements, which are out of the
scope of this paper. In terms of functional requirements,
we aim to cover the following aspects:

1. Twin Construction: to create the twin entity out of
heterogeneous data sources as the data presentation
step of a digital twin.

2. Creation of atomic service: the major capability
of a digital twin will be augmented by its atomic
services. Therefore, there is an essential need to
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program the logic of atomic services via some high
level programming model. In some case, some
atomic services rely on some trained AI models
to make decisions according to its contextual
information. How to seamlessly create AI models
is also an important part of service creation.

3. Orchestration of atomic service: an execution
environment is required to instantiate those atomic
services and run them seamless over a cloud and
edge environment.

4. Interoperability and interaction between digital
twins: to make sure different twins from different
silos can interact with each other via common data
models and communication protocols.

In addition, we also take into account the following
non-functional requirements:

1. Automation: we need to automate the entire
processes of twin creation, service creation, and
service orchestration as much as possible.

2. Scalability: the twin layer across data silos must be
scalable to support a large number of silos.

3 CHALLENGES

We recognize the following challenges:

[C1] Data integration only on schema level. When
data is federated across silos in multiple
organizations, confidentiality and legal
regulations (e.g., the European data privacy
GDPR law) are an obstacle for traditional
centralized data integration approaches.
Therefore, practically data integration needs
to occur in two steps: (1) Integration on a
schema level, without sharing and utilizing
confidential information about the underlying
instance data and (2), potentially, the sharing
and integration of instance data, depending on
the identified opportunities and legal grounding.
Existing data integration solutions usually are
usually only tailored for (2).

[C2] Traditionally data driven ML approaches do not
generalize well across IoT deployments. As has
been shown [18], traditionally supervised ML
models often do not provide robust performance
in face of domain shifts, without re-training
on the specific data distribution. Re-training
requires new labeled data, which is too expensive
to obtain, as it often requires a human to
manually annotate events in a data stream by

observing the events in the real world. All this
makes the creation of ML based atomic services
for digital twins cumbersome.

[C3] Data is produced at edges. For performance,
latency and potentially privacy reasons, there is
a need for edge computing. Computation needs
to move closer to the data instead moving the data
closer to computation.

4 OUR SYSTEMATIC APPROACH

Our digital twin platform consists of four layers: (1) A
device layer, which connects various IoT infrastructures,
such as sensors and their used protocols; (2) A cloud-
edge runtime, which enables data processing flows from
the edge to the digital twin layer; (3) The digital twin
layer, which consists of NGSI-LD modeled knowledge
graphs accessible through a context broker and (4) The
federation layer, which enables data exchange between
different brokers at different data silos, facilitating
schema matching and federated learning. Domain
experts are able to introduce their knowledge in form
of weak supervision signals and active learning input
to train machine learning models without exhaustive
manual labeling effort. These ML models are used to
enable data extraction from the edge to the digital twin,
implement digital twin behavior (e.g., parking place
prediction) and also can support the schema matching
across different data silos.

4.1 Knowledge Graphs with NGSI-LD and
Scorpio

Scorpio [21] is an open source context broker
implementing the NGSI-LD API as specified by
the ETSI Industry Specification Group [14]. The
NGSI-LD API enables the management, access and
discovery of context information. Context information
is modeled in a graph structure, which consists of
entities (e.g., a building) and their properties (e.g.,
address and geographic location) and relationships to
other entities (e.g., owner and users). Thus Scorpio
enables applications and services to request context
information—what they need, when they need it and how
they need it. This allows the modeling of digital twins of
real world entities (see Figure 4).

NGSI-LD provides a wide set of methods to interact
with context information and thus the digital twin.
CRUD (Create Read Update Delete) methods for
entities are available as well as a more sophisticated
query system and a subscription system. The query
system includes various filtering and scoping (e.g.
geographic) capabilities which enable users or services
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Figure 4: NGSI-LD Entity Model

to find specific entities, e.g. a query could return
all entities which have a relationship to another entity.
Subscriptions provide an asynchronous way to receive
context information when they change.

NGSI-LD defines two types of data sources for
context data. Context Producers are actively pushing
context information into the broker. Context Sources,
which provide a subset of the NGSI-LD API, allowing
them directly to be queried and subscribed to. In order
to discover these Context Sources via a broker NGSI-
LD defines a registry interface where Context Sources
register their endpoint and their provided entities.
Scorpio uses the registry directly in every query and
subscription to combine all available variants of an entity
into a single result entity (see Figure 5).

This allows Scorpio to provide a digital twin from
various data sources provided as an entity. Looking at
the real world we very often come across the situation
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Figure 5: NGSI-LD Broker Setup with Registry

that data sources are spread across different departments,
companies or service providers which all need to have
their own data sovereignty and hence cannot all report
into one central instance of a broker. This results in two
main problems to be solved when we want to construct a
digital twin out of such a distributed system. We need
to build a federation of these brokers and we need to
transform data into one common data model.

Given that a NGSI-LD Broker is also an NGSI-LD
Context Source and that Scorpio is using the NGSI-LD
registry directly for queries and subscriptions, building
a federation of brokers is a simple task with Scorpio.
One instance of will be setup as the Federation Broker,
which is only a virtual role and not a different operation
mode for Scorpio. This Federation broker will register
all of its sub-brokers in its registry. All queries going
to the Federation Broker will now be forwarded to all
other brokers and collected at the Federation Broker (see
Figure 6).

If the network setup allows it, Scorpio also provides
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Figure 6: NGSI-LD Broker federation

a functionality for sub-brokers to automatically report
new entity types to the Federation Brokers registry.
While we describe a hierarchical federation here, it is
also possible to build a meshed federation based on
NGSI-LD. However this requires more attention to the
setup of the registries to avoid circle requests. NGSI-
LD and therefore Scorpio is currently not providing
any safeguards to avoid circling requests. We are
currently investigating possibilities to efficiently avoid
such circling behavior.

NGSI-LD by itself defines only a structure for
entities but no data model as such. FIWARE is a
framework addressing various aspects of smart cities,
smart mobility, smart agriculture etc. One of the core
aspects is the context broker, which is defined as a NGSI-
LD context broker [15]. What FIWARE provides on top
is a collection of data models [16] describing entities for
its supported scenarios. The EU has chosen the FIWARE
context broker, which includes the NGSI-LD API and
its data models, as its CEF context broker. Therefore
it is sensible to use FIWARE data models to implement
digital twins, especially in a European context. While
the smart data models can be used without when setting
up new data sources, there is often a need to receive or
publish data in other data models. This is supported
from the NGSI-LD side by using the @context entry
in a document. @context is a part of the JSON-LD
specification, on which NGSI-LD builds on, and is an
entry storing mappings between short attribute names
and full URIs as identifier for the attribute.

4.2 Edge Computing with FogFlow

FogFlow is an open source fog computing framework
that can dynamically orchestrate IoT services over
cloud and edges on-demand, in order to fulfill high-
level service intention expressed by service consumers,
which could be external applications or any IoT devices.
Figure 7 shows a high level view of the FogFlow system.
It consists of a number of fog nodes, each of which
runs a Broker and a Worker. A management node
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runs two centralized components, namely Discovery
and Orchestrator. Each node is a Virtual Machine
(VM) or physical host deployed either in the cloud or
at edges. All fog nodes form a hierarchical overlay
based on their configured GeoHash IDs. All data in
the system is represented as entities saved by a Broker
and indexed by the centralized Discovery for discovery
purposes. The data can be raw data published by IoT
devices, intermediate results generated by some running
data-processing tasks, or data available at a resource,
reported by fog nodes. When a fog function is registered,
Orchestrator will subscribe to the input data of the fog
function to Discovery. Once the subscribed data pieces
appear or disappear in the system, Orchestrator will
be informed, and it can then take orchestration actions
accordingly, which will be carried out by an assigned
worker. The initial version of FogFlow provides only
the centralized implementation of Discovery and Service
Orchestrator. However, this centralized approach has
limited scalability and reliability and also leads to a long
delay of launching a new data service on the fly. This is
because, with the centralized approach, all orchestration
decisions must be made by the centralized service
orchestrator, which is usually deployed on the cloud
node of the FogFlow system. To avoid this bottleneck
and also improve the scalability and reliability of the
service orchestrator in FogFlow, the latest FogFlow
introduces a new decentralized orchestration mechanism
based on distributed discovery and orchestrator. The key
idea behind the decentralized orchestration is to leverage
the geoscope information associated with intents to
break down the entire orchestration workload into
different regions, allowing each orchestrator that runs
at each edge node or in the cloud to make its own
orchestrations locally.

With the decentralized service orchestration, the entire
FogFlow system consists of a set of autonomous agents
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and each of them includes the same set of components,
worker, broker, discovery and orchestrator, but they are
organized at different logical layers to cover different
regions of the entire geomap. A global routing table that
indexes which agent is responsible for which region is
propagated and maintained via a gossip protocol among
all agents. Every intent to trigger the service deployment
will be associated with a pre-defined geoscope, which
indicates which regions are covered or overlapped with
this intent and then can be used to look up which agents
should be involved to deal with this intent. This is all
done via the distributed discovery and broker network
across agents. In the end, this intent will be forwarded
to all involved orchestrators and each of them will start
to monitor the context information in its own local
region and then make the proper orchestration decisions
locally and immediately to deploy new tasks whenever
the required input data becomes available from its own
broker.

FogFlow is used as an advanced orchestrator to
dynamically instantiate and manage all atomic services
around digital twins over cloud and edges in a seamless
manner. In the latest version of FogFlow, NGSI-LD is
now used as the internal data model and communication
protocol to exchange information between different
digital twins. Also, it is able to orchestrate multiple
vThings both in the cloud and at the edges, making the
digital twins live closer to their physical counterparts in
the root silos. More importantly, FogFlow allows digital
twins to interact with each other directly at the edge
when the corresponding things are close to each other.
Overall, it offers three main technical benefits:

1. Reduce the internal bandwidth consumption and
communication latency between digital twins and
their physical things counterparts;

2. Enable direct communication and interactions
between digital twins, seamlessly over the cloud
and edges;

3. Provide the flexibility and programmability to
realize different digital twins with its intent-based
edge programming model.

4.3 Knowledge Infusion

Knowledge Infusion [18], a form of programmatic
labeling such as proposed in Snorkel [23], aims to
dynamically infuse weak and strong knowledge, i.e.,
logic based on human reasoning and internal and
external knowledge bases (e.g., stored in a knowledge
graph) into supervised learning to improve overall
robustness, transferability and accuracy. The infusion
of weak and strong knowledge has two benefits: (1)
it reduces the effort needed to train or startup a ML

model and (2) the knowledge model can be executed
side-by-side with the ML model to correct wrong
outputs, thereby improving robustness, and enabling
the calculation of an uncertainty value that gives an
indication of when reality and the ML model have shifted
too much apart so that performance would suffer.

We have implemented KISS (Knowledge Infusion
made Simple Suite), an easy tool for domain experts
and knowledge engineers to infuse their knowledge in
form of heuristic rules, while also utilizing existing
knowledge contained in knowledge bases. Figure 8
depicts the interplay of KISS with Scorpio Broker
and FogFlow cloud-edge executor. Domain experts
use KISS to develop their machine learning models in
an interactive Jupyter Notebook environment, on data
that is ingested via an adapter to a Scorpio broker
instance. After development, the trained model is
packaged together with the used supervision signals (i.e.,
weak and strong functions, optionally a small labeled
dataset) and deployed in a FogFlow pipeline [C2].

4.4 Schema Matching

Our data linkage platform enables schema matching
between data stored in different Scorpio broker silos (see
Figure 9). For the matching, we use existing linkage
knowledge, for example in form of distance heuristics
and based on public knowledge bases. Utilizing
Knowledge Infusion we are able to jointly apply these
sources to train a machine learning model that then
matches the concepts from different ontologies [C1].

4.5 Federated Learning across Silos

Federated learning has been proposed as a promising
approach to coordinating model AI training over
distributed data sets without sharing original raw data,
however, this approach focuses on the model training
phase, rather than the data labeling phase. It has
the following limitations: 1) it requires a centralized
parameter server to do the fine-grained coordinating of
the entire training process over all clients (there is a client
running for each domain or site), but the centralized
parameter server could be the bottleneck and a single
point of failure for the training processing; 2) labeled
data must be available on each client, which is not the
case in many real world scenarios; 3) it is not model
agnostic because it required the trained model to be the
same kind for every client, which limits the flexibility for
each domain to use and select a suitable trained model
for its own domain.

Instead of moving data to labeling for learning a single
global model, we propose to move labeling functions to
data for learning any local model, which can still benefit
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from the knowledge transferred from the other domains
in the label generation phase. Since the knowledge
is transferred from one domain to another domain in
the label generation phase by sharing labeling functions
and their learned weights and estimated performance
metrics, training the local model is model-agnostic
and can be done with largely reduced labeling cost.
In order to train a machine learning model out of
unlabeled data jointly across different domains without
violating privacy regulations, we introduce a federated
data programming method. Based on our approach, a
set of pre-defined or pre-trained labeling functions can
be exchanged across domains and then each domain can
dynamically select a customized set of labeling functions
according to its own requirement and its local data set
and then ensemble them to train its own generative model
for producing labeled data, which could be later utilized
to train any machine learning models. Different from
traditional federated learning methods, our method does
not require a centralized server to coordinate the learning
process across domains and also does not require each
domain to have labeled data. Also, as compared to the
existing data programming approach like Snorkel [24],
our method does not need to collect all unlabeled data
for local training while still being able to leverage the
knowledge from the other remote domains to improve

the training process in the local domain by exchanging
the evaluated weights and performance metrics of all
label functions across domains.

Our approach has the following technical features:
1) privacy-preserving, because only the label functions
and their weight are exchanged across domains but
the original data stay within its own domain; 2) high
efficiency, because sharing labeling functions and their
evaluated weights across domains allows each domain
to leverage the knowledge coming from other remote
domains; 3) high scalability, because the communication
cost for exchanging label functions and their weights is
low and also there is no need of centralized coordinator;
4) avoid cold-start problem of traditional machine
learning, because labeled data are not required and any
existing knowledge can be directly used as labeling
functions; 5) enable model-agnostic learning for each
personalized domain and allow each domain to train
its own personalized model adaptive to its own data
distribution and environment.

5 DIGITAL TWINS IN ACTION

With the technologies presented, we realize part of the
use cases that has been introduced in Section 2.1.
Figure 10 shows a concrete example with three digital
twins related to smart parking. In such a scenario, when
a connected car enters a parking house with a connected
gate controller and a connected camera, two digital twins
are created, one for the gate controller with the MQTT
interface connected to a MQTT broker running at the
edge and one for the camera with oneM2M interface
connected to a oneM2M gateway running at the edge.

We orchestrate two atomic services for the twin entity
of a camera: 1) a synchronization service that fetches
oneM2M data and converts it to update the NGSI-LD
based data presentation of the virtual camera; 2) an
internal service called “Car-plate detection” that takes
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Figure 10: Two digital twins with their atomic services realized for smart parking using FogFlow and Scorpio

the “STREAM URL” of the camera as input and then
constantly reads its video stream to perform real-time
car plate detection and updates the “DETECTED CAR”
property with the detected car plate number.

For the twin entity of the gate controller two other
atomic services exist: 1) a synchronization service that
can fetch the MQTT message reported by the gate
controller and use the converted information to update
the NGSI-LD based data presentation of the virtual gate
controller; in the meantime the synchronization service
will also subscribe the updates of the “GATE STATUS”
property of the gate controller and then write them
back to the gate controller as command messages; 2)
an external service called “plate validation” that can
subscribe to the detected car plate number from the
virtual camera and then update the “GATE STATUS”
property of the virtual gate controller after a plate
validation procedure. This example shows that, with the
help of FogFlow and Scorpio, a complex control process
between two physical things can be accomplished fast
and automatically via the communication/interaction
between their synchronized twin entities.

6 RELATED WORK

In context of urban planning the concept of
digital twins has been applied in several cities,
especially for providing a common 3D model of
the built infrastructure, e.g., in Singapore (Virtual
Singapore [20]), in Zürich [26], Helsinki [25] and
Herrenberg, Germany [7, 8].

On the platform level, Conde et al. [6] propose
a reference architecture, using components from the

FIWARE ecosystems and its published open data models
to create digital twins for any domain. Shao et al. [27]
raise the need for a standardized digital twin framework
for smart manufacturing. Francisco et al. [17] create a
energy digital twin for cities based on data from available
smart meters to benchmark energy consumption for
different time periods.

From Industry, Microsoft Azure Digital Twins [19]
provide a virtual integration layer for assets from
disintegrated siloed data sources, while connecting to
computation infrastructure and services on the Azure
platform. Bosch IoT Things [2] allows applications to
store and update data, properties, and relationships of
physical assets based on Eclipse Ditto [13], focusing
mostly on the data representation of digital twins.

Compared to these works, we propose a data driven,
systematic approach to enable digital twins for cities
based on a set of open and standardized components. We
focus on how to enable digital twins across data silos and
enable twin construction as well as internal and external
services utilizing user-created ML models.

7 OUTLOOK AND CONCLUSION

We have presented requirements and challenges to
transfer the digital twin concept to smart cities in
which data silos across different organizations with
heterogeneous data models are the major obstacle. We
proposed to address the issue by automating the process
for creating digital twins in each silo at the edge, and
federating them across silos using a combination of
schema matching and federation context brokers. The
main components of our architecture are part of a larger
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open-source ecosystem which promotes open smart city
standards. In the future we hope that both, open software
components and open standards will enable a true digital
twin transition for smart cities.
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