RonPub

Loading...

RonPub Banner

RonPub -- Research Online Publishing

RonPub (Research online Publishing) is an academic publisher of online, open access, peer-reviewed journals.  RonPub aims to provide a platform for researchers, developers, educators, and technical managers to share and exchange their research results worldwide.

RonPub Is Open Access:

RonPub publishes all of its journals under the open access model, defined under BudapestBerlin, and Bethesda open access declarations:

  • All articles published by RonPub is fully open access and online available to readers free of charge.  
  • All open access articles are distributed under  Creative Commons Attribution License,  which permits unrestricted use, distribution and reproduction free of charge in any medium, provided that the original work is properly cited. 
  • Authors retain all copyright to their work.
  • Authors may also publish the publisher's version of their paper on any repository or website. 

RonPub Is Cost-Effective:

To be able to provide open access journals, RonPub defray publishing cost by charging a one-time publication fee for each accepted article. One of RonPub objectives is providing a fast and high-quality but lower-cost publishing service. In order to ensure that the fee is never a barrier to publication, RonPub offers a fee waiver for authors who do not have funds to cover publication fees. We also offer a partial fee waiver for editors and reviewers of RonPub as as reward for their work. See the respective Journal webpage for the concrete publication fee.

RonPub Publication Criteria

What we are most concerned about is the quality, not quantity, of publications. We only publish high-quality scholarly papers. Publication Criteria describes the criteria that should be met for a contribution to be acceptable for publication in RonPub journals.

RonPub Publication Ethics Statement:

In order to ensure the publishing quality and the reputation of the publisher, it is important that all parties involved in the act of publishing adhere to the standards of the publishing ethical behaviour. To verify the originality of submissions, we use Plagiarism Detection Tools, like Anti-Plagiarism, PaperRater, Viper, to check the content of manuscripts submitted to our journals against existing publications.

RonPub follows the Code of Conduct of the Committee on Publication Ethics (COPE), and deals with the cases of misconduct according to the COPE Flowcharts

Long-Term Preservation in the German National Library

Our publications are archived and permanently-preserved in the German National Library. The publications, which are archived in the German National Library, are not only long-term preserved but also accessible in the future, because the German National Library ensures that digital data saved in the old formats can be viewed and used on current computer systems in the same way they were on the original systems which are long obsolete.

Where is RonPub?

RonPub is a registered corporation in Lübeck, Germany. Lübeck is a beautiful coastal city, owing wonderful sea resorts and sandy beaches as well as good restaurants. It is located in northern Germany and is 60 kilometer away from Hamburg.

For Authors

Manuscript Preparation

Authors should first read the author guidelines of the corresponding journal. Manuscripts must be prepared using the manuscript template of the respective journal. It is available as word and latex version for download at the Author Guidelines of the corresponding journal page. The template describes the format and structure of manuscripts and other necessary information for preparing manuscripts. Manuscripts should be written in English. There is no restriction on the length of manuscripts.

Submission

Authors submit their manuscripts via the submit page of the corresponding journal. Authors first submit their manuscripts in PDF format. Once a manuscript is accepted, the author then submits the revised manuscript as PDF file and word file or latex folder (with all the material necessary to generate the PDF file). The work described in the submitted manuscript must be previously unpublished; it is not under consideration for publication anywhere else. 

Authors are welcome to suggest qualified reviewers for their papers, but this is not mandatory. If the author wants to do so, please provide the name, affiliations and e-mail addresses for all suggested reviewers.

Manuscript Status

After submission of manuscripts, authors will receive an email to confirm receipt of manuscripts within a few days. Subsequent enquiries concerning paper progress should be made to the corresponding editorial office (see individual journal webpage for concrete contact information).

Review Procedure

RonPub is committed to enforcing a rigorous peer-review process. All manuscripts submitted for publication in RonPub journals are strictly and thoroughly peer-reviewed. When a manuscript is submitted to a RonPub journal, the editor-in-chief of the journal assigns it to an appropriate editor who will be in charge of the review process of the manuscript. The editor first suggests potential reviewers and then organizes the peer-reviewing herself/himself or entrusts it to the editor office. For each manuscript, typically three review reports will be collected. The editor and the editor-in-chief evaluate the manuscript itself and the review reports and make an accept/revision/reject decision. Authors will be informed with the decision and reviewing results within 6-8 weeks on average after the manuscript submission. In the case of revision, authors are required to perform an adequate revision to address the concerns from evaluation reports. A new round of peer-review will be performed if necessary.

Accepted manuscripts are published online immediately.

Copyrights

Authors publishing with RonPub open journals retain the copyright to their work. 

All articles published by RonPub is fully open access and online available to readers free of charge.  RonPub publishes all open access articles under the Creative Commons Attribution License,  which permits unrestricted use, distribution and reproduction freely, provided that the original work is properly cited.

Digital Archiving Policy

Our publications have been archived and permanently-preserved in the German National Library. The publications, which are archived in the German National Library, are not only long-term preserved but also accessible in the future, because the German National Library ensures that digital data saved in the old formats can be viewed and used on current computer systems in the same way they were on the original systems which are long obsolete. Further measures will be taken if necessary. Furthermore, we also encourage our authors to self-archive their articles published on the website of RonPub.

For Editors

About RonPub

RonPub is academic publisher of online, open access, peer-reviewed journals. All articles published by RonPub is fully open access and online available to readers free of charge.

RonPub is located in Lübeck, Germany. Lübeck is a beautiful harbour city, 60 kilometer away from Hamburg.

Editor-in-Chief Responsibilities

The Editor-in-Chief of each journal is mainly responsible for the scientific quality of the journal and for assisting in the management of the journal. The Editor-in-Chief suggests topics for the journal, invites distinguished scientists to join the editorial board, oversees the editorial process, and makes the final decision whether a paper can be published after peer-review and revisions.

As a reward for the work of a Editor-in-Chief, the Editor-in-Chief will obtain a 25% discount of the standard publication fee for her/his papers (the Editor-in-Chief is one of authors) published in any of RonPub journals.

Editors’ Responsibilities

Editors assist the Editor-in-Chief in the scientific quality and in decision about topics of the journal. Editors are also encouraged to help to promote the journal among their peers and at conferences. An editor invites at least three reviewers to review a manuscript, but may also review him-/herself the manuscript. After carefully evaluating the review reports and the manuscript itself, the editor makes a commendation about the status of the manuscript. The editor's evaluation as well as the review reports are then sent to EiC, who make the final decision whether a paper can be published after peer-review and revisions. 

The communication with Editorial Board members is done primarily by E-mail, and the Editors are expected to respond within a few working days on any question sent by the Editorial Office so that manuscripts can be processed in a timely fashion. If an editor does not respond or cannot process the work in time, and under some special situations, the editorial office may forward the requests to the Publishers or Editor-in-Chief, who will take the decision directly.

As a reward for the work of editors, an editor will obtain a 25% discount of the standard publication fee for her/his papers (the editor is one of authors) published in any of RonPub journals.

Guest Editors’ Responsibilities

Guest Editors are responsible of the scientific quality of their special issues. Guest Editors will be in charge of inviting papers, of supervising the refereeing process (each paper should be reviewed at least by three reviewers), and of making decisions on the acceptance of manuscripts submitted to their special issue. As regular issues, all accepted papers by (guest) editors will be sent to the EiC of the journal, who will check the quality of the papers, and make the final decsion whether a paper can be published.

Our editorial office will have the right directly asking authors to revise their paper if there are quality issues, e.g. weak quality of writing, and missing information. Authors are required to revise their paper several times if necessary. A paper accepted by it's quest editor may be rejected by the EiC of the journal due to a low quality. However, this occurs only when authors do not really take efforts to revise their paper. A high-quality publication needs the common efforts from the journal, reviewers, editors, editor-in-chief and authors.

The Guest Editors are also expected to write an editorial paper for the special issue. As a reward for work, all guest editors and reviewers working on a special issue will obtain a 25% discount of the standard publication fee for any of their papers published in any of RonPub journals for one year.

Reviewers’ Responsiblity

A reviewer is mainly responsible for reviewing of manuscripts, writing reviewing report and suggesting acception or deny of manuscripts. Reviews are encouraged to provide input about the quality and management of the journal, and help promote the journal among their peers and at conferences.  

Upon the quality of reviewing work, a reviewer will have the potential to be promoted to a full editorial board member. 

As a reward for the reviewing work, a reviewer will obtain a 25% discount of the standard publication fee for her/his papers (the review is one of authors) published in any of RonPub journals.

Launching New Journals

RonPub always welcomes suggestions for new open access journals in any research area. We are also open for publishing collaborations with research societies. Please send your proposals for new journals or for publishing collaboration to This email address is being protected from spambots. You need JavaScript enabled to view it. .

Publication Criteria

This part provides important information for both the scientific committees and authors.

Ethic Requirement:

For scientific committees: Each editor and reviewer should conduct the evaluation of manuscripts objectively and fairly.
For authors: Authors should present their work honestly without fabrication, falsification, plagiarism or inappropriate data manipulation.

Pre-Check:

In order to filter fabricated submissions, the editorial office will check the authenticity of the authors and their affiliations before a peer-review begins. It is important that the authors communicate with us using the email addresses of their affiliations and provide us the URL addresses of their affiliations. To verify the originality of submissions, we use various plagiarism detection tools to check the content of manuscripts submitted to our journal against existing publications. The overall quality of paper will be also checked including format, figures, tables, integrity and adequacy. Authors may be required to improve the quality of their paper before sending it out for review. If a paper is obviously of low quality, the paper will be directly rejected.

Acceptance Criteria:

The criteria for acceptance of manuscripts are the quality of work. This will concretely be reflected in the following aspects:

  • Novelty and Practical Impact
  • Technical Soundness
  • Appropriateness and Adequacy of 
    • Literature Review
    • Background Discussion
    • Analysis of Issues
  • Presentation, including 
    • Overall Organization 
    • English 
    • Readability

For a contribution to be acceptable for publication, these points should be at least in middle level.

Guidelines for Rejection:

  • If the work described in the manuscript has been published, or is under consideration for publication anywhere else, it will not be evaluated.
  • If the work is a plagiarism, or contains data falsification or fabrication, it will be rejected.
  • Manuscripts, which have seriously technical flaws, will not be accepted.

Call for Journals

Research Online Publishing (RonPub, www.ronpub.com) is a publisher of online, open access and peer-reviewed scientific journals.  For more information about RonPub please visit this link.

RonPub always welcomes suggestions for new journals in any research area. Please send your proposals for journals along with your Curriculum Vitae to This email address is being protected from spambots. You need JavaScript enabled to view it. .

We are also open for publishing collaborations with research societies. Please send your publishing collaboration also to This email address is being protected from spambots. You need JavaScript enabled to view it. .

Be an Editor / Be a Reviewer

RonPub always welcomes qualified academicians and practitioners to join as editors and reviewers. Being an editor/a reviewer is a matter of prestige and personnel achievement. Upon the quality of reviewing work, a reviewer will have the potential to be promoted to a full editorial board member.

If you would like to participate as a scientific committee member of any of RonPub journals, please send an email to This email address is being protected from spambots. You need JavaScript enabled to view it. with your curriculum vitae. We will revert back as soon as possible. For more information about editors/reviewers, please visit this link.

Contact RonPub

Location

RonPub UG (haftungsbeschränkt)
Hiddenseering 30
23560 Lübeck
Germany

Comments and Questions

For general inquiries, please e-mail to This email address is being protected from spambots. You need JavaScript enabled to view it. .

For specific questions on a certain journal, please visit the corresponding journal page to see the email address.

RonPub's Transparent Impact Factor of the Year 2020: 1.09

There are numerous criticisms on the use of impact factors and debates about the validity of the impact factor as a measure of journal importance [1, 2, 3, 5, 6, 8, 9]. Several national-level institutions like the German Research Foundation [4] and Science and the Technology Select Committee [7] of the United Kingdom urge their funding councils to only evaluate the quality of individual articles, not the reputation of the journal in which they are published. Nevertherless, we are sometimes asked about the impact factors of our journals. Therefore, we provide here the impact factors for readers who are still interested in impact factors. Our impact factors are calculated in the same way as the one of Thomson Reuters, but the impact factors for our journals are not computed by the company Thomson Reuters and they are computed by ourselves and can be validated by anyone, because we present all data for computing the impact factor (to anyone asking neither for registration nor for fees). These data are provided here and each reader can re-compute and check the calculation of these impact factors. Therefore, we call our impact factor Transparent Impact Factor.

For the calculation of the Impact Factor of an year Y we need the number A of articles published in the years Y-1 and Y-2 (excluding editorials). Furthemore, we determine the number of citations B in the year Y, which cite articles of RonPub published in the years Y-1 or Y-2. The (2-Years) Transparent Impact Factor is then determined by B/A.

There are A := 53 articles published in the years 2018 and 2019. These articles received B := 58 citations in scientific contributions published in 2020. These citations are listed below.

Therefore, the (2-Years) Transparent Impact Factor for the year 2020 is B/A = 1.09

References

  1. Björn Brembs, Katherine Button and Marcus Munafò. Deep impact: Unintended consequences of journal rank. Frontiers in Human Neuroscience, 7 (291): 1–12, 2013.
  2. Ewen Callaway. Beat it, impact factor! Publishing elite turns against controversial metric. Nature, 535 (7611): 210–211, 2016.
  3. Masood Fooladi, Hadi Salehi, Melor Md Yunus, Maryam Farhadi, Arezoo Aghaei Chadegani, Hadi Farhadi, Nader Ale Ebrahim. Does Criticisms Overcome the Praises of Journal Impact Factor? Asian Social Science, 9 (5), 2013.
  4. German Research Foundation, "Quality not Quantity" – DFG Adopts Rules to Counter the Flood of Publications in Research, Press Release No. 7, 2010.
  5. Khaled Moustafa. The disaster of the impact factor. Science and Engineering Ethics, 21 (1): 139–142, 2015.
  6. Mike Rossner, Heather Van Epps, Emma Hill. Show me the data. Journal of Cell Biology, 179 (6): 1091–2, 2007.
  7. Science and Technology Committee, Scientific Publications: Free for all? Tenth Report of the Science and Technology Committee of the House of Commons, 2004.
  8. Maarten van Wesel. Evaluation by Citation: Trends in Publication Behavior, Evaluation Criteria, and the Strive for High Impact Publications. Science and Engineering Ethics, 22 (1): 199–225, 2016.
  9. Time to remodel the journal impact factor. Nature, 535 (466), 2016.

Citations

This list of citations may not be complete. Please contact us, if citations are missing. There might be errors in the citation data due to automatic processing.

 Open Access 

Count Distinct Semantic Queries over Multiple Linked Datasets

Bogdan Kostov, Petr Kremen

Open Journal of Semantic Web (OJSW), 5(1), Pages 1-11, 2018, Downloads: 5443

Full-Text: pdf | URN: urn:nbn:de:101:1-201712245426 | GNL-LP: 1149497149 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In this paper, we revise count distinct queries and their semantics over datasets with incomplete knowledge, which is a typical case for the linked data integration scenario where datasets are viewed as ontologies. We focus on counting individuals present in the signature of the ontology. Specifically, we investigate the Certain Epistemic Count (CEC) and the Possible Epistemic Count (PEC) interval based semantics. In the case of CEC semantics, we propose an algorithm for its evaluation and we prove its correctness under a practical constraint of the queried ontology. We conduct and report experiments with the implementation of the proposed algorithm. We also prove decidability of the PEC semantics.

BibTex:

    @Article{OJSW_2018v5i1n01_Kostov,
        title     = {Count Distinct Semantic Queries over Multiple Linked Datasets},
        author    = {Bogdan Kostov and
                     Petr Kremen},
        journal   = {Open Journal of Semantic Web (OJSW)},
        issn      = {2199-336X},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {1--11},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-201712245426},
        urn       = {urn:nbn:de:101:1-201712245426},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In this paper, we revise count distinct queries and their semantics over datasets with incomplete knowledge, which is a typical case for the linked data integration scenario where datasets are viewed as ontologies. We focus on counting individuals present in the signature of the ontology. Specifically, we investigate the Certain Epistemic Count (CEC) and the Possible Epistemic Count (PEC) interval based semantics. In the case of CEC semantics, we propose an algorithm for its evaluation and we prove its correctness under a practical constraint of the queried ontology. We conduct and report experiments with the implementation of the proposed algorithm. We also prove decidability of the PEC semantics.}
    }
0 citations in 2020

 Open Access 

Cyber Supply Chain Risks in Cloud Computing - Bridging the Risk Assessment Gap

Olusola Akinrolabu, Steve New, Andrew Martin

Open Journal of Cloud Computing (OJCC), 5(1), Pages 1-19, 2018, Downloads: 11251

Full-Text: pdf | URN: urn:nbn:de:101:1-201712245432 | GNL-LP: 1149497157 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Cloud computing represents a significant paradigm shift in the delivery of information technology (IT) services. The rapid growth of the cloud and the increasing security concerns associated with the delivery of cloud services has led many researchers to study cloud risks and risk assessments. Some of these studies highlight the inability of current risk assessments to cope with the dynamic nature of the cloud, a gap we believe is as a result of the lack of consideration for the inherent risk of the supply chain. This paper, therefore, describes the cloud supply chain and investigates the effect of supply chain transparency in conducting a comprehensive risk assessment. We conducted an industry survey to gauge stakeholder awareness of supply chain risks, seeking to find out the risk assessment methods commonly used, factors that hindered a comprehensive evaluation and how the current state-of-the-art can be improved. The analysis of the survey dataset showed the lack of flexibility of the popular qualitative assessment methods in coping with the risks associated with the dynamic supply chain of cloud services, typically made up of an average of eight suppliers. To address these gaps, we propose a Cloud Supply Chain Cyber Risk Assessment (CSCCRA) model, a quantitative risk assessment model which is supported by decision support analysis and supply chain mapping in the identification, analysis and evaluation of cloud risks.

BibTex:

    @Article{OJCC_2018v5i1n01_Akinrolabu,
        title     = {Cyber Supply Chain Risks in Cloud Computing - Bridging the Risk Assessment Gap},
        author    = {Olusola Akinrolabu and
                     Steve New and
                     Andrew Martin},
        journal   = {Open Journal of Cloud Computing (OJCC)},
        issn      = {2199-1987},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {1--19},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-201712245432},
        urn       = {urn:nbn:de:101:1-201712245432},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Cloud computing represents a significant paradigm shift in the delivery of information technology (IT) services. The rapid growth of the cloud and the increasing security concerns associated with the delivery of cloud services has led many researchers to study cloud risks and risk assessments. Some of these studies highlight the inability of current risk assessments to cope with the dynamic nature of the cloud, a gap we believe is as a result of the lack of consideration for the inherent risk of the supply chain. This paper, therefore, describes the cloud supply chain and investigates the effect of supply chain transparency in conducting a comprehensive risk assessment. We conducted an industry survey to gauge stakeholder awareness of supply chain risks, seeking to find out the risk assessment methods commonly used, factors that hindered a comprehensive evaluation and how the current state-of-the-art can be improved. The analysis of the survey dataset showed the lack of flexibility of the popular qualitative assessment methods in coping with the risks associated with the dynamic supply chain of cloud services, typically made up of an average of eight suppliers. To address these gaps, we propose a Cloud Supply Chain Cyber Risk Assessment (CSCCRA) model, a quantitative risk assessment model which is supported by decision support analysis and supply chain mapping in the identification, analysis and evaluation of cloud risks.}
    }
0 citations in 2020

 Open Access 

Halo Effect Contamination in Assessments of Web Interface Design

Daniel S. Soper, Farnaz Piepkorn

Open Journal of Information Systems (OJIS), 5(1), Pages 1-23, 2018, Downloads: 7485, Citations: 1

Full-Text: pdf | URN: urn:nbn:de:101:1-201801212408 | GNL-LP: 1151046418 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: This paper relies on findings and theory from both the human-computer interaction and cognitive psychology literatures in order to inquire into the extent to which the halo effect contaminates web interface design assessments. As a human cognitive bias, the halo effect manifests itself when a judge's evaluations of an entity's individual characteristics are negatively or positively distorted by the judge's overall affect toward the entity being judged. These distortions and halo-induced delusions have substantial negative implications for rational decisionmaking and the ability to objectively evaluate businesses, technologies, or other humans, and should hence be a critical consideration for both managers and organizations alike. Here we inquire into the halo effect using a controlled, randomized experiment involving more than 1,200 research subjects. Subjects' preexisting affective states were activated using polarizing issues including abortion rights, immigration policy, and gun control laws. Subjects were then asked to evaluate specific interface characteristics of six different types of websites, the textual content of which either supported or contradicted their preexisting affective beliefs. Comparing subject responses to objective control evaluations revealed strong evidence of halo effect contamination in assessments of web interface design, particularly among men. In light of the results, a theoretical framework integrating elements from cognitive and evolutionary psychology is proposed to explain the origins and purpose of the halo effect.

BibTex:

    @Article{OJIS_2018v5i1n01_Soper,
        title     = {Halo Effect Contamination in Assessments of Web Interface Design},
        author    = {Daniel S. Soper and
                     Farnaz Piepkorn},
        journal   = {Open Journal of Information Systems (OJIS)},
        issn      = {2198-9281},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {1--23},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-201801212408},
        urn       = {urn:nbn:de:101:1-201801212408},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {This paper relies on findings and theory from both the human-computer interaction and cognitive psychology literatures in order to inquire into the extent to which the halo effect contaminates web interface design assessments. As a human cognitive bias, the halo effect manifests itself when a judge's evaluations of an entity's individual characteristics are negatively or positively distorted by the judge's overall affect toward the entity being judged. These distortions and halo-induced delusions have substantial negative implications for rational decisionmaking and the ability to objectively evaluate businesses, technologies, or other humans, and should hence be a critical consideration for both managers and organizations alike. Here we inquire into the halo effect using a controlled, randomized experiment involving more than 1,200 research subjects. Subjects' preexisting affective states were activated using polarizing issues including abortion rights, immigration policy, and gun control laws. Subjects were then asked to evaluate specific interface characteristics of six different types of websites, the textual content of which either supported or contradicted their preexisting affective beliefs. Comparing subject responses to objective control evaluations revealed strong evidence of halo effect contamination in assessments of web interface design, particularly among men. In light of the results, a theoretical framework integrating elements from cognitive and evolutionary psychology is proposed to explain the origins and purpose of the halo effect.}
    }
1 citation in 2020:

Informational Social Influence, Belief Perseverance, and Conservatism Bias in Web Interface Design Evaluations

Daniel S. Soper

IEEE Access, 8, Pages 218765-218776, 2020.

 Open Access 

Modelling Patterns in Continuous Streams of Data

Ricardo Jesus, Mario Antunes, Diogo Gomes, Rui L. Aguiar

Open Journal of Big Data (OJBD), 4(1), Pages 1-13, 2018, Downloads: 4898, Citations: 3

Full-Text: pdf | URN: urn:nbn:de:101:1-201801234777 | GNL-LP: 1151148423 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: The untapped source of information, extracted from the increasing number of sensors, can be explored to improve and optimize several systems. Yet, hand in hand with this growth goes the increasing difficulty to manage and organize all this new information. The lack of a standard context representation scheme is one of the main struggles in this research area. Conventional methods for extracting knowledge from data rely on a standard representation or a priori relation, which may not be feasible for IoT and M2M scenarios. With this in mind we propose a stream characterization model in order to provide the foundations for a novel stream similarity metric. Complementing previous work on context organization, we aim to provide an automatic stream organizational model without enforcing specific representations. In this paper we extend our work on stream characterization and devise a novel similarity method.

BibTex:

    @Article{OJBD_2018v4i1n01_Jesus,
        title     = {Modelling Patterns in Continuous Streams of Data},
        author    = {Ricardo Jesus and
                     Mario Antunes and
                     Diogo Gomes and
                     Rui L. Aguiar},
        journal   = {Open Journal of Big Data (OJBD)},
        issn      = {2365-029X},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {1--13},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-201801234777},
        urn       = {urn:nbn:de:101:1-201801234777},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {The untapped source of information, extracted from the increasing number of sensors, can be explored to improve and optimize several systems. Yet, hand in hand with this growth goes the increasing difficulty to manage and organize all this new information. The lack of a standard context representation scheme is one of the main struggles in this research area. Conventional methods for extracting knowledge from data rely on a standard representation or a priori relation, which may not be feasible for IoT and M2M scenarios. With this in mind we propose a stream characterization model in order to provide the foundations for a novel stream similarity metric. Complementing previous work on context organization, we aim to provide an automatic stream organizational model without enforcing specific representations. In this paper we extend our work on stream characterization and devise a novel similarity method.}
    }
0 citation in 2020

 Open Access 

Operation of Modular Smart Grid Applications Interacting through a Distributed Middleware

Stephan Cejka, Albin Frischenschlager, Mario Faschang, Mark Stefan, Konrad Diwold

Open Journal of Big Data (OJBD), 4(1), Pages 14-29, 2018, Downloads: 5865, Citations: 5

Full-Text: pdf | URN: urn:nbn:de:101:1-201801212419 | GNL-LP: 1151046426 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: IoT-functionality can broaden the scope of distribution system automation in terms of functionality and communication. However, it also poses risks regarding resource consumption and security. This article presents a field approved IoT-enabled smart grid middleware, which allows for flexible deployment and management of applications within smart grid operation. In the first part of the work, the resource consumption of the middleware is analyzed and current memory bottlenecks are identified. The bottlenecks can be resolved by introducing a new entity that allows to dynamically load multiple applications within one JVM. The performance was experimentally tested and the results suggest that its application can significantly reduce the applications' memory footprint on the physical device. The second part of the study identifies and discusses potential security threats, with a focus on attacks stemming from malicious software applications within the framework. In order to prevent such attacks a proxy based prevention mechanism is developed and demonstrated.

BibTex:

    @Article{OJBD_2018v4i1n02_Cejka,
        title     = {Operation of Modular Smart Grid Applications Interacting through a Distributed Middleware},
        author    = {Stephan Cejka and
                     Albin Frischenschlager and
                     Mario Faschang and
                     Mark Stefan and
                     Konrad Diwold},
        journal   = {Open Journal of Big Data (OJBD)},
        issn      = {2365-029X},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {14--29},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-201801212419},
        urn       = {urn:nbn:de:101:1-201801212419},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {IoT-functionality can broaden the scope of distribution system automation in terms of functionality and communication. However, it also poses risks regarding resource consumption and security. This article presents a field approved IoT-enabled smart grid middleware, which allows for flexible deployment and management of applications within smart grid operation. In the first part of the work, the resource consumption of the middleware is analyzed and current memory bottlenecks are identified. The bottlenecks can be resolved by introducing a new entity that allows to dynamically load multiple applications within one JVM. The performance was experimentally tested and the results suggest that its application can significantly reduce the applications' memory footprint on the physical device. The second part of the study identifies and discusses potential security threats, with a focus on attacks stemming from malicious software applications within the framework. In order to prevent such attacks a proxy based prevention mechanism is developed and demonstrated.}
    }
0 citation in 2020

 Open Access 

IT Project Success from the Management Perspective - A Quantitative Evaluation

Mark Harwardt

Open Journal of Information Systems (OJIS), 5(1), Pages 24-52, 2018, Downloads: 5964, Citations: 4

Full-Text: pdf | URN: urn:nbn:de:101:1-201804155750 | GNL-LP: 1156154707 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: This work investigates the effects that different success criteria and their dimensions may have on the success of IT projects. It focuses on a model that represents the management's view of the success of an IT project. This is of particular interest due to demand for developing and examining such a model. To show the effects of the success criteria and their dimensions a survey of 646 participants was conducted. The effects of the criteria and dimensions on IT project success were subsequently studied with structural equation modeling. Because of some inconsistencies within the original model of IT project success a deducted model had to be developed. Some of the success criteria and dimensions had to be rearranged or removed from the original model due to the results of the study. The new model shows that the perception and the results of a project have a significant impact on the success rating of an IT project.

BibTex:

    @Article{OJIS_2018v5i1n02_Harwardt,
        title     = {IT Project Success from the Management Perspective - A Quantitative Evaluation},
        author    = {Mark Harwardt},
        journal   = {Open Journal of Information Systems (OJIS)},
        issn      = {2198-9281},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {24--52},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-201804155750},
        urn       = {urn:nbn:de:101:1-201804155750},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {This work investigates the effects that different success criteria and their dimensions may have on the success of IT projects. It focuses on a model that represents the management's view of the success of an IT project. This is of particular interest due to demand for developing and examining such a model. To show the effects of the success criteria and their dimensions a survey of 646 participants was conducted. The effects of the criteria and dimensions on IT project success were subsequently studied with structural equation modeling. Because of some inconsistencies within the original model of IT project success a deducted model had to be developed. Some of the success criteria and dimensions had to be rearranged or removed from the original model due to the results of the study. The new model shows that the perception and the results of a project have a significant impact on the success rating of an IT project.}
    }
2 citations in 2020:

Servant leadership and its effects on IT project success

Mark Harwardt

Journal of Project Management, 5(1), Pages 59-78, 2020.

Troubled IS/IT projects: searching for the root causes

Paolo Rocchi, Stefano Za

Kybernetes, 2020.

 Open Access 

Cloud-Scale Entity Resolution: Current State and Open Challenges

Xiao Chen, Eike Schallehn, Gunter Saake

Open Journal of Big Data (OJBD), 4(1), Pages 30-51, 2018, Downloads: 5902, Citations: 18

Full-Text: pdf | URN: urn:nbn:de:101:1-201804155766 | GNL-LP: 1156154723 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Entity resolution (ER) is a process to identify records in information systems, which refer to the same real-world entity. Because in the two recent decades the data volume has grown so large, parallel techniques are called upon to satisfy the ER requirements of high performance and scalability. The development of parallel ER has reached a relatively prosperous stage, and has found its way into several applications. In this work, we first comprehensively survey the state of the art of parallel ER approaches. From the comprehensive overview, we then extract the classification criteria of parallel ER, classify and compare these approaches based on these criteria. Finally, we identify open research questions and challenges and discuss potential solutions and further research potentials in this field.

BibTex:

    @Article{OJBD_2018v4i1n03_Chen,
        title     = {Cloud-Scale Entity Resolution: Current State and Open Challenges},
        author    = {Xiao Chen and
                     Eike Schallehn and
                     Gunter Saake},
        journal   = {Open Journal of Big Data (OJBD)},
        issn      = {2365-029X},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {30--51},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-201804155766},
        urn       = {urn:nbn:de:101:1-201804155766},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Entity resolution (ER) is a process to identify records in information systems, which refer to the same real-world entity. Because in the two recent decades the data volume has grown so large, parallel techniques are called upon to satisfy the ER requirements of high performance and scalability. The development of parallel ER has reached a relatively prosperous stage, and has found its way into several applications. In this work, we first comprehensively survey the state of the art of parallel ER approaches. From the comprehensive overview, we then extract the classification criteria of parallel ER, classify and compare these approaches based on these criteria. Finally, we identify open research questions and challenges and discuss potential solutions and further research potentials in this field.}
    }
5 citations in 2020:

Graph-based organization entity resolution

Hakan Kardes, Deepak Konidena, Siddharth Agrawal, Micah Huff, Ang Sun, Lin Chen, Andrew Kellberg, Xin Wang

2020. US Patent

Data linking over RDF knowledge graphs: A survey

Ali Assi, Hamid Mcheick, Wajdi Dhifli

Concurr. Comput. Pract. Exp., 32(19), 2020.

Analysis and Comparison of Block-Splitting-Based Load Balancing Strategies for Parallel Entity Resolution

Xiao Chen, Nishanth Entoor Venkatarathnam, Kirity Rapuru, David Broneske, Gabriel Campero Durand, Roman Zoun, Gunter Saake

In International Conference on Information Integration and Web-based Applications and Services (iiWAS2020), Chiang Mai, Thailand, 2020.

Variations in Outcome for the Same Map Reduce Transitive Closure Algorithm Implemented on Different Hadoop Platforms

Purvi Parmar, Maryetta Morris, John Talburt, Huzaifa Syed, Jose Joy

International Journal of Computer Science and Information Technology (IJCSIT), 12(4), 2020.

An Overview of End-to-End Entity Resolution for Big Data

Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis, Kostas Stefanidis

ACM Comput. Surv., 53(6), 2020.

 Open Access 

A Lightweight Network-Controlled Power Strip for Low-Cost Cluster Systems

Henry-Norbert Cocos, Christian Baun

Open Journal of Cloud Computing (OJCC), 5(1), Pages 20-29, 2018, Downloads: 4313

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519300682402240 | GNL-LP: 1163928445 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Low-cost clusters are not equipped with costly, sophisticated tools and cannot be controlled remotely. This work aims at addressing this issue and develops a lightweight network-controlled power strip, which enables administrators to monitor the cluster and perform operation via remote. The power strip is controlled via a web interface and a RESTful web service, which are implemented with the programming language Python and the web framework Flask. The solution is inexpensive and easy to implement and use. In this paper, we describe in detail the development and construction of the prototype of the solution and discuss its purchase cost and power consumption.

BibTex:

    @Article{OJCC_2018v5i1n02_Cocos,
        title     = {A Lightweight Network-Controlled Power Strip for Low-Cost Cluster Systems},
        author    = {Henry-Norbert Cocos and
                     Christian Baun},
        journal   = {Open Journal of Cloud Computing (OJCC)},
        issn      = {2199-1987},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {20--29},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519300682402240},
        urn       = {urn:nbn:de:101:1-2018080519300682402240},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Low-cost clusters are not equipped with costly, sophisticated tools and cannot be controlled remotely. This work aims at addressing this issue and develops a lightweight network-controlled power strip, which enables administrators to monitor the cluster and perform operation via remote. The power strip is controlled via a web interface and a RESTful web service, which are implemented with the programming language Python and the web framework Flask. The solution is inexpensive and easy to implement and use. In this paper, we describe in detail the development and construction of the prototype of the solution and discuss its purchase cost and power consumption.}
    }
0 citations in 2020

 Open Access 

Middleware Support for Generic Actuation in the Internet of Mobile Things

Sheriton Valim, Matheus Zeitune, Bruno Olivieri, Markus Endler

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 24-34, 2018, Downloads: 3403, Citations: 5

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519322337232186 | GNL-LP: 1163928666 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: As the Internet of Things is expanding towards applications in almost any sector of our economy and daily life, so is the demand of employing and integrating devices with actuation capabilities, such as smart bulbs, HVAC,smart locks, industrial machines, robots or drones. Many middleware platforms have been developed in orderto support the development of distributed IoT applications and facilitate the sensors-to-cloud communication andedge processing capabilities, but surprisingly very little has been done to provide middleware-level, support andgeneric mechanisms for discovering the devices and their interfaces, and executing the actuation commands, i.e.transferring them to the device. In this paper, we present a generic support for actuation as an extension ofContextNet, our mobile-cloud middleware for IoMT. We describe the design of the distributed actuation supportand present a proof of working implementation that enables remote control of a Sphero mobile BB-8 toy.

BibTex:

    @Article{OJIOT_2018v4i1n03_Valim,
        title     = {Middleware Support for Generic Actuation in the Internet of Mobile Things},
        author    = {Sheriton Valim and
                     Matheus Zeitune and
                     Bruno Olivieri and
                     Markus Endler},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {24--34},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519322337232186},
        urn       = {urn:nbn:de:101:1-2018080519322337232186},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {As the Internet of Things is expanding towards applications in almost any sector of our economy and daily life, so is the demand of employing and integrating devices with actuation capabilities, such as smart bulbs, HVAC,smart locks, industrial machines, robots or drones. Many middleware platforms have been developed in orderto support the development of distributed IoT applications and facilitate the sensors-to-cloud communication andedge processing capabilities, but surprisingly very little has been done to provide middleware-level, support andgeneric mechanisms for discovering the devices and their interfaces, and executing the actuation commands, i.e.transferring them to the device. In this paper, we present a generic support for actuation as an extension ofContextNet, our mobile-cloud middleware for IoMT. We describe the design of the distributed actuation supportand present a proof of working implementation that enables remote control of a Sphero mobile BB-8 toy.}
    }
0 citation in 2020

 Open Access 

Past, Present and Future of the ContextNet IoMT Middleware

Markus Endler, Francisco Silva e Silva

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 7-23, 2018, Downloads: 3884, Citations: 19

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519323267622857 | GNL-LP: 1163928682 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: The Internet of Things with support to mobility is already transforming many application domains, such as smart cities and homes, environmental monitoring, health care, manufacturing, logistics, public security etc. in that it allows to collect and analyze data from the environment, people and machines, and to implement some form of control or steering on these elements of the physical world. But in order to speed the development of applications for the Internet of Mobile Things (IoMT), some middleware is required. This paper summarizes seven years of research and development on the ContextNet middle ware aimed at IoMT, discusses what we achieved and what we have learned so far. We also share our vision of possible future challenges and developments in the Internet of Mobile Things.

BibTex:

    @Article{OJIOT_2018v4i1n02_Endler,
        title     = {Past, Present and Future of the ContextNet IoMT Middleware},
        author    = {Markus Endler and
                     Francisco Silva e Silva},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {7--23},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519323267622857},
        urn       = {urn:nbn:de:101:1-2018080519323267622857},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {The Internet of Things with support to mobility is already transforming many application domains, such as smart cities and homes, environmental monitoring, health care, manufacturing, logistics, public security etc. in that it allows to collect and analyze data from the environment, people and machines, and to implement some form of control or steering on these elements of the physical world. But in order to speed the development of applications for the Internet of Mobile Things (IoMT), some middleware is required. This paper summarizes seven years of research and development on the ContextNet middle ware aimed at IoMT, discusses what we achieved and what we have learned so far. We also share our vision of possible future challenges and developments in the Internet of Mobile Things.}
    }
6 citations in 2020:

NOOP: An IoMT System for Notifying Public Security Issues and Increasing Police Patrol Coverage

Camila A. Wanous, Flavia Pisani, Markus Endler

In 4th Conference on Cloud and Internet of Things (CIoT), Niteroi, Brazil, Pages 33-40, 2020.

Neighborhood-aware Mobile Hub: An Edge Gateway with Leader Election Mechanism for Internet of Mobile Things

Marcelino Silva, Ariel Teles, Rafael Lopes, Francisco Silva, Davi Viana, Luciano Coutinho, Nishu Gupta, Markus Endler

Mobile Networks and Applications, Pages 1-14, 2020.

GrADyS: Exploring movement awareness for efficient routing in Ground-and-Air Dynamic Sensor Networks

Bruno José de Souza Olivieri, Marcelo Paulon Jucá Vasconcelos, Markus Endler

Monografias em Ciência da Computação, Pontifícia Universidade Católica Do Rio De Janeiro, 2, 2020.

GrADyS: Exploring movement awareness for efficient routing in Ground-and-Air Dynamic Sensor Networks

Bruno Olivieri, Marcelo Paulon, Markus Endler

arXiv preprint arXiv:2012.10690, 2020.

Middleware Support for Generic and Flexible Actuation in the Internet of Mobile Things

Sheriton R. Valim, Felipe Nogueira, Flvia Pisani, Markus Endler

In 6th IEEE World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, Pages 1-6, 2020.

Multifaceted infrastructure for self-adaptive IoT systems

Rossana M.C. Andrade, Belmondo R. Aragão, Pedro Almir M. Oliveira, Marcio E.F. Maia, Windson Viana, Tales P. Nogueira

Information and Software Technology, 2020.

 Open Access 

Service-Relationship Programming Framework for the Social IoT

Ahmed E. Khaled, Wyatt Lindquist, Abdelsalam (Sumi) Helal

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 35-53, 2018, Downloads: 3219, Citations: 1

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519302286990058 | GNL-LP: 1163928488 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: We argue that for a true realization of innovative programming opportunities for smart spaces, the developers should be equipped with informative tools that assist them in building domain-related applications. Such tools should utilize the services offered by the space's smart things and consider the different relationships that may tie these services opportunistically to build applications. In this paper, we utilize our Inter-thing relationships programming framework to present a distributed programming ecosystem. The framework broadens the restricted set of thing-level relationships of the evolving social IoT paradigm with a set of service-level relationships. Such relationships provide guidance into how services belonging to different things can be combined to build meaningful applications. We also present a uniform way of describing the thing services and the service-level relationships along with new capabilities for the things to dynamically generate their own services, formulate the corresponding programmable interfaces (APIs) and create an ad-hoc network of socially related smart things at runtime. We then present the semantic rules that guide the establishment of IoT applications and finally demonstrate the features of the framework through a proof-of-concept application.

BibTex:

    @Article{OJIOT_2018v4i1n04_Khaled,
        title     = {Service-Relationship Programming Framework for the Social IoT},
        author    = {Ahmed E. Khaled and
                     Wyatt Lindquist and
                     Abdelsalam (Sumi) Helal},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {35--53},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519302286990058},
        urn       = {urn:nbn:de:101:1-2018080519302286990058},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {We argue that for a true realization of innovative programming opportunities for smart spaces, the developers should be equipped with informative tools that assist them in building domain-related applications. Such tools should utilize the services offered by the space's smart things and consider the different relationships that may tie these services opportunistically to build applications. In this paper, we utilize our Inter-thing relationships programming framework to present a distributed programming ecosystem. The framework broadens the restricted set of thing-level relationships of the evolving social IoT paradigm with a set of service-level relationships. Such relationships provide guidance into how services belonging to different things can be combined to build meaningful applications. We also present a uniform way of describing the thing services and the service-level relationships along with new capabilities for the things to dynamically generate their own services, formulate the corresponding programmable interfaces (APIs) and create an ad-hoc network of socially related smart things at runtime. We then present the semantic rules that guide the establishment of IoT applications and finally demonstrate the features of the framework through a proof-of-concept application.}
    }
0 citation in 2020

 Open Access 

Query Rewriting by Contract under Privacy Constraints

Hannes Grunert, Andreas Heuer

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 54-69, 2018, Downloads: 3493, Citations: 1

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519303109386858 | GNL-LP: 116392850X | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In this paper we show how Query Rewriting rules and Containment checks of aggregate queries can be combined with Contract-based programming techniques. Based on the combination of both worlds, we are able to find new Query Rewriting rules for queries containing aggregate constraints. These rules can either be used to improve the overall system performance or, in our use case, to implement a privacy-aware way to process queries. By integrating them in our PArADISE framework, we can now process and rewrite all types of OLAP queries, including complex aggregate functions and group-by extensions. In our framework, we use the whole network structure, from data producing sensors up to cloud computers, to automatically deploy an edge computing subnetwork. On each edge node, so-called fragment queries of a genuine query are executed to filter and to aggregate data on resource restricted sensor nodes. As a result of integrating Contract-based programming approaches, we are now able to not only process less data but also to produce less data in the result. Thus, the privacy principle of data minimization is accomplished.

BibTex:

    @Article{OJIOT_2018v4i1n05_Grunert,
        title     = {Query Rewriting by Contract under Privacy Constraints},
        author    = {Hannes Grunert and
                     Andreas Heuer},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {54--69},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519303109386858},
        urn       = {urn:nbn:de:101:1-2018080519303109386858},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In this paper we show how Query Rewriting rules and Containment checks of aggregate queries can be combined with Contract-based programming techniques. Based on the combination of both worlds, we are able to find new Query Rewriting rules for queries containing aggregate constraints. These rules can either be used to improve the overall system performance or, in our use case, to implement a privacy-aware way to process queries. By integrating them in our PArADISE framework, we can now process and rewrite all types of OLAP queries, including complex aggregate functions and group-by extensions. In our framework, we use the whole network structure, from data producing sensors up to cloud computers, to automatically deploy an edge computing subnetwork. On each edge node, so-called fragment queries of a genuine query are executed to filter and to aggregate data on resource restricted sensor nodes. As a result of integrating Contract-based programming approaches, we are now able to not only process less data but also to produce less data in the result. Thus, the privacy principle of data minimization is accomplished.}
    }
0 citation in 2020

 Open Access 

Towards Adaptive Actors for Scalable IoT Applications at the Edge

Jonathan Fürst, Mauricio Fadel Argerich, Kaifei Chen, Ernö Kovacs

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 70-86, 2018, Downloads: 4844, Citations: 7

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519303887853107 | GNL-LP: 1163928518 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Traditional device-cloud architectures are not scalable to the size of future IoT deployments. While edge and fog-computing principles seem like a tangible solution, they increase the programming effort of IoT systems, do not provide the same elasticity guarantees as the cloud and are of much greater hardware heterogeneity. Future IoT applications will be highly distributed and place their computational tasks on any combination of end-devices (sensor nodes, smartphones, drones), edge and cloud resources in order to achieve their application goals. These complex distributed systems require a programming model that allows developers to implement their applications in a simple way (i.e., focus on the application logic) and an execution framework that runs these applications resiliently with a high resource efficiency, while maximizing application utility. Towards such distributed execution runtime, we propose Nandu, an actor based system that adapts and migrates tasks dynamically using developer provided hints as seed information. Nandu allows developers to focus on sequential application logic and transforms their application into distributed, adaptive actors. The resulting actors support fine-grained entry points for the execution environment. These entry points allow local schedulers to adapt actors seamlessly to the current context, while optimizing the overall application utility according to developer provided requirements.

BibTex:

    @Article{OJIOT_2018v4i1n06_Fuerst,
        title     = {Towards Adaptive Actors for Scalable IoT Applications at the Edge},
        author    = {Jonathan F\~{A}rst and
                     Mauricio Fadel Argerich and
                     Kaifei Chen and
                     Ern\~{A} Kovacs},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {70--86},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519303887853107},
        urn       = {urn:nbn:de:101:1-2018080519303887853107},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Traditional device-cloud architectures are not scalable to the size of future IoT deployments. While edge and fog-computing principles seem like a tangible solution, they increase the programming effort of IoT systems, do not provide the same elasticity guarantees as the cloud and are of much greater hardware heterogeneity. Future IoT applications will be highly distributed and place their computational tasks on any combination of end-devices (sensor nodes, smartphones, drones), edge and cloud resources in order to achieve their application goals. These complex distributed systems require a programming model that allows developers to implement their applications in a simple way (i.e., focus on the application logic) and an execution framework that runs these applications resiliently with a high resource efficiency, while maximizing application utility. Towards such distributed execution runtime, we propose Nandu, an actor based system that adapts and migrates tasks dynamically using developer provided hints as seed information. Nandu allows developers to focus on sequential application logic and transforms their application into distributed, adaptive actors. The resulting actors support fine-grained entry points for the execution environment. These entry points allow local schedulers to adapt actors seamlessly to the current context, while optimizing the overall application utility according to developer provided requirements.}
    }
1 citation in 2020:

Towards Knowledge Infusion for Robust and Transferable Machine Learning in IoT.

Jonathan Fürst, Mauricio Fadel Argerich, Bin Cheng, Ern Kovacs

Open Journal of Internet Of Things (OJIOT), 6(1), Pages 24-34, 2020.

 Open Access 

Smartwatch-Based IoT Fall Detection Application

Anne H. Ngu, Po-Teng Tseng, Manvick Paliwal, Christopher Carpenter, Walker Stipe

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 87-98, 2018, Downloads: 7599, Citations: 13

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519304951282148 | GNL-LP: 1163928534 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: This paper proposes using only the streaming accelerometer data from a commodity-based smartwatch (IoT) device to detect falls. The smartwatch is paired with a smartphone as a means for performing the computation necessary for the prediction of falls in realtime without incurring latency in communicating with a cloud server while also preserving data privacy. The majority of current fall detection applications require specially designed hardware and software which make them expensive and inaccessible to the general public. Moreover, a fall detection application that uses a wrist worn smartwatch for data collection has the added benefit that it can be perceived as a piece of jewelry and thus non-intrusive. We experimented with both Support Vector Machine and Naive Bayes machine learning algorithms for the creation of the fall model. We demonstrated that by adjusting the sampling frequency of the streaming data, computing acceleration features over a sliding window, and using a Naive Bayes machine learning model, we can obtain the true positive rate of fall detection in real-world setting with 93.33% accuracy. Our result demonstrated that using a commodity-based smartwatch sensor can yield fall detection results that are competitive with those of custom made expensive sensors.

BibTex:

    @Article{OJIOT_2018v4i1n07_Ngu,
        title     = {Smartwatch-Based IoT Fall Detection Application},
        author    = {Anne H. Ngu and
                     Po-Teng Tseng and
                     Manvick Paliwal and
                     Christopher Carpenter and
                     Walker Stipe},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {87--98},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519304951282148},
        urn       = {urn:nbn:de:101:1-2018080519304951282148},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {This paper proposes using only the streaming accelerometer data from a commodity-based smartwatch (IoT) device to detect falls. The smartwatch is paired with a smartphone as a means for performing the computation necessary for the prediction of falls in realtime without incurring latency in communicating with a cloud server while also preserving data privacy. The majority of current fall detection applications require specially designed hardware and software which make them expensive and inaccessible to the general public. Moreover, a fall detection application that uses a wrist worn smartwatch for data collection has the added benefit that it can be perceived as a piece of jewelry and thus non-intrusive. We experimented with both Support Vector Machine and Naive Bayes machine learning algorithms for the creation of the fall model. We demonstrated that by adjusting the sampling frequency of the streaming data, computing acceleration features over a sliding window, and using a Naive Bayes machine learning model, we can obtain the true positive rate of fall detection in real-world setting with 93.33\% accuracy. Our result demonstrated that using a commodity-based smartwatch sensor can yield fall detection results that are competitive with those of custom made expensive sensors.}
    }
4 citations in 2020:

Evaluation of artificial intelligence techniques for the classification of different activities of daily living and falls.

Ivanoe De Falco, Giuseppe De Pietro, Giovanna Sannino

Neural Comput. Appl., 32(3), Pages 747-758, 2020.

Healthcare-Internet of Things and Its Components: Technologies, Benefits, Algorithms, Security, and Challenges

Aman Tyagi

In Optimizing Health Monitoring Systems With Wireless Technology, Pages 258-277, 2020.

Fall Detection System using XGBoost and IoT

D.K. Cahoolessur, B. Rajkumarsingh

R&D Journal, 36, Pages 8 - 18, 2020.

A Machine Learning Based Fall Detection for Elderly People with Neurodegenerative Disorders

Nazmun Nahar, Mohammad Shahadat Hossain, Karl Andersson

In 13th International Conference on Brain Informatics (BI), Padua, Italy, Pages 194-203, 2020.

 Open Access 

Software-Defined Wireless Sensor Networks Approach: Southbound Protocol and Its Performance Evaluation

Cintia B. Margi, Renan C. A. Alves, Gustavo A. Nunez Segura, Doriedson A. G. Oliveira

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 99-108, 2018, Downloads: 4453, Citations: 14

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519305710189607 | GNL-LP: 1163928550 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Software Defined Networking (SDN) has been identified as a promising network paradigm for Wireless Sensor Networks (WSN) and the Internet of Things. It is a key tool for enabling Sensing as a Service, which provides infrastructure sharing thus reducing operational costs. While a few proposals on SDN southbound protocols designed for WSN are found in the literature, they lack adequate performance analysis. In this paper, we review ITSDN main features and present a performance evaluation with all the sensing nodes transmitting data periodically. We conducted a number of experiments varying the number of nodes and assessing the impact of flow table maximum capacity. We assessed the metrics of data delivery, data delay, control overhead and energy consumption in order to show the tradeoffs of using IT-SDN in comparison to the IETF RPL routing protocol. We discuss the main challenges still faced by IT-SDN in larger WSN, and how they could be addressed to make IT-SDN use worthwhile.

BibTex:

    @Article{OJIOT_2018v4i1n08_Margi,
        title     = {Software-Defined Wireless Sensor Networks Approach: Southbound Protocol and Its Performance Evaluation},
        author    = {Cintia B. Margi and
                     Renan C. A. Alves and
                     Gustavo A. Nunez Segura and
                     Doriedson A. G. Oliveira},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {99--108},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519305710189607},
        urn       = {urn:nbn:de:101:1-2018080519305710189607},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Software Defined Networking (SDN) has been identified as a promising network paradigm for Wireless Sensor Networks (WSN) and the Internet of Things. It is a key tool for enabling Sensing as a Service, which provides infrastructure sharing thus reducing operational costs. While a few proposals on SDN southbound protocols designed for WSN are found in the literature, they lack adequate performance analysis. In this paper, we review ITSDN main features and present a performance evaluation with all the sensing nodes transmitting data periodically. We conducted a number of experiments varying the number of nodes and assessing the impact of flow table maximum capacity. We assessed the metrics of data delivery, data delay, control overhead and energy consumption in order to show the tradeoffs of using IT-SDN in comparison to the IETF RPL routing protocol. We discuss the main challenges still faced by IT-SDN in larger WSN, and how they could be addressed to make IT-SDN use worthwhile.}
    }
5 citations in 2020:

Know when to listen: SDN-based protocols for directed IoT networks

Renan Cerqueira Afonso Alves, Cintia Borges Margi, Fernando A. Kuipers

Comput. Commun., 150, Pages 672-686, 2020.

Enabling security in software-defined wireless sensor networks for internet of things

Cezar M. G. de Toledo, Doriedson A. G. de Oliveira, Marcos A. Simplicio Jr, Cintia B. Margi

2020.

An SDN approach to route massive data flows of sensor networks

Olivier Flauzac, Carlos Javier Gonzalez Santamaria, Florent Nolot, Isaac Woungang

Int. J. Commun. Syst., 33(7), 2020.

Modeling and Delay Analysis for SDN-based 5G Edge Clouds

Ameen Chilwan, Yuming Jiang

In IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), Pages 1-7, 2020.

Software-Defined Networks for Wireless Devices with Constrained Resources

Tryfon Theodorou

2020. PhD thesis at University of Macedonia

 Open Access 

Identifying Malicious Nodes in Multihop IoT Networks using Dual Link Technologies and Unsupervised Learning

Xin Liu, Mai Abdelhakim, Prashant Krishnamurthy, David Tipper

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 109-125, 2018, Downloads: 4092, Citations: 3

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519310495220214 | GNL-LP: 1163928577 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Packet manipulation attack is one of the challenging threats in cyber-physical systems (CPSs) and Internet of Things (IoT), where information packets are corrupted during transmission by compromised devices. These attacks consume network resources, result in delays in decision making, and could potentially lead to triggering wrong actions that disrupt an overall system's operation. Such malicious attacks as well as unintentional faults are difficult to locate/identify in a large-scale mesh-like multihop network, which is the typical topology suggested by most IoT standards. In this paper, first, we propose a novel network architecture that utilizes powerful nodes that can support two distinct communication link technologies for identification of malicious networked devices (with typical singlelink technology). Such powerful nodes equipped with dual-link technologies can reveal hidden information within meshed connections that is hard to otherwise detect. By applying machine intelligence at the dual-link nodes, malicious networked devices in an IoT network can be accurately identified. Second, we propose two techniques based on unsupervised machine learning, namely hard detection and soft detection, that enable dual-link nodes to identify malicious networked devices. Our techniques exploit network diversity as well as the statistical information computed by dual-link nodes to identify the trustworthiness of resource-constrained devices. Simulation results show that the detection accuracy of our algorithms is superior to the conventional watchdog scheme, where nodes passively listen to neighboring transmissions to detect corrupted packets. The results also show that as the density of the dual-link nodes increases, the detection accuracy improves and the false alarm rate decreases.

BibTex:

    @Article{OJIOT_2018v4i1n09_XinLiu,
        title     = {Identifying Malicious Nodes in Multihop IoT Networks using Dual Link Technologies and Unsupervised Learning},
        author    = {Xin Liu and
                     Mai Abdelhakim and
                     Prashant Krishnamurthy and
                     David Tipper},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {109--125},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519310495220214},
        urn       = {urn:nbn:de:101:1-2018080519310495220214},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Packet manipulation attack is one of the challenging threats in cyber-physical systems (CPSs) and Internet of Things (IoT), where information packets are corrupted during transmission by compromised devices. These attacks consume network resources, result in delays in decision making, and could potentially lead to triggering wrong actions that disrupt an overall system's operation. Such malicious attacks as well as unintentional faults are difficult to locate/identify in a large-scale mesh-like multihop network, which is the typical topology suggested by most IoT standards. In this paper, first, we propose a novel network architecture that utilizes powerful nodes that can support two distinct communication link technologies for identification of malicious networked devices (with typical singlelink technology). Such powerful nodes equipped with dual-link technologies can reveal hidden information within meshed connections that is hard to otherwise detect. By applying machine intelligence at the dual-link nodes, malicious networked devices in an IoT network can be accurately identified. Second, we propose two techniques based on unsupervised machine learning, namely hard detection and soft detection, that enable dual-link nodes to identify malicious networked devices. Our techniques exploit network diversity as well as the statistical information computed by dual-link nodes to identify the trustworthiness of resource-constrained devices. Simulation results show that the detection accuracy of our algorithms is superior to the conventional watchdog scheme, where nodes passively listen to neighboring transmissions to detect corrupted packets. The results also show that as the density of the dual-link nodes increases, the detection accuracy improves and the false alarm rate decreases.}
    }
0 citation in 2020

 Open Access 

Techniques for the Generation of Arbitrary Three-Dimensional Shapes in Tile-Based Self-Assembly Systems

Florian-Lennert Lau, Kristof Stahl, Stefan Fischer

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 126-134, 2018, Downloads: 3486, Citations: 3

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519311410579164 | GNL-LP: 1163928593 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: A big challenge in nanorobotics is the construction of nanoscale objects. DNA is a bio-compatible tool to reliably and constructively create objects at the nanoscale. A possible tool to build nano-sized structures are tile-based self-assembly systems on the basis of DNA. It is challenging and time-consuming to efficiently design blueprints for the desired objects. This paper presents basic algorithms for the creation of tilesets for nxnxn-cubes in the aTAM model. Only few publications focus on three-dimensional DNA crystals. Three-dimensional shapes are likely to be of more use in nanorobotics. We present three variations: hollow cubes, cube-grids and filled cubes. The paper also presents a basic algorithm to create arbitrary, finite, connected, three-dimensional and predefined shapes at temperature 1, as well as ideas for more efficient algorithms. Among those are algorithms for spheres, ellipsoids, red blood cells and other promising designs. The algorithms and tilesets are tested/verified using a software that has been developed for the purpose of verifying three-dimensional sets of tiletypes and was influenced by the tool ISU TAS. Others can use the simulator and the algorithms to quickly create sets of tiletypes for their desired nanostructures. A long learning process may thus be omitted.

BibTex:

    @Article{OJIOT_2018v4i1n10_Lau,
        title     = {Techniques for the Generation of Arbitrary Three-Dimensional Shapes in Tile-Based Self-Assembly Systems},
        author    = {Florian-Lennert Lau and
                     Kristof Stahl and
                     Stefan Fischer},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {126--134},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519311410579164},
        urn       = {urn:nbn:de:101:1-2018080519311410579164},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {A big challenge in nanorobotics is the construction of nanoscale objects. DNA is a bio-compatible tool to reliably and constructively create objects at the nanoscale. A possible tool to build nano-sized structures are tile-based self-assembly systems on the basis of DNA. It is challenging and time-consuming to efficiently design blueprints for the desired objects. This paper presents basic algorithms for the creation of tilesets for nxnxn-cubes in the aTAM model. Only few publications focus on three-dimensional DNA crystals. Three-dimensional shapes are likely to be of more use in nanorobotics. We present three variations: hollow cubes, cube-grids and filled cubes. The paper also presents a basic algorithm to create arbitrary, finite, connected, three-dimensional and predefined shapes at temperature 1, as well as ideas for more efficient algorithms. Among those are algorithms for spheres, ellipsoids, red blood cells and other promising designs. The algorithms and tilesets are tested/verified using a software that has been developed for the purpose of verifying three-dimensional sets of tiletypes and was influenced by the tool ISU TAS. Others can use the simulator and the algorithms to quickly create sets of tiletypes for their desired nanostructures. A long learning process may thus be omitted.}
    }
0 citation in 2020

 Open Access 

Towards Intrinsic Molecular Communication Using Isotopic Isomerism

Gunther Ardelt, Christoph Külls, Horst Hellbrück

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 135-143, 2018, Downloads: 3230, Citations: 3

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519312150952526 | GNL-LP: 1163928607 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In this paper we introduce a new approach for molecular communication (MC). The proposed method uses isotopomers as symbols in a communication scenario, and we name this approach isotopic molecular communication (IMC). We propose a modulation scheme based on isotopic isomerism, where symbols are encoded via isotopes in molecules. This can be advantageous in applications where the communication has to be independent from chemical molecular concentration. Application scenarios include nano communications with isotopes in a macroscopic environment, i.e. encoding freshwater flow of rivers or drinking water utilities, or medical applications where blood carries isotopomers used for communication in a human or animal body. We simulate the capacity of communication in the sense of symbols per second and maximum symbol rate for different applications. We provide estimations for the symbol rate per distance and we demonstrate the feasibility to identify isotopes reliably. In summary, this isotopic molecular communication is a new paradigm for data transfer independent from molecular concentrations and chemical reactions, and can provide higher throughput than ordinary molecular communications.

BibTex:

    @Article{OJIOT_2018v4i1n11_Ardelt,
        title     = {Towards Intrinsic Molecular Communication Using Isotopic Isomerism},
        author    = {Gunther Ardelt and
                     Christoph K\~{A}lls and
                     Horst Hellbr\~{A}ck},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {135--143},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519312150952526},
        urn       = {urn:nbn:de:101:1-2018080519312150952526},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In this paper we introduce a new approach for molecular communication (MC). The proposed method uses isotopomers as symbols in a communication scenario, and we name this approach isotopic molecular communication (IMC). We propose a modulation scheme based on isotopic isomerism, where symbols are encoded via isotopes in molecules. This can be advantageous in applications where the communication has to be independent from chemical molecular concentration. Application scenarios include nano communications with isotopes in a macroscopic environment, i.e. encoding freshwater flow of rivers or drinking water utilities, or medical applications where blood carries isotopomers used for communication in a human or animal body. We simulate the capacity of communication in the sense of symbols per second and maximum symbol rate for different applications. We provide estimations for the symbol rate per distance and we demonstrate the feasibility to identify isotopes reliably. In summary, this isotopic molecular communication is a new paradigm for data transfer independent from molecular concentrations and chemical reactions, and can provide higher throughput than ordinary molecular communications.}
    }
1 citation in 2020:

Macro-Scale Molecular Communications

Daniel Tunç McGuiness

2020. PhD thesis at University of Liverpool

 Open Access 

Dynamic Allocation of Smart City Applications

Igor Miladinovic, Sigrid Schefer-Wenzl

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 144-149, 2018, Downloads: 3728, Citations: 5

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519320192483088 | GNL-LP: 1163928623 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Cities around the world are evaluating the potential of Internet of Things (IoT) to automate and optimize public services. Cities that implement this approach are commonly referred to as smart cities. A smart city IoT architecture needs to be layered and scalable in order to fulfill not only today's but also future needs of smart cities. Network Function Virtualization (NFV) provides the scale and flexibility necessary for smart city services by enabling the automated control, management and orchestration of network resources. In this paper we consider a scalable, layered, NFV based smart city architecture and discuss the optimal location of applications regarding cloud computing and mobile edge computing (MEC). Introducing a novel concept of dynamic application allocation we show how to fully benefit from MEC and present relevant decision criteria.

BibTex:

    @Article{OJIOT_2018v4i1n12_Miladinovic,
        title     = {Dynamic Allocation of Smart City Applications},
        author    = {Igor Miladinovic and
                     Sigrid Schefer-Wenzl},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {144--149},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519320192483088},
        urn       = {urn:nbn:de:101:1-2018080519320192483088},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Cities around the world are evaluating the potential of Internet of Things (IoT) to automate and optimize public services. Cities that implement this approach are commonly referred to as smart cities. A smart city IoT architecture needs to be layered and scalable in order to fulfill not only today's but also future needs of smart cities. Network Function Virtualization (NFV) provides the scale and flexibility necessary for smart city services by enabling the automated control, management and orchestration of network resources. In this paper we consider a scalable, layered, NFV based smart city architecture and discuss the optimal location of applications regarding cloud computing and mobile edge computing (MEC). Introducing a novel concept of dynamic application allocation we show how to fully benefit from MEC and present relevant decision criteria.}
    }
0 citation in 2020

 Open Access 

Semantic Caching Framework: An FPGA-Based Application for IoT Security Monitoring

Laurent d'Orazio, Julien Lallet

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 150-157, 2018, Downloads: 4180, Citations: 7

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519321445601568 | GNL-LP: 116392864X | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Security monitoring is one subdomain of cybersecurity which aims to guarantee the safety of systems, continuously monitoring unusual events. The development of Internet Of Things leads to huge amounts of information, being heterogeneous and requiring to be efficiently managed. Cloud Computing provides software and hardware resources for large scale data management. However, performances for sequences of on-line queries on long term historical data may be not compatible with the emergency security monitoring. This work aims to address this problem by proposing a semantic caching framework and its application to acceleration hardware with FPGA for fast- and accurate-enough logs processing for various data stores and execution engines.

BibTex:

    @Article{OJIOT_2018v4i1n13_Orazio,
        title     = {Semantic Caching Framework: An FPGA-Based Application for IoT Security Monitoring},
        author    = {Laurent d'Orazio and
                     Julien Lallet},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {150--157},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519321445601568},
        urn       = {urn:nbn:de:101:1-2018080519321445601568},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Security monitoring is one subdomain of cybersecurity which aims to guarantee the safety of systems, continuously monitoring unusual events. The development of Internet Of Things leads to huge amounts of information, being heterogeneous and requiring to be efficiently managed. Cloud Computing provides software and hardware resources for large scale data management. However, performances for sequences of on-line queries on long term historical data may be not compatible with the emergency security monitoring. This work aims to address this problem by proposing a semantic caching framework and its application to acceleration hardware with FPGA for fast- and accurate-enough logs processing for various data stores and execution engines.}
    }
2 citations in 2020:

MASCARA (ModulAr Semantic CAching fRAmework) towards FPGA Acceleration for IoT Security Monitoring

Van Long Nguyen Huu, Julien Lallet, Emmanuel Casseau, Laurent d'Orazio

Open Journal of Internet Of Things (OJIOT), 6(1), Pages 14-23, 2020.

Enhanced query processing over semantic cache for cloud based relational databases

Munir Ahmad, Muhammad Abdul Qadir, Atta Rahman, Rachid Zagrouba, Fahd Alhaidari, Tariq Ali, Farzana Zahid

Journal of Ambient Intelligence and Humanized Computing, 2020.

 Open Access 

Editorial of the Workshop on Very Large Internet of Things (VLIoT 2018)

Sven Groppe, Carlo Alberto Boano

Open Journal of Internet Of Things (OJIOT), 4(1), Pages 1-6, 2018, Downloads: 3837

Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519324071729480 | GNL-LP: 1163928704 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: The 2nd "Very Large Internet of Things" (VLIoT) workshop in conjunction with the 44th International Conference on Very Large Data Bases (VLDB) taking place in Rio de Janeiro, Brazil in 2018 is a forum for all researchers in the area of Internet of Things especially interested in related data management issues. This editorial of a special issue containing the workshop's papers provides an overview over the aims and scope of the workshop and the review procedure. Furthermore, we determine and shortly analyze a statistics of the topics addressed by the accepted papers.

BibTex:

    @Article{OJIOT_2018v4i1n01_VLIoT2018,
        title     = {Editorial of the Workshop on Very Large Internet of Things (VLIoT 2018)},
        author    = {Sven Groppe and
                     Carlo Alberto Boano},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2018},
        volume    = {4},
        number    = {1},
        pages     = {1--6},
        note      = {Special Issue: Proceedings of the International Workshop on Very Large Internet of Things (VLIoT 2018) in conjunction with the VLDB 2018 Conference in Rio de Janeiro, Brazil.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519324071729480},
        urn       = {urn:nbn:de:101:1-2018080519324071729480},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {The 2nd "Very Large Internet of Things" (VLIoT) workshop in conjunction with the 44th International Conference on Very Large Data Bases (VLDB) taking place in Rio de Janeiro, Brazil in 2018 is a forum for all researchers in the area of Internet of Things especially interested in related data management issues. This editorial of a special issue containing the workshop's papers provides an overview over the aims and scope of the workshop and the review procedure. Furthermore, we determine and shortly analyze a statistics of the topics addressed by the accepted papers.}
    }
0 citations in 2020

 Open Access 

FICLONE: Improving DBpedia Spotlight Using Named Entity Recognition and Collective Disambiguation

Mohamed Chabchoub, Michel Gagnon, Amal Zouaq

Open Journal of Semantic Web (OJSW), 5(1), Pages 12-28, 2018, Downloads: 6571, Citations: 4

Full-Text: pdf | URN: urn:nbn:de:101:1-2018080519301478077663 | GNL-LP: 1163928461 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In this paper we present FICLONE, which aims to improve the performance of DBpedia Spotlight, not only for the task of semantic annotation (SA), but also for the sub-task of named entity disambiguation (NED). To achieve this aim, first we enhance the spotting phase by combining a named entity recognition system (Stanford NER ) with the results of DBpedia Spotlight. Second, we improve the disambiguation phase by using coreference resolution and exploiting a lexicon that associates a list of potential entities of Wikipedia to surface forms. Finally, to select the correct entity among the candidates found for one mention, FICLONE relies on collective disambiguation, an approach that has proved successful in many other annotators, and that takes into consideration the other mentions in the text. Our experiments show that FICLONE not only substantially improves the performance of DBpedia Spotlight for the NED sub-task but also generally outperforms other state-of-the-art systems. For the SA sub-task, FICLONE also outperforms DBpedia Spotlight against the dataset provided by the DBpedia Spotlight team.

BibTex:

    @Article{OJSW_2018v5i1n02_Cbabchoub,
        title     = {FICLONE: Improving DBpedia Spotlight Using Named Entity Recognition and Collective Disambiguation},
        author    = {Mohamed Chabchoub and
                     Michel Gagnon and
                     Amal Zouaq},
        journal   = {Open Journal of Semantic Web (OJSW)},
        issn      = {2199-336X},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {12--28},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018080519301478077663},
        urn       = {urn:nbn:de:101:1-2018080519301478077663},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In this paper we present FICLONE, which aims to improve the performance of DBpedia Spotlight, not only for the task of semantic annotation (SA), but also for the sub-task of named entity disambiguation (NED). To achieve this aim, first we enhance the spotting phase by combining a named entity recognition system (Stanford NER ) with the results of DBpedia Spotlight. Second, we improve the disambiguation phase by using coreference resolution and exploiting a lexicon that associates a list of potential entities of Wikipedia to surface forms. Finally, to select the correct entity among the candidates found for one mention, FICLONE relies on collective disambiguation, an approach that has proved successful in many other annotators, and that takes into consideration the other mentions in the text. Our experiments show that FICLONE not only substantially improves the performance of DBpedia Spotlight for the NED sub-task but also generally outperforms other state-of-the-art systems. For the SA sub-task, FICLONE also outperforms DBpedia Spotlight against the dataset provided by the DBpedia Spotlight team.}
    }
1 citation in 2020:

Distracting users as per their knowledge: Combining linked open data and word embeddings to enhance history learning

Yolanda Blanco-Fernández, Alberto Gil-Solla, José J. Pazos-Arias, Manuel Ramos-Cabrer, Abdullah Daif, Martín López-Nores

Expert Systems with Applications, 143, 2020.

 Open Access 

Hijacking DNS Subdomains via Subzone Registration: A Case for Signed Zones

Peter Thomassen, Jan Benninger, Marian Margraf

Open Journal of Web Technologies (OJWT), 5(1), Pages 6-13, 2018, Downloads: 4848, Citations: 3

Special Issue: Proceedings of the International Workshop on Web Data Processing & Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018093019300979542360 | GNL-LP: 1168144450 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: We investigate how the widespread absence of signatures in DNS (Domain Name System) delegations, in combination with a common misunderstanding with regards to the DNS specification, has led to insecure deployments of authoritative DNS servers which allow for hijacking of subdomains without the domain owner's consent. This, in turn, enables the attacker to perform effective man-in-the-middle attacks on the victim's online services, including TLS (Transport Layer Security) secured connections, without having to touch the victim's DNS zone or leaving a trace on the machine providing the compromised service, such as the web or mail server. Following the practice of responsible disclosure, we present examples of such insecure deployments and suggest remedies for the problem. Most prominently, DNSSEC (Domain Name System Security Extensions) can be used to turn the problem from an integrity breach into a denial-of-service issue, while more thorough user management resolves the issue completely.

BibTex:

    @Article{OJWT_2018v5i1n02_Thomassen,
        title     = {Hijacking DNS Subdomains via Subzone Registration: A Case for Signed Zones},
        author    = {Peter Thomassen and
                     Jan Benninger and
                     Marian Margraf},
        journal   = {Open Journal of Web Technologies (OJWT)},
        issn      = {2199-188X},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {6--13},
        note      = {Special Issue: Proceedings of the International Workshop on Web Data Processing \& Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018093019300979542360},
        urn       = {urn:nbn:de:101:1-2018093019300979542360},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {We investigate how the widespread absence of signatures in DNS (Domain Name System) delegations, in combination with a common misunderstanding with regards to the DNS specification, has led to insecure deployments of authoritative DNS servers which allow for hijacking of subdomains without the domain owner's consent. This, in turn, enables the attacker to perform effective man-in-the-middle attacks on the victim's online services, including TLS (Transport Layer Security) secured connections, without having to touch the victim's DNS zone or leaving a trace on the machine providing the compromised service, such as the web or mail server. Following the practice of responsible disclosure, we present examples of such insecure deployments and suggest remedies for the problem. Most prominently, DNSSEC (Domain Name System Security Extensions) can be used to turn the problem from an integrity breach into a denial-of-service issue, while more thorough user management resolves the issue completely.}
    }
1 citation in 2020:

Perceptions of IT Decision-Makers on the Use of Domain Name System Security Extension (DNSSEC): Qualitative Exploratory Case Study

Pablo Rodriguez

2020. PhD thesis at University of Phoenix

 Open Access 

Anonymous Shopping in the Internet by Separation of Data

Sven Groppe, Felix Kuhr, Mehmet Atilla Coskun

Open Journal of Web Technologies (OJWT), 5(1), Pages 14-22, 2018, Downloads: 3837, Citations: 2

Special Issue: Proceedings of the International Workshop on Web Data Processing & Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018093019301629565937 | GNL-LP: 1168144469 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Whenever clients shop in the Internet, they provide identifying data of themselves to parties like the webshop, shipper and payment system. These identifying data merged with their shopping history might be misused for targeted advertisement up to possible manipulations of the clients. The data also contains credit card or bank account numbers, which may be used for unauthorized money transactions by the involved parties or by criminals hacking the parties' computing infrastructure. In order to minimize these risks, we propose an approach for anonymous shopping by separation of data. We argue for the feasibility of our approach by discussing important operations like simple reclamation cases and criminal investigations.

BibTex:

    @Article{OJWT_2018v5i1n03_Groppe,
        title     = {Anonymous Shopping in the Internet by Separation of Data},
        author    = {Sven Groppe and
                     Felix Kuhr and
                     Mehmet Atilla Coskun},
        journal   = {Open Journal of Web Technologies (OJWT)},
        issn      = {2199-188X},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {14--22},
        note      = {Special Issue: Proceedings of the International Workshop on Web Data Processing \& Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018093019301629565937},
        urn       = {urn:nbn:de:101:1-2018093019301629565937},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Whenever clients shop in the Internet, they provide identifying data of themselves to parties like the webshop, shipper and payment system. These identifying data merged with their shopping history might be misused for targeted advertisement up to possible manipulations of the clients. The data also contains credit card or bank account numbers, which may be used for unauthorized money transactions by the involved parties or by criminals hacking the parties' computing infrastructure. In order to minimize these risks, we propose an approach for anonymous shopping by separation of data. We argue for the feasibility of our approach by discussing important operations like simple reclamation cases and criminal investigations.}
    }
0 citation in 2020

 Open Access 

Word Embeddings for Wine Recommender Systems Using Vocabularies of Experts and Consumers

Christophe Cruz, Cyril Nguyen Van, Laurent Gautier

Open Journal of Web Technologies (OJWT), 5(1), Pages 23-30, 2018, Downloads: 4028, Citations: 6

Special Issue: Proceedings of the International Workshop on Web Data Processing & Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018093019302313586232 | GNL-LP: 1168144477 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: This vision paper proposes an approach to use the most advanced word embeddings techniques to bridge the gap between the discourses of experts and non-experts and more specifically the terminologies used by the twocommunities. Word embeddings makes it possible to find equivalent terms between experts and non-experts, byapproach the similarity between words or by revealing hidden semantic relations. Thus, these controlledvocabularies with these new semantic enrichments are exploited in a hybrid recommendation system incorporating content-based ontology and keyword-based ontology to obtain relevant wines recommendations regardless of the level of expertise of the end user. The major aim is to find a non-expert vocabulary from semantic rules to enrich the knowledge of the ontology and improve the indexing of the items (i.e. wine) and the recommendation process.

BibTex:

    @Article{OJWT_2018v5i1n04_Cruz,
        title     = {Word Embeddings for Wine Recommender Systems Using Vocabularies of Experts and Consumers},
        author    = {Christophe Cruz and
                     Cyril Nguyen Van and
                     Laurent Gautier},
        journal   = {Open Journal of Web Technologies (OJWT)},
        issn      = {2199-188X},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {23--30},
        note      = {Special Issue: Proceedings of the International Workshop on Web Data Processing \& Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018093019302313586232},
        urn       = {urn:nbn:de:101:1-2018093019302313586232},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {This vision paper proposes an approach to use the most advanced word embeddings techniques to bridge the gap between the discourses of experts and non-experts and more specifically the terminologies used by the twocommunities. Word embeddings makes it possible to find equivalent terms between experts and non-experts, byapproach the similarity between words or by revealing hidden semantic relations. Thus, these controlledvocabularies with these new semantic enrichments are exploited in a hybrid recommendation system incorporating content-based ontology and keyword-based ontology to obtain relevant wines recommendations regardless of the level of expertise of the end user. The major aim is to find a non-expert vocabulary from semantic rules to enrich the knowledge of the ontology and improve the indexing of the items (i.e. wine) and the recommendation process.}
    }
4 citations in 2020:

At Your Service: Coffee Beans Recommendation From a Robot Assistant

Jacopo de Berardinis, Gabriella Pizzuto, Francesco Lanza, Antonio Chella, Jorge Meira, Angelo Cangelosi

In 8th International Conference on Human-Agent Interaction (HAI), Virtual Event, Australia, Pages 257-259, 2020.

A Precisely Xtreme-Multi Channel Hybrid Approach for Roman Urdu Sentiment Analysis

Faiza Mehmood, Muhammad Usman Ghani, Muhammad Ali Ibrahim, Rehab Shahzadi, Waqar Mahmood, Muhammad Nabeel Asim

IEEE Access, 8, Pages 192740-192759, 2020.

A Precisely Xtreme-Multi Channel Hybrid Approach For Roman Urdu Sentiment Analysis

Faiza Memood, Muhammad Usman Ghani, Muhammad Ali Ibrahim, Rehab Shehzadi, Muhammad Nabeel Asim

CoRR, abs/2003.05443, 2020.

At Your Service: Coffee Beans Recommendation From a Robot Assistant

Jacopo de Berardinis, Gabriella Pizzuto, Francesco Lanza, Antonio Chella, Jorge Meira, Angelo Cangelosi

CoRR, abs/2008.13585, 2020.

 Open Access 

Consuming Web Data in a Guiding App for Public Bus Users

Miguel Ángel Garrido Blázquez, Paloma Cáceres, Belén Vela, Carlos E. Cuesta, José María Cavero Barca, Almudena Sierra-Alonso

Open Journal of Web Technologies (OJWT), 5(1), Pages 31-43, 2018, Downloads: 3559, Citations: 3

Special Issue: Proceedings of the International Workshop on Web Data Processing & Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018093019302970779034 | GNL-LP: 1168144485 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: The complexity of urban public bus networks in big cities makes their use very difficult. This paper presents Notify.me, a set of pervasive services for mobility that employs open data from the public bus network in Madrid. Our solution provides both a guiding service to assist users travelling by bus and a notifying service (visual, acoustical and sensorial) that informs them when a relevant point on their route has been reached (transfer or destination). Notify.me needs a starting point, which can be the user's current location, a destination and the preferences regarding the best route for the user. Notify.me requests a route from the Madrid public bus company via SOAP Web services. The back-end responds with the calculated route, the user's route, which includes the bus lines, the transfers and the pedestrian routes needed to reach the destination. Finally, an empirical evaluation of the experiences of users who employed Notify.me is presented.

BibTex:

    @Article{OJWT_2018v5i1n05_Blazquez,
        title     = {Consuming Web Data in a Guiding App for Public Bus Users},
        author    = {Miguel \~{A}ngel Garrido Bl\~{A}zquez and
                     Paloma C\~{A}ceres and
                     Bel\~{A}n Vela and
                     Carlos E. Cuesta and
                     Jos\~{A} Mar\~{A}a Cavero Barca and
                     Almudena Sierra-Alonso},
        journal   = {Open Journal of Web Technologies (OJWT)},
        issn      = {2199-188X},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {31--43},
        note      = {Special Issue: Proceedings of the International Workshop on Web Data Processing \& Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018093019302970779034},
        urn       = {urn:nbn:de:101:1-2018093019302970779034},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {The complexity of urban public bus networks in big cities makes their use very difficult. This paper presents Notify.me, a set of pervasive services for mobility that employs open data from the public bus network in Madrid. Our solution provides both a guiding service to assist users travelling by bus and a notifying service (visual, acoustical and sensorial) that informs them when a relevant point on their route has been reached (transfer or destination). Notify.me needs a starting point, which can be the user's current location, a destination and the preferences regarding the best route for the user. Notify.me requests a route from the Madrid public bus company via SOAP Web services. The back-end responds with the calculated route, the user's route, which includes the bus lines, the transfers and the pedestrian routes needed to reach the destination. Finally, an empirical evaluation of the experiences of users who employed Notify.me is presented.}
    }
2 citations in 2020:

Improving Urban Mobility by Defining a Smart Data Integration Platform

Paloma Cceres, Almudena Sierra-Alonso, Carlos E. Cuesta, Beln Vela, Jos Mara Cavero Barca

IEEE Access, 8, Pages 204094-204113, 2020.

A data-driven methodology to generate living ontologies

M. Á. Garrido, Paloma Cáceres

2020.

 Open Access 

Webpage Ranking Analysis of Various Search Engines with Special Focus on Country-Specific Search

Sinan Babayigit, Sven Groppe

Open Journal of Web Technologies (OJWT), 5(1), Pages 44-64, 2018, Downloads: 4674, Citations: 1

Special Issue: Proceedings of the International Workshop on Web Data Processing & Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018093019303617104000 | GNL-LP: 1168144493 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In order to attract many visitors to their own website, it is extremely important for website developers that their webpage is one of the best ranked webpages of search engines. As a rule, search engine operators do not disclose their exact ranking algorithm, so that website developers usually have only vague ideas about which measures have particularly positive influences on the webpage ranking. Conversely, we ask the question: "What are the properties of the best ranked webpages?" For this purpose, we perform a detailed analysis, in which we compare the properties of the best ranked webpages with the worse ranked webpages. Furthermore, we compare countryspecific differences.

BibTex:

    @Article{OJWT_2018v5i1n06_Babayigit,
        title     = {Webpage Ranking Analysis of Various Search Engines with Special Focus on Country-Specific Search},
        author    = {Sinan Babayigit and
                     Sven Groppe},
        journal   = {Open Journal of Web Technologies (OJWT)},
        issn      = {2199-188X},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {44--64},
        note      = {Special Issue: Proceedings of the International Workshop on Web Data Processing \& Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018093019303617104000},
        urn       = {urn:nbn:de:101:1-2018093019303617104000},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In order to attract many visitors to their own website, it is extremely important for website developers that their webpage is one of the best ranked webpages of search engines. As a rule, search engine operators do not disclose their exact ranking algorithm, so that website developers usually have only vague ideas about which measures have particularly positive influences on the webpage ranking. Conversely, we ask the question: "What are the properties of the best ranked webpages?" For this purpose, we perform a detailed analysis, in which we compare the properties of the best ranked webpages with the worse ranked webpages. Furthermore, we compare countryspecific differences.}
    }
0 citation in 2020

 Open Access 

The First International Workshop on Web Data Processing & Reasoning (WDPAR 2018)

Sven Groppe, Christophe Cruz

Open Journal of Web Technologies (OJWT), 5(1), Pages 1-5, 2018, Downloads: 3836

Special Issue: Proceedings of the International Workshop on Web Data Processing & Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.

Full-Text: pdf | URN: urn:nbn:de:101:1-2018110508370722588082 | GNL-LP: 1170594662 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: The first Web Data Processing & Reasoning (WDPAR) workshop in conjunction with the 41st German Conference on Artificial Intelligence (KI) taking place in Berlin, Germany in 2018 is a forum for all researchers especially interested in processing of and reasoning on web data. The proceedings of WDPAR@KI 2018 are published in the Open Journal of Web Technologies (OJWT) (www.ronpub.com/ojwt) as special issue and the publisher of OJWT is RonPub. This editorial provides an overview over the aims and scope of the workshop and the review procedure. Furthermore, we introduce the accepted papers and their topics in the editorial.

BibTex:

    @Article{OJWT_2018v5i1n01e_WDRAR2018,
        title     = {The First International Workshop on Web Data Processing \& Reasoning (WDPAR 2018)},
        author    = {Sven Groppe and
                     Christophe Cruz},
        journal   = {Open Journal of Web Technologies (OJWT)},
        issn      = {2199-188X},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {1--5},
        note      = {Special Issue: Proceedings of the International Workshop on Web Data Processing \& Reasoning (WDPAR 2018) in conjunction with the 41st German Conference on Artificial Intelligence (KI) in Berlin, Germany.},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018110508370722588082},
        urn       = {urn:nbn:de:101:1-2018110508370722588082},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {The first Web Data Processing \& Reasoning (WDPAR) workshop in conjunction with the 41st German Conference on Artificial Intelligence (KI) taking place in Berlin, Germany in 2018 is a forum for all researchers especially interested in processing of and reasoning on web data. The proceedings of WDPAR@KI 2018 are published in the Open Journal of Web Technologies (OJWT) (www.ronpub.com/ojwt) as special issue and the publisher of OJWT is RonPub. This editorial provides an overview over the aims and scope of the workshop and the review procedure. Furthermore, we introduce the accepted papers and their topics in the editorial.}
    }
0 citations in 2020

 Open Access 

Effectiveness of NoSQL and NewSQL Databases in Mobile Network Event Data: Cassandra and ParStream/Kinetic

Petri Kotiranta, Marko Junkkari

Open Journal of Databases (OJDB), 5(1), Pages 1-13, 2018, Downloads: 5108

Full-Text: pdf | URN: urn:nbn:de:101:1-2018122318330989940385 | GNL-LP: 1174122692 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Continuously growing amount of data has inspired seeking more and more efficient database solutions for storing and manipulating data. In big data sets, NoSQL databases have been established as alternatives for traditional SQL databases. The effectiveness of these databases has been widely tested, but the tests focused only on key-value data that is structurally very simple. Many application domains, such as telecommunication, involve more complex data structures. Huge amount of Mobile Network Event (MNE) data is produced by an increasing number of mobile and ubiquitous applications. MNE data is structurally predetermined and typically contains a large number of columns. Applications that handle MNE data are usually insert intensive, as a huge amount of data are generated during rush hours. NoSQL provides high scalability and its column family stores suits MNE data well, but NoSQL does not support ACID features of the traditional relational databases. NewSQL is a new kind of databases, which provide the high scalability of NoSQL while still maintaining ACID guarantees of the traditional DBMS. In the paper, we evaluation NEM data storing and aggregating efficiency of Cassandra and ParStream/Kinetic databases and aim to find out whether the new kind of database technology can clearly bring performance advantages over legacy database technology and offers an alternative to existing solutions. Among the column family stores of NoSQL, Cassandra is especially a good choice for insert intensive applications due to its way to handle data insertions. ParStream is a novel and advanced NewSQL like database and is recently integrated into Cisco Kinetic. The results of the evaluation show that ParStream is much faster than Cassandra when storing and aggregating MNE data and the NewSQL is a very strong alternative to existing database solutions for insert intensive applications.

BibTex:

    @Article{OJDB_2018v5i1n01_Kotiranta,
        title     = {Effectiveness of NoSQL and NewSQL Databases in Mobile Network Event Data: Cassandra and ParStream/Kinetic},
        author    = {Petri Kotiranta and
                     Marko Junkkari},
        journal   = {Open Journal of Databases (OJDB)},
        issn      = {2199-3459},
        year      = {2018},
        volume    = {5},
        number    = {1},
        pages     = {1--13},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018122318330989940385},
        urn       = {urn:nbn:de:101:1-2018122318330989940385},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Continuously growing amount of data has inspired seeking more and more efficient database solutions for storing and manipulating data. In big data sets, NoSQL databases have been established as alternatives for traditional SQL databases. The effectiveness of these databases has been widely tested, but the tests focused only on key-value data that is structurally very simple. Many application domains, such as telecommunication, involve more complex data structures. Huge amount of Mobile Network Event (MNE) data is produced by an increasing number of mobile and ubiquitous applications. MNE data is structurally predetermined and typically contains a large number of columns. Applications that handle MNE data are usually insert intensive, as a huge amount of data are generated during rush hours. NoSQL provides high scalability and its column family stores suits MNE data well, but NoSQL does not support ACID features of the traditional relational databases. NewSQL is a new kind of databases, which provide the high scalability of NoSQL while still maintaining ACID guarantees of the traditional DBMS. In the paper, we evaluation NEM data storing and aggregating efficiency of Cassandra and ParStream/Kinetic databases and aim to find out whether the new kind of database technology can clearly bring performance advantages over legacy database technology and offers an alternative to existing solutions. Among the column family stores of NoSQL, Cassandra is especially a good choice for insert intensive applications due to its way to handle data insertions. ParStream is a novel and advanced NewSQL like database and is recently integrated into Cisco Kinetic. The results of the evaluation show that ParStream is much faster than Cassandra when storing and aggregating MNE data and the NewSQL is a very strong alternative to existing database solutions for insert intensive applications.}
    }
0 citations in 2020

 Open Access 

Integrity Proofs for RDF Graphs

Andrew Sutton, Reza Samavi

Open Journal of Semantic Web (OJSW), 6(1), Pages 1-18, 2019, Downloads: 5108

Full-Text: pdf | URN: urn:nbn:de:101:1-2018102818300947746192 | GNL-LP: 117004476X | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Representing open datasets with the RDF model is becoming increasingly popular. An important aspect of this data model is that it can utilize the methods of computing cryptographic hashes to verify the integrity of RDF graphs. In this paper, we first develop a number of metrics to compare the state-of-the-art integrity proof methods and then present two new approaches to generate an integrity proof of RDF datasets: (i) semantic-based and (ii) structure-based. The semantic-based approach leverages timestamps (or other inherent notions of ordering) as an indexing key to construct a sorted Merkle tree variation, where timestamps are semantically extractable from the dataset. The structure-based approach utilizes the redundant structure of large RDF datasets to compress the dataset statements prior to generating a variation of a Merkle tree. We provide a theoretical analysis and an experimental evaluation of our two proposed methods. Compared to the Merkle and sorted Merkle tree, the semantic-based approach achieves faster querying performance for large datasets. The structure-based approach is well suited when RDF datasets contain large amounts of semantic redundancies. We also evaluate our methods' resistance to adversarial threats.

BibTex:

    @Article{OJSW_2019v6i1n01_Sutton,
        title     = {Integrity Proofs for RDF Graphs},
        author    = {Andrew Sutton and
                     Reza Samavi},
        journal   = {Open Journal of Semantic Web (OJSW)},
        issn      = {2199-336X},
        year      = {2019},
        volume    = {6},
        number    = {1},
        pages     = {1--18},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018102818300947746192},
        urn       = {urn:nbn:de:101:1-2018102818300947746192},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Representing open datasets with the RDF model is becoming increasingly popular. An important aspect of this data model is that it can utilize the methods of computing cryptographic hashes to verify the integrity of RDF graphs. In this paper, we first develop a number of metrics to compare the state-of-the-art integrity proof methods and then present two new approaches to generate an integrity proof of RDF datasets: (i) semantic-based and (ii) structure-based. The semantic-based approach leverages timestamps (or other inherent notions of ordering) as an indexing key to construct a sorted Merkle tree variation, where timestamps are semantically extractable from the dataset. The structure-based approach utilizes the redundant structure of large RDF datasets to compress the dataset statements prior to generating a variation of a Merkle tree. We provide a theoretical analysis and an experimental evaluation of our two proposed methods. Compared to the Merkle and sorted Merkle tree, the semantic-based approach achieves faster querying performance for large datasets. The structure-based approach is well suited when RDF datasets contain large amounts of semantic redundancies. We also evaluate our methods' resistance to adversarial threats.}
    }
0 citations in 2020

 Open Access 

Provenance Management over Linked Data Streams

Qian Liu, Marcin Wylot, Danh Le Phuoc, Manfred Hauswirth

Open Journal of Databases (OJDB), 6(1), Pages 5-20, 2019, Downloads: 5340, Citations: 2

Full-Text: pdf | URN: urn:nbn:de:101:1-2018122318333313711079 | GNL-LP: 1174122722 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Provenance describes how results are produced starting from data sources, curation, recovery, intermediate processing, to the final results. Provenance has been applied to solve many problems and in particular to understand how errors are propagated in large-scale environments such as Internet of Things, Smart Cities. In fact, in such environments operations on data are often performed by multiple uncoordinated parties, each potentially introducing or propagating errors. These errors cause uncertainty of the overall data analytics process that is further amplified when many data sources are combined and errors get propagated across multiple parties. The ability to properly identify how such errors influence the results is crucial to assess the quality of the results. This problem becomes even more challenging in the case of Linked Data Streams, where data is dynamic and often incomplete. In this paper, we introduce methods to compute provenance over Linked Data Streams. More specifically, we propose provenance management techniques to compute provenance of continuous queries executed over complete Linked Data streams. Unlike traditional provenance management techniques, which are applied on static data, we focus strictly on the dynamicity and heterogeneity of Linked Data streams. Specifically, in this paper we describe: i) means to deliver a dynamic provenance trace of the results to the user, ii) a system capable to execute queries over dynamic Linked Data and compute provenance of these queries, and iii) an empirical evaluation of our approach using real-world datasets.

BibTex:

    @Article{OJDB_2019v6i1n02_QianLiu,
        title     = {Provenance Management over Linked Data Streams},
        author    = {Qian Liu and
                     Marcin Wylot and
                     Danh Le Phuoc and
                     Manfred Hauswirth},
        journal   = {Open Journal of Databases (OJDB)},
        issn      = {2199-3459},
        year      = {2019},
        volume    = {6},
        number    = {1},
        pages     = {5--20},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018122318333313711079},
        urn       = {urn:nbn:de:101:1-2018122318333313711079},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Provenance describes how results are produced starting from data sources, curation, recovery, intermediate processing, to the final results. Provenance has been applied to solve many problems and in particular to understand how errors are propagated in large-scale environments such as Internet of Things, Smart Cities. In fact, in such environments operations on data are often performed by multiple uncoordinated parties, each potentially introducing or propagating errors. These errors cause uncertainty of the overall data analytics process that is further amplified when many data sources are combined and errors get propagated across multiple parties. The ability to properly identify how such errors influence the results is crucial to assess the quality of the results. This problem becomes even more challenging in the case of Linked Data Streams, where data is dynamic and often incomplete. In this paper, we introduce methods to compute provenance over Linked Data Streams. More specifically, we propose provenance management techniques to compute provenance of continuous queries executed over complete Linked Data streams. Unlike traditional provenance management techniques, which are applied on static data, we focus strictly on the dynamicity and heterogeneity of Linked Data streams. Specifically, in this paper we describe: i) means to deliver a dynamic provenance trace of the results to the user, ii) a system capable to execute queries over dynamic Linked Data and compute provenance of these queries, and iii) an empirical evaluation of our approach using real-world datasets.}
    }
0 citation in 2020

 Open Access 

Ontology-Based Data Access to Big Data

Simon Schiff, Ralf Möller, Özgür L. Özcep

Open Journal of Databases (OJDB), 6(1), Pages 21-32, 2019, Downloads: 11796, Citations: 5

Full-Text: pdf | URN: urn:nbn:de:101:1-2018122318334350985847 | GNL-LP: 1174122730 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Recent approaches to ontology-based data access (OBDA) have extended the focus from relational database systems to other types of backends such as cluster frameworks in order to cope with the four Vs associated with big data: volume, veracity, variety and velocity (stream processing). The abstraction that an ontology provides is a benefit from the enduser point of view, but it represents a challenge for developers because high-level queries must be transformed into queries executable on the backend level. In this paper, we discuss and evaluate an OBDA system that uses STARQL (Streaming and Temporal ontology Access with a Reasoning-based Query Language), as a high-level query language to access data stored in a SPARK cluster framework. The development of the STARQL-SPARK engine show that there is a need to provide a homogeneous interface to access both static and temporal as well as streaming data because cluster frameworks usually lack such an interface. The experimental evaluation shows that building a scalable OBDA system that runs with SPARK is more than plug-and-play as one needs to know quite well the data formats and the data organisation in the cluster framework.

BibTex:

    @Article{OJDB_2019v6i1n03_Schiff,
        title     = {Ontology-Based Data Access to Big Data},
        author    = {Simon Schiff and
                     Ralf M\~{A}ller and
                     \~{A}zg\~{A}r L. \~{A}zcep},
        journal   = {Open Journal of Databases (OJDB)},
        issn      = {2199-3459},
        year      = {2019},
        volume    = {6},
        number    = {1},
        pages     = {21--32},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018122318334350985847},
        urn       = {urn:nbn:de:101:1-2018122318334350985847},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Recent approaches to ontology-based data access (OBDA) have extended the focus from relational database systems to other types of backends such as cluster frameworks in order to cope with the four Vs associated with big data: volume, veracity, variety and velocity (stream processing). The abstraction that an ontology provides is a benefit from the enduser point of view, but it represents a challenge for developers because high-level queries must be transformed into queries executable on the backend level. In this paper, we discuss and evaluate an OBDA system that uses STARQL (Streaming and Temporal ontology Access with a Reasoning-based Query Language), as a high-level query language to access data stored in a SPARK cluster framework. The development of the STARQL-SPARK engine show that there is a need to provide a homogeneous interface to access both static and temporal as well as streaming data because cluster frameworks usually lack such an interface. The experimental evaluation shows that building a scalable OBDA system that runs with SPARK is more than plug-and-play as one needs to know quite well the data formats and the data organisation in the cluster framework.}
    }
3 citations in 2020:

Bounded-Memory Criteria for Streams with Application Time

Simon Schiff, Özgür Özcep

CoRR, abs/2007.16040, 2020.

Metadata management in a big data infrastructure

Roxana-Maria Holom, Katharina Rafetseder, Stefanie Kritzinger, Harald Sehrschön

Procedia Manufacturing, 42, Pages 375-382, 2020. International Conference on Industry 4.0 and Smart Manufacturing (ISM 2019)

Bounded-Memory Criteria for Streams with Application Time

Simon Schiff, Özgür Özcep

In Proceedings of the Thirty-Third International Florida Artificial Intelligence Research Society Conference, Originally to be held in North Miami Beach, Florida, USA, Pages 148-153, 2020.

 Open Access 

Multi-Shot Stream Reasoning in Answer Set Programming: A Preliminary Report

Philipp Obermeier, Javier Romero, Torsten Schaub

Open Journal of Databases (OJDB), 6(1), Pages 33-38, 2019, Downloads: 5533, Citations: 2

Full-Text: pdf | URN: urn:nbn:de:101:1-2018122318335923776377 | GNL-LP: 1174122757 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In the past, we presented a first approach for stream reasoning using Answer Set Programming (ASP). At the time, we implemented an exhaustive wrapper for our underlying ASP system, clingo, to enable reasoning over continuous data streams. Nowadays, clingo natively supports multi-shot solving: a technique for processing continuously changing logic programs. In the context of stream reasoning, this allows us to directly implement seamless sliding-window-based reasoning over emerging data. In this paper, we hence present an exhaustive update to our stream reasoning approach that leverages multi-shot solving. We describe the implementation of the stream reasoner's architecture, and illustrate its workflow via job shop scheduling as a running example.

BibTex:

    @Article{OJDB_2019v6i1n04_Obermeier,
        title     = {Multi-Shot Stream Reasoning in Answer Set Programming: A Preliminary Report},
        author    = {Philipp Obermeier and
                     Javier Romero and
                     Torsten Schaub},
        journal   = {Open Journal of Databases (OJDB)},
        issn      = {2199-3459},
        year      = {2019},
        volume    = {6},
        number    = {1},
        pages     = {33--38},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018122318335923776377},
        urn       = {urn:nbn:de:101:1-2018122318335923776377},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In the past, we presented a first approach for stream reasoning using Answer Set Programming (ASP). At the time, we implemented an exhaustive wrapper for our underlying ASP system, clingo, to enable reasoning over continuous data streams. Nowadays, clingo natively supports multi-shot solving: a technique for processing continuously changing logic programs. In the context of stream reasoning, this allows us to directly implement seamless sliding-window-based reasoning over emerging data. In this paper, we hence present an exhaustive update to our stream reasoning approach that leverages multi-shot solving. We describe the implementation of the stream reasoner's architecture, and illustrate its workflow via job shop scheduling as a running example.}
    }
1 citation in 2020:

A Multi-shot ASP Encoding for the Aircraft Routing and Maintenance Planning Problem⋆

Pierre Tassel, Martin Gebser, Mohamed Rbaia

In International Conference on Logic Programming 2020 Workshop Proceedings co-located with 36th International Conference on Logic Programming (ICLP), Rende, Italy, 2020.

 Open Access 

Special Issue on High-Level Declarative Stream Processing

Patrick Koopmann, Theofilos Mailis, Danh Le Phuoc

Open Journal of Databases (OJDB), 6(1), Pages 1-4, 2019, Downloads: 4875

Full-Text: pdf | URN: urn:nbn:de:101:1-2018122318332165752519 | GNL-LP: 1174122706 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Stream processing as an information processing paradigm has been investigated by various research communities within computer science and appears in various applications: realtime analytics, online machine learning, continuous computation, ETL operations, and more. The special issue on "High-Level Declarative Stream Processing" investigates the declarative aspects of stream processing, a topic of undergoing intense study. It is published in the Open Journal of Web Technologies (OJWT) (www.ronpub.com/ojwt). This editorial provides an overview over the aims and the scope of the special issue and the accepted papers.

BibTex:

    @Article{OJDB_2019v6i1n01e_HiDeSt2018,
        title     = {Special Issue on High-Level Declarative Stream Processing},
        author    = {Patrick Koopmann and
                     Theofilos Mailis and
                     Danh Le Phuoc},
        journal   = {Open Journal of Databases (OJDB)},
        issn      = {2199-3459},
        year      = {2019},
        volume    = {6},
        number    = {1},
        pages     = {1--4},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018122318332165752519},
        urn       = {urn:nbn:de:101:1-2018122318332165752519},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Stream processing as an information processing paradigm has been investigated by various research communities within computer science and appears in various applications: realtime analytics, online machine learning, continuous computation, ETL operations, and more. The special issue on "High-Level Declarative Stream Processing" investigates the declarative aspects of stream processing, a topic of undergoing intense study. It is published in the Open Journal of Web Technologies (OJWT) (www.ronpub.com/ojwt). This editorial provides an overview over the aims and the scope of the special issue and the accepted papers.}
    }
0 citations in 2020

 Open Access 

Sparse and Dense Linear Algebra for Machine Learning on Parallel-RDBMS Using SQL

Dennis Marten, Holger Meyer, Daniel Dietrich, Andreas Heuer

Open Journal of Big Data (OJBD), 5(1), Pages 1-34, 2019, Downloads: 5925, Citations: 4

Full-Text: pdf | URN: urn:nbn:de:101:1-2018122318341069172957 | GNL-LP: 1174122773 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: While computational modelling gets more complex and more accurate, its calculation costs have been increasing alike. However, working on big data environments usually involves several steps of massive unfiltered data transmission. In this paper, we continue our work on the PArADISE framework, which enables privacy aware distributed computation of big data scenarios, and present a study on how linear algebra operations can be calculated over parallel relational database systems using SQL. We investigate the ways to improve the computation performance of algebra operations over relational databases and show how using database techniques impacts the computation performance like the use of indexes, choice of schema, query formulation and others. We study the dense and sparse problems of linear algebra over relational databases and show that especially sparse problems can be efficiently computed using SQL. Furthermore, we present a simple but universal technique to improve intra-operator parallelism for linear algebra operations in order to support the parallel computation of big data.

BibTex:

    @Article{OJBD_2019v5i1n01_Marten,
        title     = {Sparse and Dense Linear Algebra for Machine Learning on Parallel-RDBMS Using SQL},
        author    = {Dennis Marten and
                     Holger Meyer and
                     Daniel Dietrich and
                     Andreas Heuer},
        journal   = {Open Journal of Big Data (OJBD)},
        issn      = {2365-029X},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {1--34},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018122318341069172957},
        urn       = {urn:nbn:de:101:1-2018122318341069172957},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {While computational modelling gets more complex and more accurate, its calculation costs have been increasing alike. However, working on big data environments usually involves several steps of massive unfiltered data transmission. In this paper, we continue our work on the PArADISE framework, which enables privacy aware distributed computation of big data scenarios, and present a study on how linear algebra operations can be calculated over parallel relational database systems using SQL. We investigate the ways to improve the computation performance of algebra operations over relational databases and show how using database techniques impacts the computation performance like the use of indexes, choice of schema, query formulation and others. We study the dense and sparse problems of linear algebra over relational databases and show that especially sparse problems can be efficiently computed using SQL. Furthermore, we present a simple but universal technique to improve intra-operator parallelism for linear algebra operations in order to support the parallel computation of big data.}
    }
3 citations in 2020:

The Internet of Things as a Privacy-Aware Database Machine

Andreas Heuer, Hannes Grunert

Open Journal of Internet Of Things (OJIOT), 6(1), Pages 53-65, 2020.

Scalable In-Database Machine Learning for the Prediction of Port-to-Port Routes

Dennis Marten, Carsten Hilgenfeld, Andreas Heuer

Journal für Mobilität und Verkehr, 6, Pages 2-10, 2020.

Vergleich paralleler Datenbanksysteme und Big-Data-Umgebungen für Hidden-Markov-Modelle

Maximilian Lamster

2020. Bachelor Thesis at University of Rostock

 Open Access 

A Survey of the Ability of the Linux Operating System to Support Online Game Execution

Cathryn Peoples

Open Journal of Web Technologies (OJWT), 6(1), Pages 1-15, 2019, Downloads: 6100

Full-Text: pdf | URN: urn:nbn:de:101:1-2018122318342028340425 | GNL-LP: 117412279X | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Linux has suffered sluggish home user uptake due mainly to the dominance of rivals, and has seen numerous incarnations as a gaming platform fall flat. Gaming is a particularly sensitive application given its intensive bandwidth and system response requirements; these applications therefore place specific demands on the Operating System platform on which game play is supported. In this work, the ability of the Linux operating system to support execution of online games is explored through a survey of the state-of-the-art in this area. Given the recent increase in cloud-based online gaming, it can be concluded that the time is ripe for more widespread Linux uptake, especially in the gaming domain. This is particularly true today given the amount of exposure to Information Technology across society in general, and ongoing deployment of Internet of Things environments: Linux's open source, modular and freely customisable design may therefore not be as daunting as before, and the unique benefits of this platform may be exploited for the experiences it can bring to applications in general and, specific to the context of this work, players in their game play. This paper makes a unique contribution to the field: Although a number of articles are available within the general area of Linux and gameplay, a thorough survey on this issue has not been seen so far. This is therefore the gap to which this paper contributes.

BibTex:

    @Article{OJWT_2019v6i1n01_Peoples,
        title     = {A Survey of the Ability of the Linux Operating System to Support Online Game Execution},
        author    = {Cathryn Peoples},
        journal   = {Open Journal of Web Technologies (OJWT)},
        issn      = {2199-188X},
        year      = {2019},
        volume    = {6},
        number    = {1},
        pages     = {1--15},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018122318342028340425},
        urn       = {urn:nbn:de:101:1-2018122318342028340425},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Linux has suffered sluggish home user uptake due mainly to the dominance of rivals, and has seen numerous incarnations as a gaming platform fall flat. Gaming is a particularly sensitive application given its intensive bandwidth and system response requirements; these applications therefore place specific demands on the Operating System platform on which game play is supported. In this work, the ability of the Linux operating system to support execution of online games is explored through a survey of the state-of-the-art in this area. Given the recent increase in cloud-based online gaming, it can be concluded that the time is ripe for more widespread Linux uptake, especially in the gaming domain. This is particularly true today given the amount of exposure to Information Technology across society in general, and ongoing deployment of Internet of Things environments: Linux's open source, modular and freely customisable design may therefore not be as daunting as before, and the unique benefits of this platform may be exploited for the experiences it can bring to applications in general and, specific to the context of this work, players in their game play. This paper makes a unique contribution to the field: Although a number of articles are available within the general area of Linux and gameplay, a thorough survey on this issue has not been seen so far. This is therefore the gap to which this paper contributes.}
    }
0 citations in 2020

 Open Access 

The Design of a Gamification Algorithm in a Music Practice Application

Steven Frazier-Roberts, Cathryn Peoples

Open Journal of Web Technologies (OJWT), 6(1), Pages 16-30, 2019, Downloads: 6884

Full-Text: pdf | URN: urn:nbn:de:101:1-2018122318343712132047 | GNL-LP: 1174122811 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Keeping track of pupils' progress across different instruments and lessons, and what they are meant to be practicing, can be challenging. The typical solution is to use a book in which teachers write notes and pupils record practice. This can, however, easily be lost or become illegible. Furthermore, music education and self-directed practice is one area of education which is not widely gamified, with gamification describing a technique that drives specific human behaviors, motivates users, and has proven success in influencing learning. An application could therefore be created to respond to these needs by recording and tracking music practice whilst also gamifying student learning. An algorithm which accommodates these requirements is presented in this paper.

BibTex:

    @Article{OJWT_2019v6i1n02_Roberts,
        title     = {The Design of a Gamification Algorithm in a Music Practice Application},
        author    = {Steven Frazier-Roberts and
                     Cathryn Peoples},
        journal   = {Open Journal of Web Technologies (OJWT)},
        issn      = {2199-188X},
        year      = {2019},
        volume    = {6},
        number    = {1},
        pages     = {16--30},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2018122318343712132047},
        urn       = {urn:nbn:de:101:1-2018122318343712132047},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Keeping track of pupils' progress across different instruments and lessons, and what they are meant to be practicing, can be challenging. The typical solution is to use a book in which teachers write notes and pupils record practice. This can, however, easily be lost or become illegible. Furthermore, music education and self-directed practice is one area of education which is not widely gamified, with gamification describing a technique that drives specific human behaviors, motivates users, and has proven success in influencing learning. An application could therefore be created to respond to these needs by recording and tracking music practice whilst also gamifying student learning. An algorithm which accommodates these requirements is presented in this paper.}
    }
0 citations in 2020

 Open Access 

Compile-Time Query Optimization for Big Data Analytics

Leonidas Fegaras

Open Journal of Big Data (OJBD), 5(1), Pages 35-61, 2019, Downloads: 6127, Citations: 4

Full-Text: pdf | URN: urn:nbn:de:101:1-2019041419330955160405 | GNL-LP: 1183558627 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Many emerging programming environments for large-scale data analysis, such as Map-Reduce, Spark, and Flink, provide Scala-based APIs that consist of powerful higher-order operations that ease the development of complex data analysis applications. However, despite the simplicity of these APIs, many programmers prefer to use declarative languages, such as Hive and Spark SQL, to code their distributed applications. Unfortunately, most current data analysis query languages are based on the relational model and cannot effectively capture the rich data types and computations required for complex data analysis applications. Furthermore, these query languages are not well-integrated with the host programming language, as they are based on an incompatible data model. To address these shortcomings, we introduce a new query language for data-intensive scalable computing that is deeply embedded in Scala, called DIQL, and a query optimization framework that optimizes and translates DIQL queries to byte code at compile-time. In contrast to other query languages, our query embedding eliminates impedance mismatch as any Scala code can be seamlessly mixed with SQL-like syntax, without having to add any special declaration. DIQL supports nested collections and hierarchical data and allows query nesting at any place in a query. With DIQL, programmers can express complex data analysis tasks, such as PageRank and matrix factorization, using SQL-like syntax exclusively. The DIQL query optimizer uses algebraic transformations to derive all possible joins in a query, including those hidden across deeply nested queries, thus unnesting nested queries of any form and any number of nesting levels. The optimizer also uses general transformations to push down predicates before joins and to prune unneeded data across operations. DIQL has been implemented on three Big Data platforms, Apache Spark, Apache Flink, and Twitter's Cascading/Scalding, and has been shown to have competitive performance relative to Spark DataFrames and Spark SQL for some complex queries. This paper extends our previous work on embedded data-intensive query languages by describing the complete details of the formal framework and the query translation and optimization processes, and by providing more experimental results that give further evidence of the performance of our system.

BibTex:

    @Article{OJBD_2019v5i1n02_Fegaras,
        title     = {Compile-Time Query Optimization for Big Data Analytics},
        author    = {Leonidas Fegaras},
        journal   = {Open Journal of Big Data (OJBD)},
        issn      = {2365-029X},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {35--61},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019041419330955160405},
        urn       = {urn:nbn:de:101:1-2019041419330955160405},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Many emerging programming environments for large-scale data analysis, such as Map-Reduce, Spark, and Flink, provide Scala-based APIs that consist of powerful higher-order operations that ease the development of complex data analysis applications. However, despite the simplicity of these APIs, many programmers prefer to use declarative languages, such as Hive and Spark SQL, to code their distributed applications. Unfortunately, most current data analysis query languages are based on the relational model and cannot effectively capture the rich data types and computations required for complex data analysis applications. Furthermore, these query languages are not well-integrated with the host programming language, as they are based on an incompatible data model. To address these shortcomings, we introduce a new query language for data-intensive scalable computing that is deeply embedded in Scala, called DIQL, and a query optimization framework that optimizes and translates DIQL queries to byte code at compile-time. In contrast to other query languages, our query embedding eliminates impedance mismatch as any Scala code can be seamlessly mixed with SQL-like syntax, without having to add any special  declaration. DIQL supports nested collections and hierarchical data and allows query nesting at any place in a query. With DIQL, programmers can express complex data analysis tasks, such as PageRank and matrix factorization, using SQL-like syntax exclusively. The DIQL query optimizer uses algebraic transformations to derive all possible joins in a query, including those hidden across deeply nested queries, thus unnesting nested queries of any form and any number of nesting levels. The optimizer also uses general transformations to push down predicates before joins and to prune unneeded data across operations. DIQL has been implemented on three Big Data platforms, Apache Spark, Apache Flink, and Twitter's Cascading/Scalding, and has been shown to have competitive performance relative to Spark DataFrames and Spark SQL for some complex queries. This paper extends our previous work on embedded data-intensive query languages by describing the complete details of the formal framework and the query translation and optimization processes, and by providing more experimental results that give further evidence of the performance of our system.}
    }
2 citations in 2020:

Scalable Querying of Nested Data

Jaclyn Smith, Michael Benedikt, Milos Nikolic, Amir Shaikhha

CoRR, abs/2011.06381, 2020.

Modeling Big Data Processing Programs

Joo Batista de Souza Neto, Anamaria Martins Moreira, Genoveva Vargas-Solar, Martin A. Musicante

In 23rd Brazilian Symposium on Formal Methods: Foundations and Applications (SBMF), Ouro Preto, Brazil, Pages 101-118, 2020.

 Open Access 

Towards an Inclusive Definition and Framework Development for M-Learning

Taurayi Rupere, August Chikomo

Open Journal of Web Technologies (OJWT), 6(1), Pages 31-43, 2019, Downloads: 2719

Full-Text: pdf | URN: urn:nbn:de:101:1-2019051219330848798511 | GNL-LP: 118596780X | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Mobile learning has changed the course of learning in higher and tertiary education. However, there are still mixed views on the inclusive definition and best usable frameworks for implementing mobile learning in formal education system. Hence, the question, which has been posed but not been explicitly answered by researchers, is: What is the correct view of mobile learning? This question has left so many researchers mystified but the answer lies in the way in which mobile learning is defined. How then should mobile learning be defined? This article serves to propose an inclusive definition that can be used to guide the development of mobile learning systems in formal education. In addition to the guide, this paper proposes a framework for usage and implementing multimedia mobile e-learning.

BibTex:

    @Article{OJWT_2019v6i1n03_Rupere,
        title     = {Towards an Inclusive Definition and Framework Development for M-Learning},
        author    = {Taurayi Rupere and
                     August Chikomo},
        journal   = {Open Journal of Web Technologies (OJWT)},
        issn      = {2199-188X},
        year      = {2019},
        volume    = {6},
        number    = {1},
        pages     = {31--43},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019051219330848798511},
        urn       = {urn:nbn:de:101:1-2019051219330848798511},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Mobile learning has changed the course of learning in higher and tertiary education. However, there are still mixed views on the inclusive definition and best usable frameworks for implementing mobile learning in formal education system. Hence, the question, which has been posed but not been explicitly answered by researchers, is: What is the correct view of mobile learning? This question has left so many researchers mystified but the answer lies in the way in which mobile learning is defined. How then should mobile learning be defined? This article serves to propose an inclusive definition that can be used to guide the development of mobile learning systems in formal education. In addition to the guide, this paper proposes a framework for usage and implementing multimedia mobile e-learning.}
    }
0 citations in 2020

 Open Access 

Energy Savings in Very Large Cloud-IoT Systems

Yi Xu, Sumi Helal, Choonhwa Lee, Ahmed Khaled

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 6-28, 2019, Downloads: 2782, Citations: 1

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919332044579216 | GNL-LP: 1195986165 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Opposite to the original cloudlet approach in which an edge is utilized to bring the cloud and its benefits closer to the applications, in cloud- and edge-connected IoT systems where the applications are deployed and run in the cloud, we exploit the edge somewhat differently, either by bringing the physical world and its data up closer to the cloud or by caching parts of the applications down closer to the physical world. Aggressive optimizations seeking substantial IoT energy savings are needed to maintain the scalability of large-scale IoT deployments and to stay within cloud cost constraints (avoiding costly elasticity when working with a budget limit). In this paper, we present a novel optimization approach that relies on the simple principle of minimizing all movements: movements of data from the IoT up to the Edge and Cloud, and movements of application fragments from the cloud down to the edge and the IoT itself. Our approach is novel in that it involves and utilizes the dynamic characteristics and variability of both the data and applications simultaneously. Another novelty of our approach is the definition and use of "sentience-efficiency" as a precursor to "energy-efficiency" for achieving truly aggressive savings in energy. We present our bi-directional optimization approach and its implementation in terms of algorithms within an architecture we name the cloud-edge-beneath architecture (CEB). We present a performance evaluation study to measure the impact of our optimization approach on energy saving.

BibTex:

    @Article{OJIOT_2019v5i1n02_YiXu,
        title     = {Energy Savings in Very Large Cloud-IoT Systems},
        author    = {Yi Xu and
                     Sumi Helal and
                     Choonhwa Lee and
                     Ahmed Khaled},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {6--28},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919332044579216},
        urn       = {urn:nbn:de:101:1-2019092919332044579216},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Opposite to the original cloudlet approach in which an edge is utilized to bring the cloud and its benefits closer to the applications, in cloud- and edge-connected IoT systems where the applications are deployed and run in the cloud, we exploit the edge somewhat differently, either by bringing the physical world and its data up closer to the cloud or by caching parts of the applications down closer to the physical world. Aggressive optimizations seeking substantial IoT energy savings are needed to maintain the scalability of large-scale IoT deployments and to stay within cloud cost constraints (avoiding costly elasticity when working with a budget limit). In this paper, we present a novel optimization approach that relies on the simple principle of minimizing all movements: movements of data from the IoT up to the Edge and Cloud, and movements of application fragments from the cloud down to the edge and the IoT itself. Our approach is novel in that it involves and utilizes the dynamic characteristics and variability of both the data and applications simultaneously. Another novelty of our approach is the definition and use of "sentience-efficiency" as a precursor to "energy-efficiency" for achieving truly aggressive savings in energy. We present our bi-directional optimization approach and its implementation in terms of algorithms within an architecture we name the cloud-edge-beneath architecture (CEB). We present a performance evaluation study to measure the impact of our optimization approach on energy saving.}
    }
0 citation in 2020

 Open Access 

Data-Centric Resource Management in Edge-Cloud Systems for the IoT

Igor Leão dos Santos, Flávia C. Delicato, Paulo F. Pires, Marcelo Pitanga Alves, Ana Oliveira, Tiago Salviano Calmon

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 29-46, 2019, Downloads: 2806, Citations: 4

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919334248197873 | GNL-LP: 119598619X | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: A major challenge in emergent scenarios such as the Cloud-assisted Internet of Things is efficiently managing the resources involved in the system while meeting requirements of applications. From the acquisition of physical data to its transformation into valuable services or information, several steps must be performed, involving the various players in such a complex ecosystem. Support for decentralized data processing on IoT devices and other devices near the edge of the network, in combination with the benefits of cloud technologies has been identified as a promising approach to reduce communication overhead, thus reducing delay for time sensitive IoT applications. The interplay of IoT, edge and cloud to achieve the final goal of producing useful information and value-added services to end user gives rise to a management problem that needs to be wisely tackled. The goal of this work is to propose a novel resource management framework for edge-cloud systems that supports heterogeneity of both devices and application requirements. The framework aims to promote the efficient usage of the system resources while leveraging the Edge Computing features, to meet the low latency requirements of emergent IoT applications. The proposed framework encompasses (i) a lightweight and data-centric virtualization model for edge devices, (ii) a set of components responsible for the resource management and the provisioning of services from the virtualized edge-cloud resources.

BibTex:

    @Article{OJIOT_2019v5i1n03_Santos,
        title     = {Data-Centric Resource Management in Edge-Cloud Systems for the IoT},
        author    = {Igor Le\~{A}o dos Santos and
                     Fl\~{A}via C. Delicato and
                     Paulo F. Pires and
                     Marcelo Pitanga Alves and
                     Ana Oliveira and
                     Tiago Salviano Calmon},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {29--46},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919334248197873},
        urn       = {urn:nbn:de:101:1-2019092919334248197873},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {A major challenge in emergent scenarios such as the Cloud-assisted Internet of Things is efficiently managing the resources involved in the system while meeting requirements of applications. From the acquisition of physical data to its transformation into valuable services or information, several steps must be performed, involving the various players in such a complex ecosystem. Support for decentralized data processing on IoT devices and other devices near the edge of the network, in combination with the benefits of cloud technologies has been identified as a promising approach to reduce communication overhead, thus reducing delay for time sensitive IoT applications. The interplay of IoT, edge and cloud to achieve the final goal of producing useful information and value-added services to end user gives rise to a management problem that needs to be wisely tackled. The goal of this work is to propose a novel resource management framework for edge-cloud systems that supports heterogeneity of both devices and application requirements. The framework aims to promote the efficient usage of the system resources while leveraging the Edge Computing features, to meet the low latency requirements of emergent IoT applications. The proposed framework encompasses (i) a lightweight and data-centric virtualization model for edge devices, (ii) a set of components responsible for the resource management and the provisioning of services from the virtualized edge-cloud resources.}
    }
1 citation in 2020:

Alocação de Recursos na Nuvem de Dispositivos

Tiago Xavier, Flávia Delicato, Paulo Pires, Evandro Macedo, Igor Santos, Claudio Amorim

In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, Pages 323-336, 2020.

 Open Access 

Online Replication Strategies for Distributed Data Stores

Niklas Semmler, Georgios Smaragdakis, Anja Feldmann

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 47-57, 2019, Downloads: 3129, Citations: 1

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919335387371884 | GNL-LP: 1195986211 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: The rate at which data is produced at the network edge, e.g., collected from sensors and Internet of Things (IoT) devices, will soon exceed the storage and processing capabilities of a single system and the capacity of the network. Thus, data will need to be collected and preprocessed in distributed data stores - as part of a distributed database - at the network edge. Yet, even in this setup, the transfer of query results will incur prohibitive costs. To further reduce the data transfers, patterns in the workloads must be exploited. Particularly in IoT scenarios, we expect data access to be highly skewed. Most data will be store-only, while a fraction will be popular. Here, the replication of popular, raw data, as opposed to the shipment of partially redundant query results, can reduce the volume of data transfers over the network. In this paper, we design online strategies to decide between replicating data from data stores or forwarding the queries and retrieving their results. Our insight is that by profiling access patterns of the data we can lower the data transfer cost and the corresponding response times. We evaluate the benefit of our strategies using two real-world datasets.

BibTex:

    @Article{OJIOT_2019v5i1n04_Semmler,
        title     = {Online Replication Strategies for Distributed Data Stores},
        author    = {Niklas Semmler and
                     Georgios Smaragdakis and
                     Anja Feldmann},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {47--57},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919335387371884},
        urn       = {urn:nbn:de:101:1-2019092919335387371884},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {The rate at which data is produced at the network edge, e.g., collected from sensors and Internet of Things (IoT) devices, will soon exceed the storage and processing capabilities of a single system and the capacity of the network. Thus, data will need to be collected and preprocessed in distributed data stores - as part of a distributed database - at the network edge. Yet, even in this setup, the transfer of query results will incur prohibitive costs. To further reduce the data transfers, patterns in the workloads must be exploited. Particularly in IoT scenarios, we expect data access to be highly skewed. Most data will be store-only, while a fraction will be popular. Here, the replication of popular, raw data, as opposed to the shipment of partially redundant query results, can reduce the volume of data transfers over the network. In this paper, we design online strategies to decide between replicating data from data stores or forwarding the queries and retrieving their results. Our insight is that by profiling access patterns of the data we can lower the data transfer cost and the corresponding response times. We evaluate the benefit of our strategies using two real-world datasets.}
    }
0 citation in 2020

 Open Access 

Understanding the Performance of Software Defined Wireless Sensor Networks under Denial of Service Attack

Gustavo A. Nunez Segura, Cintia B. Margi, Arsenia Chorti

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 58-68, 2019, Downloads: 3604, Citations: 4

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919340426551900 | GNL-LP: 1195986238 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Wireless sensor networks (WSN) are formed from restricted devices and are known to be vulnerable to denial of service (DoS) security attacks. In parallel, software-defined networking has been identified as a solution for many WSN challenges with respect to flexibility and reuse. Conversely, the SDN control plane centralization may bring about new security threats and vulnerabilities. In this work, we perform a traffic analysis of software-defined WSN (SDWSN) in order to gain understanding of the network's performance when it is under certain types of DoS attacks. In particular, we consider three different DoS scenarios of increasing aggressiveness: (i) false flow requests DoS, (ii) false data flow forwarding DoS, and, (iii) false neighbor information passing DoS. Our simulation results for the latter two types of attack showed significant changes both in the average value and the variance of the delivery rate and the overall overhead. These results demonstrate that it is possible to identify when a SDWSN is under a particular type of DoS, by monitoring the respective quantities.

BibTex:

    @Article{OJIOT_2019v5i1n05_Segura,
        title     = {Understanding the Performance of Software Defined Wireless Sensor Networks under Denial of Service Attack},
        author    = {Gustavo A. Nunez Segura and
                     Cintia B. Margi and
                     Arsenia Chorti},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {58--68},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919340426551900},
        urn       = {urn:nbn:de:101:1-2019092919340426551900},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Wireless sensor networks (WSN) are formed from restricted devices and are known to be vulnerable to denial of service (DoS) security attacks. In parallel, software-defined networking has been identified as a solution for many WSN challenges with respect to flexibility and reuse. Conversely, the SDN control plane centralization may bring about new security threats and vulnerabilities. In this work, we perform a traffic analysis of software-defined WSN (SDWSN) in order to gain understanding of the network's performance when it is under certain types of DoS attacks. In particular, we consider three different DoS scenarios of increasing aggressiveness: (i) false flow requests DoS, (ii) false data flow forwarding DoS, and, (iii) false neighbor information passing DoS. Our simulation results for the latter two types of attack showed significant changes both in the average value and the variance of the delivery rate and the overall overhead. These results demonstrate that it is possible to identify when a SDWSN is under a particular type of DoS, by monitoring the respective quantities.}
    }
3 citations in 2020:

Denial of Service Attacks Detection in Software-Defined Wireless Sensor Networks.

Gustavo A. Nunez Segura, Sotiris Skaperas, Arsenia Chorti, Lefteris Mamatas, Cintia Borges Margi

CoRR, abs/2003.12027, 2020.

Multimetric Online Intrusion Detection in Software-Defined Wireless Sensor Networks

G. A. N. Segura, A. Chorti, C. B. Margi

In IEEE Latin-American Conference on Communications (LATINCOM), Pages 1-6, 2020.

Denial of Service Attacks Detection in Software-Defined Wireless Sensor Networks.

Gustavo A. Nunez Segura, Sotiris Skaperas, Arsenia Chorti, Lefteris Mamatas, Cintia Borges Margi

In 2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020, Dublin, Ireland, June 7-11, 2020, Pages 1-7, 2020.

 Open Access 

IoT Data Imputation with Incremental Multiple Linear Regression

Tao Peng, Sana Sellami, Omar Boucelma

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 69-79, 2019, Downloads: 3635, Citations: 4

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919341561784402 | GNL-LP: 1195986254 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In this paper, we address the problem related to missing data imputation in the IoT domain. More specifically, we propose an Incremental Space-Time-based model (ISTM) for repairing missing values in IoT real-time data streams. ISTM is based on Incremental Multiple Linear Regression, which processes data as follows: Upon data arrival, ISTM updates the model after reading again the intermediary data matrix instead of accessing all historical information. If a missing value is detected, ISTM will provide an estimation for the missing value based on nearly historical data and the observations of neighboring sensors of the default one. Experiments conducted with real traffic data show the performance of ISTM in comparison with known techniques.

BibTex:

    @Article{OJIOT_2019v5i1n06_TaoPeng,
        title     = {IoT Data Imputation with Incremental Multiple Linear Regression},
        author    = {Tao Peng and
                     Sana Sellami and
                     Omar Boucelma},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {69--79},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919341561784402},
        urn       = {urn:nbn:de:101:1-2019092919341561784402},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In this paper, we address the problem related to missing data imputation in the IoT domain. More specifically, we propose an Incremental Space-Time-based model (ISTM) for repairing missing values in IoT real-time data streams. ISTM is based on Incremental Multiple Linear Regression, which processes data as follows: Upon data arrival, ISTM updates the model after reading again the intermediary data matrix instead of accessing all historical information. If a missing value is detected, ISTM will provide an estimation for the missing value based on nearly historical data and the observations of neighboring sensors of the default one. Experiments conducted with real traffic data show the performance of ISTM in comparison with known techniques.}
    }
1 citation in 2020:

Enhanced Reliability of Mobile Robots with Sensor Data Estimation at Edge

Victor Sarker, Prateeti Mukherjee, Tomi Westerlund

In IEEE Global Conference on Artificial Intelligence & Internet of Things (GCAIoT), Dubai, UAE, 2020.

 Open Access 

Towards a Large Scale IoT through Partnership, Incentive, and Services: A Vision, Architecture, and Future Directions

Gowri Sankar Ramachandran, Bhaskar Krishnamachari

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 80-92, 2019, Downloads: 3371, Citations: 6

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919345869785889 | GNL-LP: 1195986327 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Internet of Things applications has been deployed and managed in a small to a medium scale deployments in industries and small segments of cities in the last decade. These real-world deployments not only helped the researchers and application developers to create protocols, standards, and frameworks but also helped them understand the challenges associated with the maintenance and management of IoT deployments in all kinds of operational environments. Despite the technological advancements and the deployment experiences, the technology failed to create a notable momentum towards large scale IoT applications involving thousands of IoT devices. We argue the reasons behind the lack of large scale deployments and the limitations of contemporary IoT deployment model. In addition, we present an approach involving multiple stakeholders as a means to scale IoT applications to hundreds of devices. Besides, we argue that the partnership, incentive mechanisms, privacy, and security frameworks are the critical factors for large scale IoT deployments of the future.

BibTex:

    @Article{OJIOT_2019v5i1n07_Ramachandran,
        title     = {Towards a Large Scale IoT through Partnership, Incentive, and Services: A Vision, Architecture, and Future Directions},
        author    = {Gowri Sankar Ramachandran and
                     Bhaskar Krishnamachari},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {80--92},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919345869785889},
        urn       = {urn:nbn:de:101:1-2019092919345869785889},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Internet of Things applications has been deployed and managed in a small to a medium scale deployments in industries and small segments of cities in the last decade. These real-world deployments not only helped the researchers and application developers to create protocols, standards, and frameworks but also helped them understand the challenges associated with the maintenance and management of IoT deployments in all kinds of operational environments. Despite the technological advancements and the deployment experiences, the technology failed to create a notable momentum towards large scale IoT applications involving thousands of IoT devices. We argue the reasons behind the lack of large scale deployments and the limitations of contemporary IoT deployment model. In addition, we present an approach involving multiple stakeholders as a means to scale IoT applications to hundreds of devices. Besides, we argue that the partnership, incentive mechanisms, privacy, and security frameworks are the critical factors for large scale IoT deployments of the future.}
    }
4 citations in 2020:

Context information sharing for the Internet of Things: A survey

Everton de Matos, Ramão Tiago Tiburski, Carlos Roberto Moratelli, Sergio Johann Filho, Leonardo Albernaz Amaral, Gowri Ramachandran, Bhaskar Krishnamachari, Fabiano Hessel

Computer Networks, 166, 2020.

ParkingJSON: An Open Standard Format for Parking Data in Smart Cities

Gowri Sankar Ramachandran, Jeremy Stout, Joyce J. Edson, Bhaskar Krishnamachari

Open Journal of Internet Of Things (OJIOT), 6(1), Pages 105-118, 2020.

Ontology-Based Context Modeling in Physical Asset Integrity Management

Ali Al-Shdifat, Christos Emmanouilidis, Muhammad Khan, Andrew G. Starr

Frontiers in Computer Science, 2, Pages 46, 2020.

Large-Scale Software-Defined IoT Platform for Provisioning IoT Services on Demand

Chau Thi Minh Nguyen, Doan B. Hoang

International Journal of Smart Sensor Technologies and Applications (IJSSTA), 1(1), Pages 1-23, 2020.

 Open Access 

Distributed Data-Gathering and -Processing in Smart Cities: An Information-Centric Approach

Reza Tourani, Abderrahmen Mtibaa, Satyajayant Misra

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 93-104, 2019, Downloads: 3745, Citations: 2

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919342634548084 | GNL-LP: 1195986262 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: The technological advancements along with the proliferation of smart and connected devices (things) motivated the exploration of the creation of smart cities aimed at improving the quality of life, economic growth, and efficient resource utilization. Some recent initiatives defined a smart city network as the interconnection of the existing independent and heterogeneous networks and the infrastructure. However, considering the heterogeneity of the devices, communication technologies, network protocols, and platforms the interoperability of these networks is a challenge requiring more attention. In this paper, we propose the design of a novel Information-Centric Smart City architecture (iSmart), focusing on the demand of the future applications, such as efficient machineto-machine communication, low latency computation offloading, large data communication requirements, and advanced security. In designing iSmart, we use the Named-Data Networking (NDN) architecture as the underlying communication substrate to promote semantics-based communication and achieve seamless compute/data sharing.

BibTex:

    @Article{OJIOT_2019v5i1n08_Tourani,
        title     = {Distributed Data-Gathering and -Processing in Smart Cities: An Information-Centric Approach},
        author    = {Reza Tourani and
                     Abderrahmen Mtibaa and
                     Satyajayant Misra},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {93--104},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919342634548084},
        urn       = {urn:nbn:de:101:1-2019092919342634548084},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {The technological advancements along with the proliferation of smart and connected devices (things) motivated the exploration of the creation of smart cities aimed at improving the quality of life, economic growth, and efficient resource utilization. Some recent initiatives defined a smart city network as the interconnection of the existing independent and heterogeneous networks and the infrastructure. However, considering the heterogeneity of the devices, communication technologies, network protocols, and platforms the interoperability of these networks is a challenge requiring more attention. In this paper, we propose the design of a novel Information-Centric Smart City architecture (iSmart), focusing on the demand of the future applications, such as efficient machineto-machine communication, low latency computation offloading, large data communication requirements, and advanced security. In designing iSmart, we use the Named-Data Networking (NDN) architecture as the underlying communication substrate to promote semantics-based communication and achieve seamless compute/data sharing.}
    }
1 citation in 2020:

Democratizing the Edge: A Pervasive Edge Computing Framework.

Reza Tourani, Srikathyayani Srikanteswara, Satyajayant Misra, Richard Chow, Lily L. Yang, Xiruo Liu, Yi Zhang

CoRR, abs/2007.00641, 2020.

 Open Access 

Leveraging Application Development for the Internet of Mobile Things

Felipe Carvalho, Markus Endler, Francisco Silva e Silva

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 105-116, 2019, Downloads: 3435, Citations: 3

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919343755312186 | GNL-LP: 1195986289 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: So far, most of research and development for the Internet of Things has been focused at systems where the smart objects, WPAN beacons, sensors, and actuators are mainly stationary and associated with a fixed location (such as appliances in a home or office, an energy meter for a building), and are not capable of handling unrestricted/arbitrary forms of mobility. However, our current lifestyle and economy are increasingly mobile, as people, vehicles, and goods move independently in public and private areas (e.g., automated logistics, retail). Therefore, we are witnessing an increasing need to support Machine to Machine (M2M) communication, data collection, and processing and actuation control for mobile smart things, establishing what is called the Internet of Mobile Things (IoMT). Examples of mobile smart things that fit in the definition of IoMT include Unmanned Aerial Vehicles (UAVs), all sorts of human-crewed vehicles (e.g., cars, buses), and even people with wearable devices such as smart watches or fitness and health monitoring devices. Among these mobile IoT applications, there are several that only require occasional data probes from a mobile sensor, or need to control a smart device only in some specific conditions, or context, such as only when any user is in the ambient. While IoT systems still lack some general programming concepts and abstractions, this is even more so for IoMT. This paper discusses the definition and implementation of suitable programming concepts for mobile smart things - given several examples and scenarios of mobility-specific sensoring and actuation control, both regarding smart things individually, or in terms of collective smart things behaviors. We then show a proposal of programming constructs and language, and show how we will implement an IoMT application programming model, namely OBSACT, on the top of our current middleware ContextNet.

BibTex:

    @Article{OJIOT_2019v5i1n09_Carvalho,
        title     = {Leveraging Application Development for the Internet of Mobile Things},
        author    = {Felipe Carvalho and
                     Markus Endler and
                     Francisco Silva e Silva},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {105--116},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919343755312186},
        urn       = {urn:nbn:de:101:1-2019092919343755312186},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {So far, most of research and development for the Internet of Things has been focused at systems where the smart objects, WPAN beacons, sensors, and actuators are mainly stationary and associated with a fixed location (such as appliances in a home or office, an energy meter for a building), and are not capable of handling unrestricted/arbitrary forms of mobility. However, our current lifestyle and economy are increasingly mobile, as people, vehicles, and goods move independently in public and private areas (e.g., automated logistics, retail). Therefore, we are witnessing an increasing need to support Machine to Machine (M2M) communication, data collection, and processing and actuation control for mobile smart things, establishing what is called the Internet of Mobile Things (IoMT). Examples of mobile smart things that fit in the definition of IoMT include Unmanned Aerial Vehicles (UAVs), all sorts of human-crewed vehicles (e.g., cars, buses), and even people with wearable devices such as smart watches or fitness and health monitoring devices. Among these mobile IoT applications, there are several that only require occasional data probes from a mobile sensor, or need to control a smart device only in some specific conditions, or context, such as only when any user is in the ambient. While IoT systems still lack some general programming concepts and abstractions, this is even more so for IoMT. This paper discusses the definition and implementation of suitable programming concepts for mobile smart things - given several examples and scenarios of mobility-specific sensoring and actuation control, both regarding smart things individually, or in terms of collective smart things behaviors. We then show a proposal of programming constructs and language, and show how we will implement an IoMT application programming model, namely OBSACT, on the top of our current middleware ContextNet.}
    }
0 citation in 2020

 Open Access 

Integrating a Smart City Testbed into a Large-Scale Heterogeneous Federation of Future Internet Experimentation Facilities: the SmartSantander Approach

Pablo Sotres, Jorge Lanza, Juan Ramón Santana, Luis Sánchez

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 117-132, 2019, Downloads: 4097, Citations: 2

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919344775371207 | GNL-LP: 1195986300 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: For some years already, there has been a plethora of research initiatives throughout the world that have deployed diverse experimentation facilities for Future Internet technologies research and development. While access to these testbeds has been sometimes restricted to the specific research community supporting them, opening them to different communities can not only help those infrastructures to achieve a wider impact, but also to better identify new possibilities based on novel considerations brought by those external users. On top of the individual testbeds, supporting experiments that employs several of them in a combined and seamless fashion has been one of the main objectives of different transcontinental research initiatives, such as FIRE in Europe or GENI in United States. In particular, Fed4FIRE project and its continuation, Fed4FIRE+, have emerged as "best-in-town" projects to federate heterogeneous experimentation platforms. This paper presents the most relevant aspects of the integration of a large scale testbed on the IoT domain within the Fed4FIRE+ federation. It revolves around the adaptation carried out on the SmartSantander smart city testbed. Additionally, the paper offers an overview of the different federation models that Fed4FIRE+ proposes to testbed owners in order to provide a complete view of the involved technologies. The paper is also presenting a survey of how several specific research platforms from different experimentation domains have fulfilled the federation task following Fed4FIRE+ concepts.

BibTex:

    @Article{OJIOT_2019v5i1n10_Sotres,
        title     = {Integrating a Smart City Testbed into a Large-Scale Heterogeneous Federation of Future Internet Experimentation Facilities: the SmartSantander Approach},
        author    = {Pablo Sotres and
                     Jorge Lanza and
                     Juan Ram\~{A}n Santana and
                     Luis S\~{A}nchez},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {117--132},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919344775371207},
        urn       = {urn:nbn:de:101:1-2019092919344775371207},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {For some years already, there has been a plethora of research initiatives throughout the world that have deployed diverse experimentation facilities for Future Internet technologies research and development. While access to these testbeds has been sometimes restricted to the specific research community supporting them, opening them to different communities can not only help those infrastructures to achieve a wider impact, but also to better identify new possibilities based on novel considerations brought by those external users. On top of the individual testbeds, supporting experiments that employs several of them in a combined and seamless fashion has been one of the main objectives of different transcontinental research initiatives, such as FIRE in Europe or GENI in United States. In particular, Fed4FIRE project and its continuation, Fed4FIRE+, have emerged as "best-in-town" projects to federate heterogeneous experimentation platforms. This paper presents the most relevant aspects of the integration of a large scale testbed on the IoT domain within the Fed4FIRE+ federation. It revolves around the adaptation carried out on the SmartSantander smart city testbed. Additionally, the paper offers an overview of the different federation models that Fed4FIRE+ proposes to testbed owners in order to provide a complete view of the involved technologies. The paper is also presenting a survey of how several specific research platforms from different experimentation domains have fulfilled the federation task following Fed4FIRE+ concepts.}
    }
0 citation in 2020

 Open Access 

Experimentation and Analysis of Ensemble Deep Learning in IoT Applications

Taylor Mauldin, Anne H. Ngu, Vangelis Metsis, Marc E. Canby, Jelena Tesic

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 133-149, 2019, Downloads: 4248, Citations: 8

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919352344146661 | GNL-LP: 119598636X | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: This paper presents an experimental study of Ensemble Deep Learning (DL) techniques for the analysis of time series data on IoT devices. We have shown in our earlier work that DL demonstrates superior performance compared to traditional machine learning techniques on fall detection applications due to the fact that important features in time series data can be learned and need not be determined manually by the domain expert. However, DL networks generally require large datasets for training. In the health care domain, such as the real-time smartwatch-based fall detection, there are no publicly available large annotated datasets that can be used for training, due to the nature of the problem (i.e. a fall is not a common event). Moreover, fall data is also inherently noisy since motions generated by the wrist-worn smartwatch can be mistaken for a fall. This paper explores combing DL (Recurrent Neural Network) with ensemble techniques (Stacking and AdaBoosting) using a fall detection application as a case study. We conducted a series of experiments using two different datasets of simulated falls for training various ensemble models. Our results show that an ensemble of deep learning models combined by the stacking ensemble technique, outperforms a single deep learning model trained on the same data samples, and thus, may be better suited for small-size datasets.

BibTex:

    @Article{OJIOT_2019v5i1n11_Mauldin,
        title     = {Experimentation and Analysis of Ensemble Deep Learning in IoT Applications},
        author    = {Taylor Mauldin and
                     Anne H. Ngu and
                     Vangelis Metsis and
                     Marc E. Canby and
                     Jelena Tesic},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {133--149},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919352344146661},
        urn       = {urn:nbn:de:101:1-2019092919352344146661},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {This paper presents an experimental study of Ensemble Deep Learning (DL) techniques for the analysis of time series data on IoT devices. We have shown in our earlier work that DL demonstrates superior performance compared to traditional machine learning techniques on fall detection applications due to the fact that important features in time series data can be learned and need not be determined manually by the domain expert. However, DL networks generally require large datasets for training. In the health care domain, such as the real-time smartwatch-based fall detection, there are no publicly available large annotated datasets that can be used for training, due to the nature of the problem (i.e. a fall is not a common event). Moreover, fall data is also inherently noisy since motions generated by the wrist-worn smartwatch can be mistaken for a fall. This paper explores combing DL (Recurrent Neural Network) with ensemble techniques (Stacking and AdaBoosting) using a fall detection application as a case study. We conducted a series of experiments using two different datasets of simulated falls for training various ensemble models. Our results show that an ensemble of deep learning models combined by the stacking ensemble technique, outperforms a single deep learning model trained on the same data samples, and thus, may be better suited for small-size datasets.}
    }
4 citations in 2020:

A Study about the Different Categories of IoT in Scientific Publications

Sebastian Fischer, Katrin Neubauer, Rudolf Hackenberg

In The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING), Nice, France, 2020.

Personalized Fall Detection System.

Anne H. H. Ngu, Vangelis Metsis, Shaun Coyne, Brian Chung, Rachel Pai, Joshua Chang

In IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 2020.

Deep Learning Based Fall Detection Algorithms for Embedded Systems, Smartwatches, and IoT Devices Using Accelerometers

Dimitri Kraft, Karthik Srinivasan, Gerald Bieber

Technologies, 8(4), 2020.

Wrist-worn accelerometer based fall detection for embedded systems and IoT devices using deep learning algorithms

Dimitri Kraft, Karthik Srinivasan, Gerald Bieber

In The 13th PErvasive Technologies Related to Assistive Environments Conference (PETRA), Corfu, Greece, 2020.

 Open Access 

Data Lifetime Estimation in a Multicast-Based CoAP Proxy

Jelena Misic, Vojislav B. Misic, Xiaolin Chang

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 150-162, 2019, Downloads: 3392, Citations: 1

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919351017303648 | GNL-LP: 1195986335 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In this work we consider kernel-based record lifetime estimation in a proactive Internet of Things (IoT) proxy with multicast based cache management. Multicast refreshment requests were based on lifetime expiration for a predefined number of records. To reduce the traffic volume in the IoT domain, we assume that only nodes where the observed physical variable has changed its value will respond to the multicast request. For estimating the data lifetime at the proxy, we use Gaussian kernels, assuming that the intrinsic data lifetime probability distribution was taken from Erlang-k family of sub-exponential distributions. In this setup, we consider that the proxy connects to the IoT domain using an IEEE 802.15.4-compatible wireless network. Results indicate that narrow and symmetrical lifetime probability distributions require more frequent multicasting refreshments compared to wider and asymmetric ones. This increases traffic intensity and energy consumption in IoT domain. We quantify finding with numerical results.

BibTex:

    @Article{OJIOT_2019v5i1n12_Misic,
        title     = {Data Lifetime Estimation in a Multicast-Based CoAP Proxy},
        author    = {Jelena Misic and
                     Vojislav B. Misic and
                     Xiaolin Chang},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {150--162},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919351017303648},
        urn       = {urn:nbn:de:101:1-2019092919351017303648},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In this work we consider kernel-based record lifetime estimation in a proactive Internet of Things (IoT) proxy with multicast based cache management. Multicast refreshment requests were based on lifetime expiration for a predefined number of records. To reduce the traffic volume in the IoT domain, we assume that only nodes where the observed physical variable has changed its value will respond to the multicast request. For estimating the data lifetime at the proxy, we use Gaussian kernels, assuming that the intrinsic data lifetime probability distribution was taken from Erlang-k family of sub-exponential distributions. In this setup, we consider that the proxy connects to the IoT domain using an IEEE 802.15.4-compatible wireless network. Results indicate that narrow and symmetrical lifetime probability distributions require more frequent multicasting refreshments compared to wider and asymmetric ones. This increases traffic intensity and energy consumption in IoT domain. We quantify finding with numerical results.}
    }
0 citation in 2020

 Open Access 

Editorial of the 2019 Workshop on Very Large Internet of Things (VLIoT)

Markus Endler, Sven Groppe

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 1-5, 2019, Downloads: 3438

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919330960165487 | GNL-LP: 1195986149 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: We are proud of presenting the outcome of this third edition of the "Very Large Internet of Things" (VLIoT) workshop, which was held in Los Angeles (USA) in August 2019, in conjunction with the 45th International Conference on Very Large Data Bases (VLDB). Following the success path of the two previous workshop editions - in Munich (2017) and in Rio de Janeiro (2018) - VLIoT 2019 kept its tradition to be a vivid and high-quality technical forum for researchers and practitioners working with Internet of Things to share their experiences, visions and latest findings, most of them regarding the design, implementation, deployment and management of IoT systems at very large and scale. This editorial of the special issue introduces and introduces all papers presented at the workshop.

BibTex:

    @Article{OJIOT_2019v5i1n01e_VLIoT2019,
        title     = {Editorial of the 2019 Workshop on Very Large Internet of Things (VLIoT)},
        author    = {Markus Endler and
                     Sven Groppe},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {1--5},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919330960165487},
        urn       = {urn:nbn:de:101:1-2019092919330960165487},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {We are proud of presenting the outcome of this third edition of the "Very Large Internet of Things" (VLIoT) workshop, which was held in Los Angeles (USA) in August 2019, in conjunction with the 45th International Conference on Very Large Data Bases (VLDB). Following the success path of the two previous workshop editions - in Munich (2017) and in Rio de Janeiro (2018) - VLIoT 2019 kept its tradition to be a vivid and high-quality technical forum for researchers and practitioners working with Internet of Things to share their experiences, visions and latest findings, most of them regarding the design, implementation, deployment and management of IoT systems at very large and scale. This editorial of the special issue introduces and introduces all papers presented at the workshop.}
    }
0 citations in 2020

 Open Access 

Multi-Game Code-Duel for Learning Programming Languages

Sven Groppe, Ian Pösse

Open Journal of Information Systems (OJIS), 6(1), Pages 1-23, 2019, Downloads: 4274

Full-Text: pdf | URN: urn:nbn:de:101:1-2020011918334950197619 | GNL-LP: 1203064705 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Software developers compose computer instructions following the rules defined in programming languages for the purpose of automatic information processing. However, different programming languages have different syntax and semantic rules, and support different programming paradigms and design patterns. Learning a programming language needs many efforts and much practicing in order to master the rules and apply the patterns. Leaning multiple programming languages at the same time, of course, needs more efforts. In this work we develop the concept of multi-game and an e-learning platform called "Multi-Game Platform for Code-Duels" for learning multiple programming languages easily and efficiently. A multi-game is a video game, which consists of several mini-games. Dividing a big game into mini-games reduces the development efforts and implementation complexity. "Builders" is a multi-game developed in our platform consisting of three mini-games. Each mini-game can be solved by implementing a program by learners using different languages. Using our multi-game platform, each mini-game of Builders can be developed easily and played independently of the other mini-games. Finally, a user evaluation over our multi-game platform is performed, where users rate our multi-game approach and platform for learning programming languages very positively.

BibTex:

    @Article{OJIS_2019v6i1n01_Groppe,
        title     = {Multi-Game Code-Duel for Learning Programming Languages},
        author    = {Sven Groppe and
                     Ian P\~{A}sse},
        journal   = {Open Journal of Information Systems (OJIS)},
        issn      = {2198-9281},
        year      = {2019},
        volume    = {6},
        number    = {1},
        pages     = {1--23},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2020011918334950197619},
        urn       = {urn:nbn:de:101:1-2020011918334950197619},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Software developers compose computer instructions following the rules defined in programming languages for the purpose of automatic information processing. However, different programming languages have different syntax and semantic rules, and support different programming paradigms and design patterns. Learning a programming language needs many efforts and much practicing in order to master the rules and apply the patterns. Leaning multiple programming languages at the same time, of course, needs more efforts. In this work we develop the concept of multi-game and an e-learning platform called "Multi-Game Platform for Code-Duels" for learning multiple programming languages easily and efficiently. A multi-game is a video game, which consists of several mini-games. Dividing a big game into mini-games reduces the development efforts and implementation complexity. "Builders" is a multi-game developed in our platform consisting of three mini-games. Each mini-game can be solved by implementing a program by learners using different languages. Using our multi-game platform, each mini-game of Builders can be developed easily and played independently of the other mini-games. Finally, a user evaluation over our multi-game platform is performed, where users rate our multi-game approach and platform for learning programming languages very positively.}
    }
0 citations in 2020

 Open Access 

Code Generation for Big Data Processing in the Web using WebAssembly

Sven Groppe, Niklas Reimer

Open Journal of Cloud Computing (OJCC), 6(1), Pages 1-15, 2019, Downloads: 4488

Full-Text: pdf | URN: urn:nbn:de:101:1-2020011918330924188531 | GNL-LP: 1203064667 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Traditional clusters for cloud computing are quite hard to configure and setup, and the number of cluster nodes is limited by the available hardware in the cluster. We hence envision the concept of a Browser Cloud: One just has to visit with his/her web browser a certain webpage in order to connect his/her computer to the Browser Cloud. In this way the setup of the Browser Cloud is much easier than those of traditional clouds. Furthermore, the Browser Cloud has a much larger number of potential nodes, as any computer running a browser may connect to and be integrated in the Browser Cloud. New challenges arise when setting up a cloud by web browsers: Data is processed within the browser, which requires to use the technologies offered by the browser for this purpose. The typically used JavaScript runtime environment may be too slow, because JavaScript is an interpreted language. Hence we investigate the possibilities for computing the work-intensive part of the query processing inside a virtual machine of the web browser. The technology WebAssemby for virtual machines is recently supported by all major browsers and promises high speedups in comparison with JavaScript. Recent approaches to efficient Big Data processing generate code for the data processing steps of queries. To run the generated code in a WebAssembly virtual machine, an online compiler is needed to generate the WebAssembly bytecode from the generated code. Hence our main contribution is an online compiler to WebAssembly bytecode especially developed to run in the web browser and for Big Data processing based on code generation of the processing steps. In our experiments, the runtimes of Big Data processing using JavaScript is compared with running WebAssembly technologies in the major web browsers.

BibTex:

    @Article{OJCC_2019v6i1n01_Groppe,
        title     = {Code Generation for Big Data Processing in the Web using WebAssembly},
        author    = {Sven Groppe and
                     Niklas Reimer},
        journal   = {Open Journal of Cloud Computing (OJCC)},
        issn      = {2199-1987},
        year      = {2019},
        volume    = {6},
        number    = {1},
        pages     = {1--15},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2020011918330924188531},
        urn       = {urn:nbn:de:101:1-2020011918330924188531},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Traditional clusters for cloud computing are quite hard to configure and setup, and the number of cluster nodes is limited by the available hardware in the cluster. We hence envision the concept of a Browser Cloud: One just has to visit with his/her web browser a certain webpage in order to connect his/her computer to the Browser Cloud. In this way the setup of the Browser Cloud is much easier than those of traditional clouds. Furthermore, the Browser Cloud has a much larger number of potential nodes, as any computer running a browser may connect to and be integrated in the Browser Cloud. New challenges arise when setting up a cloud by web browsers: Data is processed within the browser, which requires to use the technologies offered by the browser for this purpose. The typically used JavaScript runtime environment may be too slow, because JavaScript is an interpreted language. Hence we investigate the possibilities for computing the work-intensive part of the query processing inside a virtual machine of the web browser. The technology WebAssemby for virtual machines is recently supported by all major browsers and promises high speedups in comparison with JavaScript. Recent approaches to efficient Big Data processing generate code for the data processing steps of queries. To run the generated code in a WebAssembly virtual machine, an online compiler is needed to generate the WebAssembly bytecode from the generated code. Hence our main contribution is an online compiler to WebAssembly bytecode especially developed to run in the web browser and for Big Data processing based on code generation of the processing steps. In our experiments, the runtimes of Big Data processing using JavaScript is compared with running WebAssembly technologies in the major web browsers.}
    }
0 citations in 2020