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ABSTRACT

Discovering IoT devices joining a network is essential for network management, security and optimization. Knowing
what is happening on a computer network and finding those IoT devices is necessary to counter hacker attacks. To
address the security challenges of IoT devices, we present identification (discovery) and classification. This gives the
reader an overview of both areas, which need to be considered together; the very fact that there are many techniques
and protocols for managing and communicating with IoT devices makes them both worth considering. Due to the
differences in discovery and classification of IoT devices, we first present the provisioning part of the IoT device
lifecycle and then discuss the different classification approaches. This thesis also describes the importance of feature
extraction for classification and the difference between packet and flow features. In addition, this work discusses the
difference between statistical, machine learning and artificial intelligence based classification methods, including
large language models and quantum computing. In short, this thesis discusses relevant 1oT device discovery and
traffic classification techniques, applications, challenges and future directions.
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1 INTRODUCTION they are used. Traffic classification is a step towards
device classification and intrusion detection. Therefore,

it is important to thoroughly examine each area before

The growing number of IoT devices worldwide and the
resulting security risks make it necessary to identify
IoT devices. The first step in improving security
and management is to automatically discover IoT
devices. Assigning a device type, called a fingerprint,
can help identify unknown network devices. Device
classification is often confused with similar approaches
such as application traffic classification and intrusion
detection. However, classification methods have
different scopes depending on the purpose for which

evaluating the different classification approaches.

Digital transformation (Industrialization 4.0) in all
industries, but especially in small and medium
enterprises and smart home environments, is a challenge
in terms of smart device management and security.
In addition, there is skepticism about IoT networks
and the protection of privacy and data security,
especially in small and medium-sized businesses and
smart home environments. According to studies by
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various institutions such as Bitcom [17], TUV-Siid [92]
and BAIN-COMPANY [141], the acceptance of IoT
solutions among medium-sized companies and private
users is still low, especially in the context of data security
and privacy [47]. Standardization in the networking
of IoT devices has not yet been established, despite
existing technologies, so simple and vendor-independent
solutions are lacking.

Devices and their management require easy-to-use
and secure platforms. Many vendors and service
providers offer solutions that are incompatible with
each other and require a mandatory connection of IoT
devices to the cloud, which inhibits the adoption of
such systems and will lead to problems in the future
due to the limited transmission capacity of the Internet.
Smart gateways are one way to address the challenges
of IoT networking. They are installed close to the data
source in the LAN (local area network) or in an edge
cloud (decentralized data processing at the edge of the
network) and use intelligent data filters to minimize the
amount of data to be transmitted [12, 49]. Organizations
such as LF-EDGE [86], Edge-Stack [44] and others
have also addressed the problem, but they are not yet
fully established in IoT solutions for small and medium
businesses or smart homes.

The problem with discovery and binding, also called
identification in this paper, is that most frameworks use
active network scanning to do this, giving the impression
that the process is sufficiently secure, but active network
scanning and probing is usually at odds with corporate
security policies and smart home security requirements.

However, to increase the security of IoT networks,
it is necessary to detect new or unknown IoT devices
in a timely manner and control them through security
policies before they are added to a network or smart
home. Using rules to isolate them from the network
if the device is not already inventoried is essential and
not an easy task. The inclusion of discovery and
binding techniques are, in our opinion, very important
components in this paper to understand the context of
IoT discovery and classification.

1.1 Motivation

Even though IoT devices and IoT networks have been
established for many years, there is still no reliable and
established mechanism for classifying IoT devices. This
is a significant problem for the entire smart home sector
and for Industry 4.0.

Existing works that do surveys on IoT device
discovery and classification are in some ways outdated
because they do not cover newer topics like LLMs (Large
Language Models), some of the works include the use
of GANs (Generative Adversarial Networks) but the

scope is slightly different. LLMs are specialized Al
models to generate human-like text and GANs are Al
models that can generate results in different forms like
images and code. Another point is the consideration
of hybrid machine learning methods combined with
similarity approaches on unique features like packet
lang distributions [42]. So at this point, we believe
that these techniques should be considered in more
detail with respect to the identification and classification
of IoT devices. Furthermore, they do not provide
insight into statistical approaches that do not use ML-
based techniques, such solutions show good results,
although they have often been used in application
classification, as shown in the work of [27, 28, 33, 42]
and [43]. In addition, in the last few years, completely
new possibilities have emerged in the field of network
traffic classification, with the combination of quantum
computing and artificial intelligence as a major goal. All
this has encouraged us to present a survey that examines
the possibilities of classifying IoT devices and compares
their capabilities and limitations.

Mohd et al. [99], in their work, show a good overview
about the trend and classification of the Internet of
Things by analyzing surveys between 2011 and 2019.
Already in this work, the growing need for further
research in this field is described. However, this paper
mainly analyzes the surveys.

Sanchez et al. [142] present a survey that includes a
detailed consideration of the whole problem. But their
work doesn’t consider new Al-based approaches such as
generative transformers.

Shriyal et al. [131] present an overview of the
classification of IoT devices, but their focus is on
securing the communication of IoT devices through
blockchain technologies.

Hauda et al. [78] present a detailed survey in
IoT device classification, focusing mainly on machine
learning techniques.

Yongxin at al. [88] also presents a detailed overview
of IoT device classification with a focus on machine
learning, although they mention Al-based approaches,
but do not provide specific case studies.

Nguyen and Armitage [101] present a detailed survey
of machine learning based network traffic classification
in general. This work provides a solid overview
of the use of artificial intelligence in the application
classification domain.

In recent years, some work has been published
on the use of generative transformers for IoT traffic
generation and classification [81, 94], but to the best of
our knowledge, in the period we are doing this work,
no survey has yet taken a closer look at the use of
large language models (LLMs) in relation to IoT device
discovery and classification.
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Table 1: Compassion of the included techniques of the revisited surveys

TECHNIQUES CONSIDERED

Supervised

Unsupervised

Statistical Generative

Survey Objectives machine learning  machine learning Deep learning Similarity  Transformers LLMs
[99] Surveys v v v X X X
[142] Devices in general v v v X X X
[131] 10T devices v v v X X X
[78] ToT devices v v v X v X
[88] ToT devices v v v X X X
[101] Application v v v v X X

Our Work  IoT Devices v v 4 v v v

Our research has shown that some approaches have
limited success in classifying IoT devices in real
networks due to the variety of protocols they use, so
we need a different perspective on these problems. For
example, in the paper [35], they use the TCP window
size as a feature for classification, but there are many [oT
devices that only use the UDP protocol to communicate
with the cloud or the gateway. The authors of [21] use
TCP window size and DNS requests as features and
DHCP options for a second classifier. However, this
approach can only distinguish IoT from non-IoT devices,
not device type.

Some researchers use the startup sequences of IoT
devices and have to define the end of the startup sequence
experimentally, after a number of packets [96], but this
may vary in the real functionality of the IoT device.
Furthermore some works report high accuracy [16, 35],
but the results are produced with their own datasets
and tools, so a reproduction is very difficult. Machine
learning approaches usually aren’t fast enow to face the
challenges of real-time classification problematic that are
needed for efficient working defense strategies, because
to train the model or label the datasets need much time.
Another example is the use of IP addresses, but the IP
addresses of servers and services often do not remain
constant. Due to the nature of cloud solutions, they use a
few servers for the services they provide. On the other
hand, some types of IoT devices use the same cloud
provider for their settings and communication patterns.
Analyzing DNS requests in network data can lead to
privacy violations [21]. A deeper insight is reported in
the chapter 4.

From our point of view, there are still challenges to
overcome in this area, and the following main aspects
need to be addressed for IoT network traffic classification
in modern networks.

e It is difficult to objectively validate the various
proposals. Most work is based on self-generated
datasets tagged with techniques of unknown
reliability.

» Today’s networks operate at high data rates that
must be analyzed in real time to isolate attacker
interactions and quickly minimize the resulting
damage. Such operations require expensive
hardware and high throughput from monitoring and
gateway devices.

e High maintenance costs:  Machine learning
techniques rely on a long training phase and require
human intervention to label and balance the data
sets.

e Published approaches based on artificial
intelligence (AI) and large language models
(LLMs) are not yet sufficiently researched for use
in network traffic problems and require further
consideration and testing. This is especially true for
the quality of results and security against already
compromised models.

In view of the aspects mentioned above, it is also
necessary to consider the comparison of methods and
solutions with standardized conditions and data sets. The
following challenges should be considered:

 Scalability - Handling the massive scale of IoT
deployments.

e Real-time Processing -  Ensuring
classification to meet QoS requirements.

timely
e Privacy and Security - Protecting sensitive data
while classifying traffic.

* Data Imbalance - Dealing with imbalanced datasets
where some traffic types are underrepresented.

* Adaptability - Continuously adapting to evolving
IoT devices and traffic patterns.

1.2 Structure of This Work

The structure of this work is as follows:
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» Section 2 describes the research methodology we
used.

* Section 3 provides an overview of the lifecycle,
including all the steps necessary to discover,
identify, bind, and manage IoT devices, and
related work in this area, which is essential to
understanding the security problem that arises in
IoT networks and smart homes.

 Section 4 presents the classification methodology,
feature extraction techniques, and a comprehensive
linkage and analysis of related work. The
knowledge gained from this analysis is crucial
for understanding the complexities of IoT device
categorization and security.

e Section 5 includes the conclusion that shows the
need for further research and development work in
the area of IoT device classification and intrusion
detection. Finally, there is a list of future work
motivated by the conclusion.

2 OUR METHODOLOGY OF RESEARCH

Our research study is divided into two parts because we
are also looking at the provisioning part of IoT devices,
which is crucial for discovering the remaining challenges
in this field.

For example, to increase the security of [oT networks,
it is necessary to quickly detect new or unknown IoT
devices and control them through security policies before
they are added to a network or smart home. In most
cases, the majority of IoT solutions (see table 4) rely
on encrypted data transfer between IoT devices and
frameworks, but attacks can occur even before the
binding is complete and go undetected by the framework.
The use of rules to isolate them from the network if
the device has not already been discovered is essential
and not an easy task. The inclusion of discovery and
binding techniques are, in our opinion, very important
components in this paper to understand the context of
IoT discovery and classification.

Furthermore, because network traffic is highly
dynamic, there are always small variations in the
behavior of IoT devices, so the task of discovering and
classifying IoT devices in the context of security may
take too long, making this a challenge for researchers.

Another challenge comes from the new possibilities
of implementing such classification methods using
generative artificial intelligence (AI), which could be
a promising but as yet unproven improvement in the
security of IoT device networks.

We used two research databases, namely Web of
Science and IEEE Xplore, but we also used our

university library resources. The following is our
research methodology. We conducted a systematic
search using the following keywords and filters:

e “IoT device discovery”, “lIoT device binding”,
“IoT device identification”, “IoT device type
identification”, “IoT  device classification”,
“IoT device type classification”, “IoT device
identification”, “IoT device type identification”.

We also use these keywords in our research work to
specify the results.

¢ “header features*”, “flow features*”, “statistical”,

“machine learning”, “generative transformers
or GANs”, “large language models or LLMs”,
“quantum computing”, “survey or review’,
“lifecycle”

We used a research assistant, Zotero [153], to organize
our research results. The advantage of using such a tool
is that we can update the references at any time, which
updates the cited record. Another advantage is that we
can easily find duplicate works, and the full-text search
helps us filter the documents. In the following steps, we
sorted the papers and surveys according to their focus
and relevance. If a paper had the required focus, we
included it; otherwise, we ignored it. Finally, we filtered
out all documents that did not have a specific focus
for our work by considering the abstract, conclusion,
and future work. Then we define the related papers to
include. At this point we would like to refer to a great
example of a well-done literature review and research
methodology [45].

3 DEVICE IDENTIFICATION AND BINDING

This section provides background information on the
variety of IoT protocols and presents the state of the
art in IoT device discovery and binding, as well as
the latest protocols and techniques in the transmission
technologies of IoT devices (smart devices) and the
different areas where IoT is implemented, such as smart
homes, smart cities, smart factories, or wireless sensor
networks (WSN) [6, 122].

3.1 Background

The methods for searching and binding sensors (on-
boarding) discussed below illustrate how frameworks
and gateways work.

Due to the diversity of IoT devices and the protocols
used, we decided to first look at the general tasks for
discovering and binding an IoT device, which is the first
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Figure 1: Lifecycle of IoT devices

step in life cycle management, taking into account all
the different protocols used by such IoT devices. This
part was included to clarify that there is a lot of variation
in IoT device communication methods and protocols,
and in our opinion, this leads to a better understanding
of the overall issues surrounding the operation of IoT
devices [46, 119, 122, 137]. Figure 1 shows the general
life cycle of an IoT device.

3.1.1 Ontologies and Semantic for the IoT

Ontology is definition for the interaction with digitized
and formal form between processes, devices and
applications.  Usually ontology are a linguistic and
formally organized representations of a set of concepts
and the relationships between them in a particular
domain. In order to systematize the communication
between IoT devices and services, semantic technologies
have been established with the aim of high-level
abstraction of the complex information involved in IoT
communication and services [24, 68, 123].

Semantic interoperability involves the ability to
establish a common meaning for the data being
exchanged and the ability to interpret communication
interfaces in a similar way. This can be achieved

using semantic models encoded in some form of formal
vocabulary. The basic idea is that by providing these
structured semantic models of a system, other systems
can have an unambiguous understanding of the system
using the same mechanisms [113]. The chapter 3.2 lists
some works that deal with ontology in IoT networks.

3.1.2 The Everyday Tasks for IoT Device
Administration

Below is an overview of the steps required for
commissioning or onboarding from the model in
Figure 1. Not all steps are necessary for every
device. The exact number of steps depends on the
level of automation, i.e. the automatic identification and
assignment of IoT devices.

* Commissioning: The user turns on the IoT device
and adds it to the local network.

¢ Identification: The gateway waits on all standard
ports of the different protocols for a new device on
the network (broadcast, advertising). Many sensors
and actuators sent their basic information in these
advertising messages. If a device does not send a
message, the search process is automatically started
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after some time At > T when the gateway has
detected a new network device.

e IoT device search: The gateway scans the local
network for IoT devices. To scann the network,
the gateway sends packets using protocols such
as MQTT [111], CoAP [130], UPnP [18], and
REST [104] to collect initial metadata about the
sensor/actuator. If the search fails, the user is
notified, and further details are expected. The
search can also be started manually via the web
interface.

* Create sensor profile: If the query is successful,
the gateway can make a profile of the IoT
device through various queries. Various device
description methods are used, such as TEDS [85],
SensorML [112] or IoTivity [106].

* Plug-in search: With the obtained data (profile),
a web search for a suitable plugin is started
and installed in the gateway. This indicates that
everything is now available in the gateway to
exchange all information with the sensor/actuator.

* Update the repository: The resulting metadata is
stored in a repository.

* Design the user interface: Using the available
information, the web interface in the gateway is
now adapted to the sensor/actuator and the user is
presented with a suitable interface for reading or
operating the IoT device.for reading or operating
the 10T device is presented to the user.

If the sensor/actuator mapping with the described
actions is not successful, the user is redirected to the
cloud platform or web interface of the IoT device
provided by the manufacturer to perform manual
commissioning.

3.1.3 Standards and Protocols for IoT Device
Identification and Binding

With the growing number of IoT devices communicating
over the Internet, these requirements are constantly
changing. As a result, the requirements for quality of
service (QOS) and data processing are also changing.
Many Internet organizations and manufacturers offer
IoT infrastructures and numerous cloud platforms,
such as Works with HomeKit from Apple, Works
with Nest from Google, and also Amazon, Microsoft,
Siemens, and Bosch, among others. However, most
require management and billing through the cloud.
Some organizations and alliances are striving for
standardization in the IoT, but are using different

technologies to achieve this goal, making standardization
difficult.
Some of the organizations and standards are:

¢ Connectivity Standards Alliance (CSA) [8]
This organization and its members develop
standards, tools, and platforms for global object
communication.

e The Internet Engineering Task Force
(IETF) [72] was founded in 1986 and was one
of the first standards development organizations.
A special feature is that all documentation is
published as RFCs (Requests for Comments),
which are usually of a high quality.

¢ If-This-Then-That (IFTTT) [145] is a service hub
at the application layer (service gateway).

¢ Open Geospatial Consortium (OGC) [31]
provides the Sensor Observation Service (SOS)
and the SensorThings API defined for service
interfaces in the IoT landscape; they also define
a standard to describe the metadata mapping of
a sensor, the Sensor Interface Descriptor (SID).
According to the SID, a SID interpreter (gateway)
can translate a sensor protocol into the Open
Platform Communications (OPC) [109] web
service interface.

e The OpenloT [118] standard describes an open
source web service maintained by the European
Union (EU) and released jointly by developers from
industry and academia in 2012.

¢ Object Management Group (OMG) [62] is
an organization primarily concerned with the
development of standards for vendor-independent,
cross-system object-oriented programming. One of
the services that has emerged from this organization
is the DDS (Data Distribution Service) [61],
a communication standard between distributed
systems.

3.1.4 Communication Protocols for the IoT

Nowadays, wireless technologies such as WiFi [9],
Bluetooth [132], cellular (LTE, 4G, 5G) [98] are widely
used in addition to traditional connections via VDSL
(Very High Speed Digital Subscriber Line) [1] and
Ethernet. Special transmission technologies developed
for IoT and building automation, such as ZigBee [10],
LPWAN (Low Power Wide Area Network) [50], and
Z-Wave [11], are also available. RFDI (Radio-
Frequency Identification) [7] and NFC (Near Field
Communication) [54] are used to read device data and
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transfer data between them, both technologies are widely
used in modern payment systems.

The communication technologies are divided into
two main categories, called short-range and long-range
networks. The following lists and explains the main
characteristics and technologies. In addition, to better
understand the relationships between the individual
technologies and protocols for the IoT landscape, we
include Figure 2, which shows a representation based
on the OSI (Open Systems Interconnection) reference
model [19, 20, 53, 144], and Table 2, which lists the
most common communication protocols for the IoT
with detailed technical characteristics. An overview is
provided by [36].

* Bluetooth [132] is a packet-based master/slave
protocol with a short-range wireless technology that
is most commonly used to transfer data between
mobile and fixed devices over short distances. An
important fact is that Bluetooth uses a different
protocol stack and doesn’t follow the OSI TCP/IP
model [53, 144] and is suited as a wireless
replacement for the serial communication interface
of computers.

e Z-Wave [11] is a Mech-Network topology used
in smart home environments. This technology
connects devices to a control unit with a
longer range and lower power consumption than
Bluetooth. It works on top of the connection
topology used by the connected devices and the
control unit.

e ZigBee [10] is another communication protocol for
connected devices that uses its own transmission
standard and is used in products from Philips Hue,
Xiaomi, OSRAM and others.

« WiFi [9] is a suite of networking protocols
based mostly on the IEEE 802 standard. This
communication protocol is commonly used to
connect devices such as personal computers and
peripherals such as printers and can also be used
as a network extension and/or replacement where
wired networks are not possible. In fact, WiFi
is not ideal for connecting IoT devices because
of its relatively high susceptibility to interference
from walls and other building structures and
its widespread use in home networks, resulting
in overcrowded frequency bands that are often
susceptible to interference. Nevertheless, WiFi is
often used for IoT devices because it has a much
better range.

* RFID Radio-Frequency Identification [7] this
technology enables the contactless exchange of

data using electromagnetic radio waves. An RFID
system consists of an RFID reader, an RFID
transponder (tag) and an antenna. The RFID
transponder is the heart of the system and consists
of a microchip and an antenna. Information is
transmitted from an encoded memory chip (called
a transponder” or “’tag”) to an RFID reader via the
antenna.

e NFC (Near Field Communication) [54]. NFC
is based on RFID protocols and, unlike RFID, is
capable of transferring data between devices. The
main difference from RFID is that an NFC device
can act not only as a reader, but also as a tag (card
emulation mode). In peer-to-peer mode, it is also
possible to transfer information between two NFC
devices.

* 4G, 5G (GSM - Global System for Mobile
Communications) and LTE [48] are cellular
network  technologies used for  mobile
communications. LTE is an advanced 4G system,
the main differences between the technologies are
the increased data rates and lower latency.

NB-IoT [107] is a wireless standard designed
specifically for the Internet of Things. NB-IoT uses
narrow licensed radio frequency bands to efficiently
transmit data, and is specifically focused on indoor
deployments.  The narrow technologies allow
many devices to connect simultaneously without
overloading the network.

* LoRa or LoRaWAN Long Range Wide Area
Network [50] is also a wireless standard for the IoT
landscape. LoRaWan has a shorter range than NB-
IoT and, unlike NB-IoT, uses unlicensed frequency
bands.

3.1.5 Data Protocols for the IoT

For IoT devices in the so-called consumer space, REST
(Representational State Transfer) [104] based on TCP/IP
protocols is typically used for data transfer. However, the
HTTP (Hypertext Transfer Protocol) [103] protocol was
not designed for IoT applications, but for the delivery
of web content. With this protocol, the significant
overhead is a disadvantage compared to MQTT [111]
and CoAP [130], so communication bottlenecks can
occur when bandwidth is low. The model is based
on a client/server architecture and uses URI (Uniform
Resource Identifier) [15] and REST methods such as
GET, POST, PUT, and DELETE to access resources.
The fact that HTTP [103] transfers data bidirectionally
makes it unusable for push messages, but the HTTP2
extension makes this possible. On the other hand,
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Figure 2: Protocols in the IoT landscape
Table 2: Communication technologies for IoT
SHORT-RANGE-NETWORKS
Name Frequency Band Data Rate® Topology Range Power
Bluetooth LE 2.4 GHz 125 Kbps - 2 Mbps Mesh 30m Low
Z-Wave 800 MHz - 900 MHz 100 Kbps Mesh 65m  Low
ZigBee 2.4 GHz 250 Kbps Star, Mesh 300m  Low
WiFi 2.4/5 GHz 5 Mbps - 5 Gbps Star 100m  High
RFID 125 kHz - 960 MHz 10 - 640 Kbps Point to Point 300 m  Low
NFC 13.5 MHz 10 - 420 Kbps Point to Point Scm  Low
Thread 2.4 GHz 250 Kbps Mesh 70m  Low
WIDE-RANGE-NETWORKS
Name Frequency Band Data Rate® Topology Range Power
4G 2 -8 GHz 3 - 100 Mbps Star 15km  High
5G 3-300 GHz 3 -10 Gbps Star 25km  High
LTE 700 MHz - 2.6 GHz 3 - 100 Mbps Star 15km  High
NB-IoT 1 GHz 100 Kbps Star 32km  Low
LoRa 1 GHz 100 Kbps Star 16 km  Low

@ The data rate always depends on many factors of a given scenario like frequency, topology,
obstacles, interference, and number of participants.
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HTTP is integrated into many programming languages
via SDKs (Software Development Kits) and can be
implemented quickly.

Industries and developers can choose from various
technologies and protocols to build their solutions,
mostly referring to the Open System Interconnection
Model OSI [53, 144] (see figure 2). The most common
protocols and standards in the IoT landscape are:

* AMQP [110] (Advanced Message Queuing
Protocol) is an M2M protocol developed by John
O’Hara in the United Kingdom in 2003. It is
a messaging protocol. AMQP supports both
request/response and publish/subscribe methods.

* CoAP [130] (Constrained Application Protocol,
RFC 7252) is based on UDP and is designed
for sensors and actuators with low processing
power. The overhead of the protocol is low, which
has a positive impact on the bandwidth of data
packet transmission. CoAP uses a client/server
architecture and is designed for machine-to-
machine (M2M) applications such as building
automation and smart energy projects.

e DDS [61] (Data Distribution Service) is a standard
developed by the Object Management Group
(OMG) for real-time systems. This protocol
and API enables device data exchange with high
performance.

e MQTT [111], (Message Queuing Telemetry
Transport). The MQTT protocol is one of the most
widely used IoT communication paths because it
is very resource efficient, using a publish/subscribe
architecture based on TCP/IP. The overhead is low,
but a MQTT broker must be developed to translate
the information from client to server and vice
versa [129].

* XMMP [125] (Extensible Messaging and Presence
Protocol) is a set of open technologies for instant
messaging, presence, multi-party chat, voice and
video calling, collaboration, content syndication,
and general routing of XML data. XMPP is an
XML-based protocol that uses extensible, real-time
instant messaging and presence information. For
more information, see RFC 3920 [125] and RFC
3921 [124].

e UPnP (Universal Plug and Play) [18] (RFC-6970)
is a technology designed for smart homes and
small offices based on local area networks. It
was originally developed by Microsoft Corporation
in 1999. The technical inspiration for UPnP
was to provide a distributed computing framework

based on Web technologies for small networks,
especially home environments. UPnP simplifies
device installation and connectivity. However, its
security implications remain a risk and potential for
exploitation by malicious actors.

Table 3 shows the common application layer protocols
for IoT. However, application protocols are often
listed together with transmission technologies such as
WiFi [9], Z-Wave [11], or ZigBee [10]. Strictly
speaking, they do not describe the same working
environment. For this reason, we present the protocols
and technologies in separate tables.

Many Internet organizations and manufacturers offer
IoT infrastructures and numerous cloud platforms, such
as Works with HomeKit from Apple, Works with Nest
from Google, and also Amazon, Microsoft, Siemens, and
Bosch, among others. In recent years, a lot of work
has been done on machine-to-machine (M2M) gateways,
such as FIWARE [55], OpenMTC [52], OpenloT [118]
or GSN [2, 3, 67, 4]. These gateways act as a layer
between physical sensors and virtual sensor data.

The papers [2] and [136], show how long research has
been done on optimal solutions in the IoT. A middleware
such as Global Sensor Network (GSN) [4] is repeatedly
described, which virtually replicates the IoT device
through an abstraction. More recent implementations of
such methods are platforms such as OpenHab [57].

3.1.6 Frameworks for the IoT

There are several frameworks and APIs (Application
Programmable = Interface)  for  building  IoT
infrastructures. ~ Most are based on programming
languages such as C++, Java, and Python. Some
primarily use one IoT protocol, such as MQTT [111].
These frameworks can often interact with other IoT
protocols through extensions. Some of these frameworks
include

* Node-RED [58] is a graphical framework
originally developed by IBM for the development
of event-based applications. The framework allows
flow-based programming of the behavior of IoT
devices. This project has been open source since
2013, and a large number of users in the community
have developed extensions.

e ToTivity [106] is a framework that implements
the Open Connectivity Foundation (OCF) standard.
Modules can be created and modified using any
editor in JSON format. This software framework
enables device-to-device connectivity and is an
open source project released under the Apache 2.0
license.



Open Journal of Internet of Things (OJIOT), Volume 10, Issue 1, 2025

Table 3: Common data protocols for IoT

Name Architecture Transport Protocol QoS Security Areas of application
AMQP  Publish/Subscribe and Request/Response TCP v SSL/TLS client/server messaging,
ToT device management
CoAP Request/Response UDP v DLTS Smart energy, healthcare,
monitoring, automation
DDS Publish/Subscribe TCP and UDP v TLS and DTLS  Industrial automation,
healthcare, transportation
MQTT  Publish/Subscribe TCP v SSL/TLS Indrustie and home automation,
remote sensing, agriculture
XMPP  Publish/Subscribe and Request/Response UDP X SASL and TLS ~ Social networking, gaming,
collaboration, healthcare
UPnP Plug and Play UDP X X Discover devices in a

Local area Network

e Thinger.IO [135] is an open source platform for
connecting and monitoring IoT devices. It supports
Arduino, Linux, Sigfox [148], and MQTT IoT
devices and can be combined with Node-RED. This
platform is focused on monitoring IoT devices and
does not have low-code capabilities.

Zetta [60] is a programming environment built on
Node.js that allows devices to be connected through
an API representation. The platform combines
REST APIs and WebSockets, exposing each IoT
device as an API. A Zetta server can communicate
with microcontrollers such as Arduino and Spark
Core and continuously stream large amounts of
data.

ThingsSpeak [147] is a cloud platform for
analyzing, aggregating, and visualizing data from
IoT devices. The framework is tightly integrated
with Matlab to visualize and analyze the sensor
data. The services are freely available for non-
commercial projects.

The OpenHAB [57] Foundation provides a cloud-
free framework that can be installed on the
most modern operating systems, including Linux,
Windows, macOS, and Raspberry Pi, but can also
be combined with cloud solutions such as Google
Assistant, Amazon Alexa, and Apple HomeKit,
among others. This open source solution provides a
high level of privacy for user data.

ThingsBoard inc. [146] evolved from a startup that
provides an IoT framework, namely ThingsBoard,
for device management and monitoring.  This
solution enables connectivity over various standard
IoT protocols such as MQTT, CoAP and HTTP.
This framework can also be installed on-premises,
including on Linux, Windows, macOS, Raspberry
Pi, and Docker, but can also be integrated with
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cloud solutions from AWS (Amazon), Azure
(Microsoft), Google Cloud, and DigitalOcean.
They offer a community edition that is open source
and free, as well as professional and cloud editions.

* DeviceHive [39] is an open source IoT framework
solution that is offered as a Docker image, manually
installed on Linux or in a cloud platform called
DeviceHive Playground. To present IoT data and
metrics, the framework can be combined with
applications such as Grafana [84], an open source
data visualization framework.

e ioBroker [73] is another open source IoT
framework that is offered on-premises (own
hardware) or in the cloud with several licensing
models and a free community version. However,
the installation is a bit more demanding than the
other solutions and sometimes requires more in-
depth know-how.

e Matter [8] is an IPv6-based application layer
framework that supports TCP and UDP in the
transport layer and sits virtually on top of
WiFi, ZigBee, and Thread technologies. This
standard is supported by the Connectivity Standards
Alliance and comes with an open source software
development kit (SDK). This standard is already
supported by many companies, including Amazon,
Apple, Google, and Samsung, and can be integrated
into various operating systems, including Android,
Wear OS, 108, iPadOS, watchOS, and Windows.

The table 4 shows frameworks that are commonly
used in practice. However, most of these frameworks are
offered with many licensing rules, but most offer a free
community version or a free license for a limited number
of IoT devices.
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3.2 Related Works in Device Discovery and
Binding

Several works exist that provide literature reviews in the
field of device onboarding and binding. One example is
the work of Bellendorf et al. [14]. This section focuses
on some selected works and solutions that provide
compatibility with the IoT protocols that are most used
in practice.

Nugent et al. [105] present HomeML, an XML-based
format for data exchange in intelligent environments.
The goal is to solve problems caused by heterogeneity.
The proposed format can be used to describe sensors
within a room. Such models can help to create new
frameworks, but do not provide a ready-made solution
for the user.

Ishaq et al. [74] present a REST-based interface for
accessing sensors and retrieving data. However, the
authors also assume the existence of a sensor network.

Liet al. [87] and Da Silva et al. [59] propose to use the
TOSCA standard to classify the basic structure of IoT
applications. However, this approach is based on a pure
cloud solution, which does not meet our requirement to
of process data as locally as possible.

Mayer et al. [93] present a method that uses semantic
metadata reasoning with a visual modeling tool to
overcome the challenges of configuring smart devices.
In this approach, the user specifies the characteristics
of his smart environment. The system then determines
whether the goals can be achieved and what actions are
required based on the available services. However, this
approach assumes that devices are already integrated into
the network environment.

Vogler et al. [150] present LEONORE, a scalable
deployment framework for deploying and running
custom application logic directly on the IoT gateway.
However, in order to know which IoT gateways are
available for deployment, the IoT gateways must have
a pre-installed local agent. This agent binds the gateway
to the framework by providing its unique identifier and
profile data such as ID, MAC address, and command set.

Martinez et al. [91] describe the Sensor Deployment
Files (SDF), which represent the metadata of sensors.
These can be retrieved and registered via a framework
(Sensor-Thing-API). Such techniques offer the
possibility to describing sensors in an automated
way.

Broering et al. [23] presented a survey of search
(discovery) technologies for IoT devices. This work
provides a foundation for understanding the existing
techniques and the issues related to the heterogeneity of
the IoT landscape.

Ali H. et al. [37] provides a secure search for IoT
services, which also analyzes the different protocols,
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such as multicast DNS (mDNS) and DNS service
discovery (DNS-SD). In their paper, they propose a
broker-based solution for IoT device discovery.

Khudoyberdiev et al. [82] presents the registration and
discovery of embedded systems using a DNS service.
This method assumes that users want to access their IoT
devices over the Internet. This solution uses the protocol
CoAP to communicate with the IoT device.

OntoSensor [68, 123, 139] is a sensor repository
for modeling and managing sensors. It combines
SensorML [112], IEEE SUMO [115, 116], ISO
19115 [75], OWL [140], and GML standards [108]. This
repository aims to provide a methodology for describing
sensors in different application domains. By combining
many sensor definition languages, the ontology, in
turn, becomes very complex. The description and
configuration of sensors are standardized in IEEE1451.2
to define an interface. These Transducer Electronic
Data Sheet (TEDS) [85] allow sensors to describe
themselves. Other description languages exist, such as
Siren (hypermedia specification for representing entities)
from Google.

In recent years, some work on machine-to-machine
(M2M) gateways has also been presented, e.g.,
FIWARE [55], OpenMTC [120], OpenloT [32] or
GSN [3, 4, 136]. These gateways are a layer between
physical sensors and virtual sensor data.

However, recent research in this area also shows
solutions that take into account criteria such as semantic
and syntactic parameters for searching IoT devices, as
presented in the work of Cimmino et al. [29].

The listed and following works show how long
research has been carried out on this topic to develop
optimal solutions for the control and management of [oT
devices [3, 67, 136]. In this context, middleware such
as Global Sensor Network (GSN) [3, 4] is described,
which practically replicates the IoT device through an
abstraction. The authors of the paper [2] presented a
middleware solution in 2006. Recent implementations of
such methods include platforms such as OpenHab [57].

3.3 Summary

Today, various organizations are still working on
standardization and specialization to address the
challenges of IoT, such as Bosch IoT Suite, Web of
Things, and IoTivity, among others, and some have been
revived, as in the case of CoRE. However, they are all
evolving individually and standardization is still a long
way off. Most vendors today offer good IoT platforms to
manage and control IoT devices for individual customer
needs. For an overview of modern platforms from
an academic research perspective, see the work of De
Nardis et al. [34]. However, there is still a lack of
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solutions that can be easily deployed in small and
medium enterprises or smart home environments without
cloud registration. As presented in the introduction,
there is a need for a new perspective on processing and
monitoring data from sensor networks and deploying
applications for IoT networks, especially in the context
of privacy.

4 CLASSIFICATION

As mentioned at the beginning, from our point of view,
the classification relevant tasks need to be separated
from the administrative tasks in the lifecycle of IoT
devices. In the previous chapter, we presented standards
and methods for discovery (searching and binding); now
we will consider classification at the network level.
Identifying and classifying IoT devices at a very early
stage when they are connected to the network is essential
for the security of IoT networks. Although IoT devices
and IoT networks have been around for many years,
there is still no reliable and established mechanism for
classifying IoT devices. This is a significant problem
for the entire smart home sector and for Industry
4.0. For this reason, we explore the possibilities of
classifying IoT devices and compare their capabilities
and limitations.

4.1 Background

Identifying IoT devices in networks is a classification
problem. Each IoT device, with its unique functions
and characteristics, presents a challenge to different
analysis techniques. Matching these devices from the
transmitting network packets is a particularly difficult
aspect of the classification process. Classifying IoT
devices involves implementing fingerprint mapping at
different layers of the OSI protocol stack. The method
and features used can vary significantly depending on the
research focus.

e The first level of classification is to distinguish
whether the network features belong to an IoT
device or not, as shown in the work of Bremler et
al. [21]. In their work, they use different feature
sets and machine learning to compare the accuracy
of the classifier on an unseen dataset.

* The second level of classification is to predict the
device name (type), e.g., TP-Link Tap, Amazon
plug. Most of the published work in this area
uses machine learning and packet-level features, for
example, the work of Miettinen at al. [96].

e The third level of classification examines the
functions of devices to predict whether the device
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is a sensor or an actor. For example, the work of
Hadzovic et al. [65] presents the identification of
IoT actors.

Classification, the process of assigning predefined
classes to a set of unseen data based on observed
attributes or features, is the cornerstone of understanding
and interpreting data. The class, a label that describes
an object in a particular context, is what allows us to
make sense of the data. For example, animals can be
classified as dogs, cats, mice, etc. A case refers to an
object (an animal in the previous example) whose class is
known, while an "unseen case” is an object whose class
is currently unknown (such as a new species). In the case
of an IoT device, transmission characteristics are used
to determine its class, demonstrating the practicality of
classification in different domains. The most common
classification approaches are:

* Statistical Methods
« Statistical Methods with machine-learning
* Deep-learning Methods

¢ Neural-Networks Methods

4.2 Methods for IoT Device Classification

This section provides background information on the
classification methods of IoT devices.

4.2.1 Disambiguation

The term device classification is often confused with
similar approaches such as traffic classification, intrusion
detection, or device fingerprinting. Traffic classification
is the field of research that deals with classifying network
traffic for various purposes, but it is most commonly used
for malicious traffic detection, also known as intrusion
detection. Device classification generally categorizes
devices with similar functions, such as hubs, cameras,
or light bulbs. Device identification can distinguish
between the model and manufacturer of the device, such
as Google Home Assistant, Alexa, D-Link camera, or
TP-LinkPlug. Device fingerprinting gives each device
a unique label that can describe the manufacturer and
model, such as D-Link-cameral and D-Link-camera2,
two instances of the same device.

Most classifier approaches rely on machine learning
to tackle the complex task of identifying devices in a
network. However, classification remains a challenge
due to the technological and functional diversity of IoT
devices.
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4.2.2 Port-Based Classification

This classification technique was first used to identify
applications. The port number and associated transport
layer protocols, TCP and UDP, registered by the Internet
Assigned Numbers Authority (IANA) [71], can be used
to identify an application generating network traffic.
Today, applications use unregistered port numbers or
random ports, such as peer-to-peer (P2P) applications.
In addition, this approach runs into problems when
Network Address and Port Translation (NAT) is used
between communication points or when traffic is
encrypted at the IP layer.

4.2.3 Payload-Based Classification

This method is advantageous because it produces low
false-negative rates; most payload analysis methods
involve inspecting the packets and comparing them to
a stored signature (pattern). Payload inspection is not
compliant with privacy policies and has some significant
drawbacks when dealing with encrypted traffic and
protocol obfuscation or encapsulation, as much of
the network traffic is left unclassified. In addition,
payload-based classification requires significantly more
processing power to inspect many flows at the high-
speed rates of today’s network traffic. Regardless of the
depth of inspection, the payload-based classifier must
be kept up-to-date because application semantics can
change with updates.

4.2.4 Statistical-Based Classification

Statistical methods require knowledge of the problem
and prior structuring of the parameter selection. In
addition, these approaches typically have an explicit
underlying probability model. Statistical classifiers use
packet or flow-level features to specify patterns that can
distinguish different applications or device types. The
most commonly used features in this area are packet
or flow length, duration, inter-arrival time, or flow
idle time. These statistical measurements can be used
to analyze the correlation between classes of network
traffic. Statistical methods quickly reach their limits due
to the large amount of data required to achieve a given
level of accuracy, so the researcher combines statistical
methods with machine learning methods to overcome the
challenges.

4.2.5 Behavioral-Based Classification

This classification method moves the observation point
further up the network stack. It includes all traffic
transferred from a device to a destination, such as
a gateway or cloud service, and attempts to identify

the type of devices using heuristic information from
the selected features. These can be the IP addresses
contacted with the associated port numbers, the transport
layer protocol involved, and other features such as the
type of service. From this perspective, behavioral
classification has the same advantage as statistical
classification because it avoids payload inspection and
is lightweight.

4.2.6 Machine Learning-Based Classification

In recent years, machine learning approaches have
become increasingly important.  Such models use
a learning process with training data.  Since this
is similar to statistical classification models, many
researchers have combined statistical methods with
machine learning methods to achieve high accuracy in
network traffic classification and device identification.
However, these methods require large amounts of data
and usually take some time to collect. An overview
of traffic classification techniques that include machine
learning techniques is presented in the 2008 paper by
Nguyen and Armitage [101], which shows that the topic
has been an important area of research for decades.
In the field of machine learning classification research,
three methods can be distinguished: supervised, semi-
supervised and unsupervised.

e Supervised Learning Classification solves a
prediction problem. In other words, this method
analyzes new network traffic and assigns it
to a predefined class according to its feature
characteristics. This method requires a labeled data
set, which means a significant amount of time.

* Semi-supervised is a method in which some of
the samples in the training data are not labeled.
Therefore, the algorithm is trained on both labeled
and unlabeled data. Such methods are able to take
advantage of this additional unlabeled data. Unlike
supervised learning, semi-supervised learning is
able to classify data faster and more effectively than
unsupervised learning.

* Unsupervised learning does not involve predefined
classes and labeled data sets. The classifier tries
to group similar patterns into the same class. Due
to the complicated validation of the results, such
methods often require large amounts of data over
long periods of time, which is always associated
with high costs and effort.

The goals of these methods are different. In
unsupervised learning, the goal is to get results from a
large amount of new data, while in supervised learning,
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the nature of the output is already known and must be
predicted for new unknown input data. If we look at it
closely, the supervised method is classification, and the
unsupervised is clustering. Table 5 shows a summary of
the different methods with their characteristics.

4.277 Deep Learning and Neural Networks-
Based Classification

Deep learning (DL), which uses algorithms that mimic
human thinking, is a subset of machine learning.
The key feature is the use of neural networks that
enable computers to make decisions. DL relies
on multi-layer artificial neural networks that do not
require structured data input, whereas machine learning
primarily uses structured data sets. These approaches
require large amounts of labeled data and have high
power consumption, but achieve higher recognition
accuracy than other methods. Figure 3 shows the main
difference between machine learning and deep learning
approaches from a classification point of view.

Machine Learning

-

Feature
extraction

.

Input

Dataset software engineer Algorithm 10T Device Class
Deep Learning
Input extraction + Classification

Dataset Algorithm IoT Device Class

Figure 3: Machine- and Deep-Learning procedures

Several publications and literature are presented by
researchers in this area of computer science (see [89,
126, 127, 128]). Researchers use the above techniques
for network traffic classification and anomaly detection
in data networks. In addition, publications on this topic
have been presented over a decade ago; for example,
Donald Michie et al. [95] presented an overview of the
various classification methods as early as 2009.

4.2.8 Large Language Models

Large language models (LLMs) are actually deep
learning methods for human language; they work on
the basis of neural networks that have been trained
with large amounts of data. Nowadays, especially
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since the introduction of ChatGPT, there are more and
more new approaches in this field of research that
deal with large language models. Researchers are
trying to adapt generative language models for network
traffic classification and intrusion detection systems.
Researchers use such models, which are usually intended
for language-specific tasks, but are increasingly being
used to analyze IoT network traffic or to generate
synthetic datasets. These approaches typically use
generative transformers that process raw data at the token
level, which is an important task in natural language
processing. Traditional methods using traffic generators
often require manual tuning and are usually very time-
consuming to implement. Therefore, approaches based
on artificial intelligence represent a new trend today.

In Figure 4 an overview is presented that shows the
scopes in Artificial Intelligence with the range of action
in the individual approaches, and Figure 5 shows the
working procedure from a large language model (LLM).

Artificial Inteligence
algorithms that mimic human thinking

Machine Learning

Machine Learning
Supervised (labeled Dataset)

Machine Learning
Unsupervised (large Dataset)

Deep Learning Neural Network

Figure 4: Scopes of ML-Approaches

Large Language Model

Unsupervised Learning | Supervised Learning | Reinforcement Learning

s

Question

s

Answer

Figure 5: Large Language Models procedure
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4.2.9 Quantum Computing

Quantum computing also plays an important role
in pattern recognition, especially on large data sets.
Combining machine learning approaches with quantum
computing technologies QML (quantum machine
learning) [97] has promising advantages in detecting
malicious network traffic. In addition, quantum
computing can help solve complex problems involving
many variables that interact in complicated ways. Such
solutions can also be used in network technology, with
the promise of faster anomaly detection in large amounts
of data, such as those generated by the Internet and IoT
networks [138, 149].

4.3 Feature Extraction for IoT Device
Classification

This section describes the main techniques for deciding
which features to use to classify [oT devices. One of the
main challenges in classification is determining which
network traffic features are best suited for the process.

4.3.1 Background

Feature extraction is a procedure that defines a set of
features that will be most efficient for our classification
approach.  Network traffic is the volume of data
flowing through a viewpoint from source to destination.
This traffic is carried in packets, which take care of
the physical topology and routing information of the
endpoints. In general, we can choose between packet-
level or flow-level feature extraction. Packets can
describe the traffic individually (packet by packet) or as
a stream, also called a flow. The network traffic can be
observed and analyzed in real time or captured as files
that we trace at the viewpoint (gateway) in the network.

4.3.2 Packets

A network packet with a header and a payload contains
all the information about the communication. Depending
on the protocol we observe, the extraction can be done on
several layers of the OSI reference model [53, 144].
From a network traffic perspective, a network packet
is a construct of header and data (payload). Both
may be encrypted at different layers of the protocol
stack. The most commonly used header information for
feature extraction for IoT device classification includes
packet length, transport layer protocol used (TCP or
UDP), time-to-live (TTL) information, TCP window
size, and application layer protocol, such as HTTP,
HTTPS, DHCP, or DNS (Domain Name System) [69].
With packet-level feature selection, we face some
problems caused by the dynamics of network traffic; we
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get different fingerprints (classes) for an IoT device. In
such cases, we need to explain the main differences for
classifying IoT devices in general. Section 4 already
showed some classification methods, but what does
this mean for the classifier? Well, if we look at the
taxonomy of traffic classification techniques, we find
some important points to consider. For example, port-
based techniques only need to look at the first packet in
the transmission to determine what application it is, but
with the dynamic use of ports today, this method is not
as present. On the other hand, flow-based approaches
typically require the entire data stream to determine the
appropriate behavioral patterns.

4.3.3 Streams and Flows

Streams can be described as packets sent between
endpoints (devices or hosts) with the same characteristic.
Examples of relevant information in the context of
this work are the source IP address and port number,
destination IP address and port number, the layer-
4 protocol used (UDP or TCP), and the application
layer protocol used (e.g., HTTP, HTTPS, DNS, DHCP,
and NTP). Streams of packets are so-called flows with
particular characteristics, such as the same destination
addresses and port numbers in the case of TCP or UDP
network traffic.

Flows can be defined in several ways. According
to the Internet Engineering Task Force (IETF) working
group [72], flows are ”IP packets that pass through
a point in the network during a time interval that
belongs to the common characteristics”.  Relevant
header information for feature extraction for IoT device
classification includes the source IP address and port
number, destination IP address and port number, and the
transport layer protocol used. Definitions of flows in
the Request for Comments (RFC-2063) [22] date back
to 1997 and correspond to the definition of a stream. The
IPFIX standard (RFC-7011) [5] defines network flows,
generally based on the NetFlow v9 format described in
(RFC-3954) [30].

NetFlow v9 (RFC-3954) [30]) was the basis for
IP Flow Information Export (IPFIX (RFC-7011) [5]).
Unlike NetFlow v9, IPFIX is an open standard supported
by many network vendors in addition to Cisco. The
formats are nearly identical except for a few additional
fields added in IPFIX. Other definitions of flows exist
for specific needs, such as OpenFlow, which is used in
software-defined networking (SDN) and is managed by
the Open Networking Foundation [56].

Relevant in the context of this work is that flows can
exist without a TCP connection in the case of a UDP
packet that is transmitted between a known source (host
or device) to a certain destination without the need for
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an endpoint connection between them; the flow must be
defined in a time window. Moreover, flows do not have
any size restriction.

4.3.4 Communication Behavior of IoT Devices

It is not unlikely that IoT devices will establish multiple
connections to servers and services with multiple
destination IP addresses and ports during operation.
An important feature is the number of connections the
devices establish within a given startup sequence or time
window and the protocols involved. Each IoT device
shows an individual connection scheme; this could be
a good starting point for fingerprinting, as shown, for
example, in the work of Sivanathan et al. [133]. The
authors use Sankey plots to visualize the behavior of
the devices; Sankey plots are typically used to visualize
statistical flows in financial or marketing analysis.

4.3.5 Feature Ranking Methods for
Classification

The problem of determining the most appropriate
features for classification has long been a concern of
researchers. A number of papers have been published
on this topic that analyze the best selection of features
and then incorporate them into the classification. As
examples, see the works of [38] and [76]. Other
researchers have addressed the problem of feature
ranking according to cost, which is a non-negligible
factor [25].

4.4 Related Work in IoT Device Classification

IoT-Sentinel (see Miettinen et al. [96]) focuses on
classifying device types at the device boot sequence by
analyzing 23 header features using machine learning
methods. The authors build a vector of 276-dimensional
feature vector (12 packets x 23 features).  This
study represents one of the first methods to generate
classification features from traffic headers. The main
purpose of this work is to detect compromised devices
and isolate them from the network to prevent damage.
However, the accuracy of this behavior-based approach
is limited.

Based on the IoT Sentinel dataset and the UNSW
dataset [100], some other work has been presented; for
example, the authors [26] present a solution for device
identification. In their work, the authors extract 218
features from a single packet and archive an accuracy of
83.35% based on the IoT Sentinel dataset.

Bremler et al. [21] use TCP window size and DNS
request as features and DHCP options for a second
classifier. The authors use machine learning techniques
and two classifiers with different feature sets and
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compare the F1 scores of each with the classification
latency. This provides a solid overview of possible
approaches. However, the approach is to distinguish IoT
from non-IoT devices, not the device type.

Other researchers use behavioral classification to
fingerprint IoT devices. Bezawada et al. [16] present
a dynamic behavioral model based on the command-
response activities of IoT devices. This approach does
not use features such as IP addresses and port numbers
for classification. However, it is very difficult to
automatically observe all the interactions of the devices,
so the authors have to manually interact with the devices
under test, which is a time-consuming task.

Deng et al. [35] present IoTSpot, a framework
for identifying IoT devices using anonymous network
data with a short training phase of 40 minutes.
In this approach, the authors used unsupervised
machine learning methods and archived high accuracys;
the limitation is that classifying devices with the
same hardware and firmware significantly reduces the
accuracy. Another drawback of this method is the fact
that the TCP window size cannot be used for devices that
only use UDP.

Sivanathan et al. [134] use an active TCP port
scan technique to classify devices in their work. In
a subsequent work, the authors use the number of
DNS queries and cipher suite information, among other
things, to build a multi-stage classifier and report a
high accuracy of over 99%. In this work, the authors
show approaches to visualize the behavior of IoT
devices using Sankey diagrams [133]. The challenges
of this approach are certainly the dynamics in the
communication behavior of IoT devices and the fact that
the analysis of DNS requests in network data can lead to
a violation of privacy.

Khandait et al. [80] present in their work IoTHunter
a framework that uses the occurrence of keywords
belonging to flows with deep packet inspection methods
for the classifier. Disadvantages of the method used are
the fact that most IoT devices today use encryption, so
for some devices it may result that they do not have
unencrypted keywords or have none at all.

Entropy-based features are chosen to perform traffic
classification. For example, if a packet carries plain
text, then the entropy of the payload is lowest. The
entropy will increase proportionately if the packet carries
audio/XML/JSON-encoded, compressed, or encrypted
data.  Such methods were mainly used to detect
anomalies in network traffic and are not so common for
device-type fingerprinting (see [102, 114]).

Several works on flow-based classification have been
published in the last decade. As mentioned before, a flow
is a set of packets passing through an observation point
in the network, and all packets belonging to a particular
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flow have a set of common properties. Some of these
papers are presented in the works [41, 64, 66, 70, 114].

Some authors analyze the radio frequency transmitted
over WiFi signals to fingerprint devices [151, 152] or
in the 5G and 6G radio wave bands, as in the work of
Takasaki et al. [143]. Other authors use the modulation
information of the transmitted signal [83]. This work
provides an interesting insight into the related challenges
in IoT device classification, but it is not directly
comparable to the other studies in this work because they
analyze not only packet or flow characteristics, but also
the frequency spectrum and waveforms transmitted by
devices.

Other works implement statistical approaches using
the Euclidean rules or cosine similarity, among others,
for comparison with and without machine learning, as
shown, for example, in the papers [27, 28, 33, 43].
However, most of this work deals with the classification
of network traffic for application detection.

Duan et al. [42] in their work present ByteloT,
an identification approach based on the frequency
distribution of packet length with the k-nearest neighbors
algorithm, using a distance metric to build the classifier.
This work shows that such methods are well suited for
classification approaches in IoT networks. For new
devices joining the network at this point, a consideration
of hybrid approaches with generative transformers would
be conceivable.

However, new approaches have been recognized to
improve the security of IoT networks. Rieger et al. [121]
present a framework that can detect infiltration attacks
by defining normal and suspicious behavior situations
in an everyday household with context-based detection
methods. Gobel et al. [64] present in their work “Find
My IoT Device” a method based on the Approximate
Matching Algorithm to identify IoT traffic flows.

Today, researchers are trying solutions using
generative pre-trained transformers (GPT), a type of
large language model (LLM), to build frameworks
for improving network security or to generate large
synthetic datasets useful for training machine learning
algorithms for better accuracy and performance.
However, the use of artificial intelligence (Al) promises
improvements in this area of research that have yet to be
proven.

Meng et al. [94], the authors present an approach to
use a generative pre-trained language model (NetGPT)
to generate an educational task. Kholgh et al. [81]
present an LLM approach based on ChatGPT-3 Davinci
and Babbage for fine-tuning the model that generates
synthetic network flows that can be used to train machine
learning and especially deep learning models.

However, the number of papers and surveys published
in this research area demonstrates its high relevance. The
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works [40, 78, 101] show that classification approaches
have been a hot topic for more than a decade.

4.5 Summary

Several works in this research area have analyzed the
ranking of features that are best suited for classification.
The results of these studies show that packet size is
the most promising factor for classifying IoT devices.
The TCP window size, which depends on the memory
and processing speed of the device, is widely used to
distinguish IoT from non-IoT devices, but cannot be
used for devices that only work with UDP or other
protocols. For example, the Dynamic Host Control
Protocol (DHCP) service provides IP addresses, gateway
information, and other relevant parameters such as
device names that can be used for further classification.
When a new IoT device joins the network, most
will send a DHCP Discovery Broadcast message at
startup to obtain an IP address and other communication
parameters. For example, the device name could be
used to initialize a further search on the Internet and
extract more information about the devices from the
content of websites; this approach was taken by Feng al
al. [51]. They present the ARE framework to identify
the IoT devices from the banner information. This
method was re implemented in the work of Javed et
al. [77] with different results. If the device does not have
DHCEP options enabled by default, or if an administrator
(Network-Policies) disables them, and if the device does
not have a client name set by the manufacturer, this
method fails.

Most of the work shown takes the approach of
monitoring traffic at the TCP/IP layer. However, IoT
devices use protocols such as CoAP and MQTT, so
traffic diagnosis has open challenges before the packets
reach the gateway. In addition, most of the work is
related to WiFi devices and does not consider other
transmission techniques such as Bluetooth Low Energy,
Z-Wave, LoRaWAN, and ZigBee; this confirms the
assumption that this area of research is very diverse due
to the many variations in the transmission techniques
used. The authors of the article [13] present a framework
that identifies devices working with ZigBee and Z-Wave
protocols. Other authors try to reduce the number of
features with individual methods. For example, Santos
et al. [41] used four statistical features combined with
the user agent text information extracted from the packet
payload and the random forest algorithm to classify the
devices. Some works show that the packet length and
window size are good features for discriminating the
device types with tractable accuracy, as shown in the
work of Pinheiro et al. [117].

Many researchers are trying to adapt deep learning
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and neural networks to solve the problems of IoT device
traffic identification. However, it remains a challenge
because both methods face privacy (payload inspection)
and computational issues. This problem exists even if
we use cloud solutions where computing power is not
the big problem because most of the measurement data
is needed close to the IoT device, so latency and data
transmission afford back to the local networks is still a
challenge [89, 90, 127].

In recent years, researchers have worked on
new approaches to traffic classification and anomaly
detection, such as approximate matching [63, 64] and
context-based detection [121]. Recently, other solutions
have emerged that use generative Al and large language
models (LLMs) to overcome the challenges, as shown in
the work of [81, 94], among others.

5 CONCLUSION AND FUTURE WORKS

Many papers have been published on the classification
of network traffic and IoT devices. All approaches face
specific challenges when using different classification
methods. For example, the IP addresses of servers
and services are often not constant; the nature of cloud
solutions is that they use a few servers for the services
they provide. Another challenge is that some types of
IoT devices use the same cloud provider for their settings
and communication patterns, such as Google devices.
Such approaches therefore run the risk of low detection
rates. Using artificial intelligence (AI) on constrained
devices at the edge of the network, with federated or
split learning methods, could help overcome some of the
latency and security issues of the native cloud solution,
but introduces new challenges in terms of the limited
processing power of constrained IoT devices.

In addition, because network traffic is highly dynamic,
there are always small variations in the behavior of IoT
devices. Testing the same device multiple times will
result in multiple different fingerprints, creating a multi-
class problem. In the case of two or more corresponding
classes, a similarity coefficient must be defined to
decide which class the unseen data most likely belongs
to. These approaches could be implemented using the
euclidean rules or cosine similarity, among others, as
shown in the works of Cunha et al. [33] and Duan et
al. [42].

The Challenges are not solved yet at all, so researchers
keep working on this research field, from our point of
view, with the following key aspects:

 Standardization - Creating standard protocols and
benchmarks for IoT traffic classification.

* Cross-layer Approaches - Integrating information
from multiple network stack layers for more
accurate classification.

* Edge Computing - Processing data closer to the
source to reduce latency and bandwidth usage.

* Federated Learning - Leveraging distributed models
to enhance privacy and scalability.

Statistical methods have advantages, such as
providing a structured approach to collecting,
organizing, analyzing, and interpreting data. A downside
could be the potential for erroneous conclusions with
inappropriate statistical methods. On the other hand,
new approaches are often prioritized in research,
creating a “publish or perish” culture that can bias
studies in favor of new methods over existing ones.
This can hinder meaningful comparisons between
different approaches, making it difficult for end users
to determine the most appropriate method for their
research questions. Machine learning methods can
provide better results in terms of accuracy and F1
score, but require large datasets and, in the case of
supervised learning, a significant amount of technical
work to label and balance the datasets. Most existing
work uses machine learning techniques to solve network
behavior classification problems. Still, most of them
use data-driven models on features of network packets
and/or flows without looking at gains versus costs [41].
Nevertheless, there are still many unsolved classification
challenges in this area.

New and re-established ways in traffic classification,
as shown by [63, 64, 121], but also techniques without
machine learning, as demonstrated in the work [33],
offer possible new research directions that can be
further explored in the future. Furthermore, moving
classification processes closer to the edge of networks,
commonly referred to as “edge computing”, is an
important trend in the field of IoT traffic classification.
This approach involves processing data near the source
of data generation (i.e., the IoT devices themselves),
rather than relying on centralized cloud servers. Such
solutions are often used in medical research, where
latency is critical. Using such methods for traffic
classification is another possible area of research.

In recent years, but increasingly since the advent
of ChatGPT, new methods have been researched that
can be classified in the class of Al-based learning.
Today, there are many promising new methods that use
large language models to analyze IoT network traffic
to prevent attacks or to generate synthetic datasets for
classification. However, it remains to be proven that
these approaches can meet the challenges. In particular,
the results of such generative models need to be verified,
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as the model may already be compromised when it is
used to detect anomalies and cyber-attacks.

The research areas that we will consider for our
future work are:

* A deeper look into similarity approaches with the
possibilities of machine learning to overcome the
challenges that exist in real-time network traffic
classification. One of these points is to minimize
the training phase for unknown IoT devices.

e The use of generative Al such as ChatGPT to
generate synthetic IoT device traffic datasets, as
shown in the work of Meng et al. [94] and Kholgh
et al. [81], to train machine learning models. The
idea is to train a LLM (Large Language Model)
with the network traffic behavior of several IoT
devices, which can then be used for classification to
improve accuracy and false positive rate. Another
research direction we can imagine is to make the
behavior of IoT devices understandable to large
language models, for example, to represent network
traffic features in tokens so that they can be used
to describe the behavior of IoT devices in a large
language model.

In addition, from our point of view, edge
computing can lead to the following research
directions for future work:

* Using artificial intelligence (AI) on constrained
devices at the edge of the network, with federated
or split learning methods. Do such solutions need
to be implemented on edge gateways because the
processing power required would be too much for
constrained IoT devices?

e Using statistical approaches with reduced
complexity methods that can be processed on
constrained IoT devices, but will they overcome the
immense increase in IoT device implementations
in the future?

While traditional methods provide a solid foundation,
machine learning techniques offer promising solutions
to address the unique challenges of IoT traffic
classification. Continued innovation and collaboration
are essential to developing robust, scalable, and capable
solutions to support the growing IoT ecosystem. For
example, new approaches have emerged in recent years
using quantum computing. These solutions combine
classical Al-based approaches such as machine learning,
generative transformers, and LLMs with the power
of quantum computing to overcome the challenges of
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analyzing very large data sets and detecting malicious
network traffic in real time. Quantum computing is
not the focus of our work, but to give an idea of the
possibilities of such approaches, we include the work of
Kalinin et al. [79] and Spadari et al. [138].

IoT traffic classification is an important area of
research with significant implications for network
management, security and optimization, and remains
challenging due to the technological and functional
diversity of IoT devices.
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