RonPub

Loading...

RonPub Banner

RonPub -- Research Online Publishing

RonPub (Research online Publishing) is an academic publisher of online, open access, peer-reviewed journals.  RonPub aims to provide a platform for researchers, developers, educators, and technical managers to share and exchange their research results worldwide.

RonPub is open access:

RonPub publishes all of its journals under the open access model, defined under BudapestBerlin, and Bethesda open access declarations:

  • All articles published by RonPub is fully open access and online available to readers free of charge.  
  • All open access articles are distributed under  Creative Commons Attribution License,  which permits unrestricted use, distribution and reproduction free of charge in any medium, provided that the original work is properly cited. 
  • Authors retain all copyright to their work.
  • Authors may also publish the publisher's version of their paper on any repository or website. 

RonPub is cost-effective:

To be able to provide open access journals, RonPub defray publishing cost by charging an one-time publication fee for each accepted article. One of RonPub objectives is providing a fast and high-quality but lower-cost publishing service. In order to ensure that the fee is never a barrier to publication, RonPub offers a fee waiver for authors who do not have funds to cover publication fees. We also offer a partial fee waiver for editors and reviewers of RonPub as as reward for their work. See the respective Journal webpage for the concrete publication fee.

RonPub Publication Ethics Statement:

In order to ensure the publishing quality and the reputation of the publisher, it is important that all parties involved in the act of publishing adhere to the standards of the publishing ethical behaviour. To verify the originality of submissions, we use Plagiarism Detection Tools, like Anti-Plagiarism, PaperRater, Viper, to check the content of manuscripts submitted to our journals against previous publications.

RonPub follows the Code of Conduct of the Committee on Publication Ethics (COPE), and deals with the cases of misconduct according to the COPE Flowcharts

Where is RonPub?

RonPub is a registered corporation in Lübeck, Germany. Lübeck is a beautiful harbour city, 60 kilometer away from Hamburg.

OJIOT Cover
Open Journal of Internet of Things (OJIOT)
OJIOT, an open access and peer-reviewed online journal, publishes original and creative research results on the internet of things. OJIOT distributes its articles under the open access model. All articles of OJIOT are fully open access and online available to readers free of charge. There is no restriction on the length of the papers. Accepted manuscripts are published online immediately.
Publisher: RonPub UG (haftungsbeschränkt), Lübeck, Germany
Contact: OJIOT Editorial Office
ISSN: 2364-7108
Call for Papers: txtUTF-8 txtASCII pdf
OJIOT Cover
Open Journal of Internet of Things (OJIOT)
OJIOT, an open access and peer-reviewed online journal, publishes original and creative research results on the internet of things. OJIOT distributes its articles under the open access model. All articles of OJIOT are fully open access and online available to readers free of charge. There is no restriction on the length of the papers. Accepted manuscripts are published online immediately.
Publisher: RonPub UG (haftungsbeschränkt), Lübeck, Germany
Contact: OJIOT Editorial Office
ISSN: 2364-7108
Call for Papers: txtUTF-8 txtASCII pdf

Aims & Scope

The current internet with its applications like web browsing, emails, social networks and online games is human oriented. It is predicted that real objects will have a much bigger impact in the future internet. Any real object will be accessible and manageable via the internet, and real objects will automatically work in cooperation. This new vision is called as the internet of things (IoT). Realizing this vision offers a new dimension of real world services to the user.

OJIOT publishes regular research papers, short communications, reviews and visionary papers in all aspects of the internet of things. There is no restriction on the length of the papers. 

Short communications reports novel research ideas. The work represented should be technically sound and significantly advancing the state of the art. Short communications also include exploratory studies and methodological articles.

Regular research papers are full original findings with adequate experimental research. They make substantial theoretical and empirical contributions to the research field.  Research papers should be written in as concise a style as possible.

Research reviews are insightful and accessible overview of a certain field of research. They conceptualize research issues, synthesize existing findings and advance the understanding of the field. They may also suggest new research issues and directions.

Visionary papers identify new research issues and future research directions, and describe new research visions 

Topics relevant to this journal include, but are NOT limited to:

  • System architectures for IoT, e.g. 
    • things-centric, 
    • data-centric, 
    • event-centric, and
    • service-centric
  • IoT applications, including e.g.
    • smart homes/offices/cities, 
    • waste management, 
    • continuous care, 
    • emergency response, and 
    • intelligent shopping
  • Nano Technology, including e.g.
    • Nano Networks
    • Nano communication
    • Nano applications
    • Nano computing
    • Internet of Nano Tings
  • IoT programming toolkits and frameworks
  • IoT prototypes and evaluation test-beds
  • Privacy and security
  • IoT management and interoperability
  • Management of IoT streams
  • Enabling technologies and standards for the IoT
  • Spatial and temporal reasoning for IoT
  • Sustainability of IoT platforms, e.g. business models for deployment and maintenance
  • Societal challenges and IoT, e.g. urban planning and decision making tools
  • Ownership of data in IoT scenarios

Author Guidelines

Publication Criteria

Publication Criteria provides important information for authors to prepare their manuscripts with a high possibility of being accepted.

Manuscript Preparation

Please prepare your manuscripts using the manuscript template of the journal. It is available for download as word doc docx and latex version zip. The template describes the format and structure of manuscripts and other necessary information for preparing manuscripts. Manuscripts should be written in English. There is no restriction on the length of manuscripts.

Submission

Authors submit their manuscripts following the information on the submit pageAuthors first submit their manuscripts in PDF format. Once a manuscript is accepted, the author then submits the revised manuscript as a PDF file and a word file or latex folder (with all the material necessary to generate the PDF file). The work described in the submitted manuscript must be previously unpublished; it is not under consideration for publication anywhere else. 

Authors are welcome to suggest qualified reviewers for their papers, but this is not mandatory. If the author wants to do so, please provide the name, affiliations and e-mail addresses for all suggested reviewers.

Manuscript Status

After submission of manuscripts, authors will receive an email to confirm receipt of manuscripts. Subsequent enquiries concerning paper progress should be sent to the email address of the journal.

Review Procedure

RonPub is committed to enforcing a rigorous peer-review process. All manuscripts submitted for publication in RonPub journals are strictly and thoroughly peer-reviewed. Our editorial offices will organize the peer-reviewing and collect three review reports per manuscript. The editorial board will make an accept/revision/reject decision based on the reports of reviewers. Authors will be informed with the decision and reviewing results within 6-8 weeks after the manuscript submission. Authors should perform an adequate revision to address the concerns from reviewers. A second round of peer-review will be performed if necessary.

Accepted manuscripts are published online immediately.

Copyrights

Authors publishing with RonPub open journals retain the copyright to their work. 

All articles published by RonPub is fully open access and online available to readers free of charge.  RonPub publishes all open access articles under the Creative Commons Attribution License,  which permits unrestricted use, distribution and reproduction freely, provided that the original work is properly cited.

Articles of OJIOT

Archive
Hide Archive Menu
Search Articles in OJIOT

 Open Access 

A Classification Framework for Beacon Applications

Gottfried Vossen, Stuart Dillon, Fabian Schomm, Florian Stahl

Open Journal of Internet Of Things (OJIOT), 3(1), Pages 1-11, 2017, Downloads: 146

Full-Text: pdf | URN: urn:nbn:de:101:1-201704245012 | GNL-LP: 1130624145 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Beacons have received considerable attention in recent years, which is partially due to the fact that they serve as a flexible and versatile replacement for RFIDs in many applications. However, beacons are mostly considered from a purely technical perspective. This paper provides a conceptual view on application scenarios for beacons and introduces a novel framework for characterizing these. The framework consists of four dimensions: device movement, action trigger, purpose type, and connectivity requirements. Based on these, three archetypical scenarios are described. Finally, event-condition-action rules and online algorithms are used to formalize the backend of a beacon architecture.

BibTex:

    @Article{OJIOT_2017v3i1n01_Vossen,
        title     = {A Classification Framework for Beacon Applications},
        author    = {Gottfried Vossen and
                     Stuart Dillon and
                     Fabian Schomm and
                     Florian Stahl},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2017},
        volume    = {3},
        number    = {1},
        pages     = {1--11},
        url       = {https://www.ronpub.com/OJIOT_2017v3i1n01_Vossen.pdf},
        urn       = {urn:nbn:de:101:1-201704245012},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Beacons have received considerable attention in recent years, which is partially due to the fact that they serve as a flexible and versatile replacement for RFIDs in many applications. However, beacons are mostly considered from a purely technical perspective. This paper provides a conceptual view on application scenarios for beacons and introduces a novel framework for characterizing these. The framework consists of four dimensions: device movement, action trigger, purpose type, and connectivity requirements. Based on these, three archetypical scenarios are described. Finally, event-condition-action rules and online algorithms are used to formalize the backend of a beacon architecture.}
    }

 Open Access 

A 24 GHz FM-CW Radar System for Detecting Closed Multiple Targets and Its Applications in Actual Scenes

Kazuhiro Yamaguchi, Mitumasa Saito, Takuya Akiyama, Tomohiro Kobayashi, Naoki Ginoza, Hideaki Matsue

Open Journal of Internet Of Things (OJIOT), 2(1), Pages 1-15, 2016, Downloads: 1565

Full-Text: pdf | URN: urn:nbn:de:101:1-201704245003 | GNL-LP: 1130623858 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: This paper develops a 24 GHz band FM-CW radar system to detect closed multiple targets in a small displacement environment, and its performance is analyzed by computer simulation. The FM-CW radar system uses a differential detection method for removing any signals from background objects and uses a tunable FIR filtering in signal processing for detecting multiple targets. The differential detection method enables the correct detection of both the distance and small displacement at the same time for each target at the FM-CW radar according to the received signals. The basic performance of the FM-CW radar system is analyzed by computer simulation, and the distance and small displacement of a single target are measured in field experiments. The computer simulations are carried out for evaluating the proposed detection method with tunable FIR filtering for the FM-CW radar and for analyzing the performance according to the parameters in a closed multiple targets environment. The results of simulation show that our 24 GHz band FM-CW radar with the proposed detection method can effectively detect both the distance and the small displacement for each target in multiple moving targets environments. Moreover, we develop an IoT-based application for monitoring several targets at the same time in actual scenes.

BibTex:

    @Article{OJIOT_2016v2i1n02_Yamaguchi,
        title     = {A 24 GHz FM-CW Radar System for Detecting Closed Multiple Targets and Its Applications in Actual Scenes},
        author    = {Kazuhiro Yamaguchi and
                     Mitumasa Saito and
                     Takuya Akiyama and
                     Tomohiro Kobayashi and
                     Naoki Ginoza and
                     Hideaki Matsue},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2016},
        volume    = {2},
        number    = {1},
        pages     = {1--15},
        url       = {https://www.ronpub.com/OJIOT_2016v2i1n02_Yamaguchi.pdf},
        urn       = {urn:nbn:de:101:1-201704245003},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {This paper develops a 24 GHz band FM-CW radar system to detect closed multiple targets in a small displacement environment, and its performance is analyzed by computer simulation. The FM-CW radar system uses a differential detection method for removing any signals from background objects and uses a tunable FIR filtering in signal processing for detecting multiple targets. The differential detection method enables the correct detection of both the distance and small displacement at the same time for each target at the FM-CW radar according to the received signals. The basic performance of the FM-CW radar system is analyzed by computer simulation, and the distance and small displacement of a single target are measured in field experiments. The computer simulations are carried out for evaluating the proposed detection method with tunable FIR filtering for the FM-CW radar and for analyzing the performance according to the parameters in a closed multiple targets environment. The results of simulation show that our 24 GHz band FM-CW radar with the proposed detection method can effectively detect both the distance and the small displacement for each target in multiple moving targets environments. Moreover, we develop an IoT-based application for monitoring several targets at the same time in actual scenes.}
    }

 Open Access 

Controlled Components for Internet of Things As-A-Service

Tatiana Aubonnet, Amina Boubendir, Frédéric Lemoine, Nöemie Simoni

Open Journal of Internet Of Things (OJIOT), 2(1), Pages 16-33, 2016, Downloads: 918

Full-Text: pdf | URN: urn:nbn:de:101:1-201704244995 | GNL-LP: 1130623629 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In order to facilitate developers willing to create future Internet of Things (IoT) services incorporating the nonfunctional aspects, we introduce an approach and an environment based on controlled components. Our approach allows developers to design an IoT "as-a-service", to build the service composition and to manage it. This is important, because the IoT allows us to observe and understand the real world in order to have decision-making information to act on reality. It is important to make sure that all these components work according to their mission, i.e. their Quality of Service (QoS) contract. Our environment provides the modeling, generates Architecture Description Language (ADL) formats, and uses them in the implementation phase on an open-source platform.

BibTex:

    @Article{OJIOT-2016v2i1n02_Aubonnet,
        title     = {Controlled Components for Internet of Things As-A-Service},
        author    = {Tatiana Aubonnet and
                     Amina Boubendir and
                     Fr\'{e}d\'{e}ric Lemoine and
                     N{\"o}emie Simoni},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2016},
        volume    = {2},
        number    = {1},
        pages     = {16--33},
        url       = {https://www.ronpub.com/OJIOT-2016v2i1n02_Aubonnet.pdf},
        urn       = {urn:nbn:de:101:1-201704244995},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In order to facilitate developers willing to create future Internet of Things (IoT) services incorporating the nonfunctional aspects, we introduce an approach and an environment based on controlled components. Our approach allows developers to design an IoT "as-a-service", to build the service composition and to manage it. This is important, because the IoT allows us to observe and understand the real world in order to have decision-making information to act on reality. It is important to make sure that all these components work according to their mission, i.e. their Quality of Service (QoS) contract. Our environment provides the modeling, generates Architecture Description Language (ADL) formats, and uses them in the implementation phase on an open-source platform.}
    }

 Open Access 

Evidential Sensor Data Fusion in a Smart City Environment

Aditya Gaur, Bryan W. Scotney, Gerard P. Parr, Sally I. McClean

Open Journal of Internet Of Things (OJIOT), 1(2), Pages 1-18, 2015, Downloads: 2275

Full-Text: pdf | URN: urn:nbn:de:101:1-201704244969 | GNL-LP: 113062319X | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Wireless sensor networks have increasingly become contributors of very large amounts of data. The recent deployment of wireless sensor networks in Smart City infrastructures have led to very large amounts of data being generated each day across a variety of domains, with applications including environmental monitoring, healthcare monitoring and transport monitoring. The information generated through the wireless sensor nodes has made possible the visualization of a Smart City environment for better living. The Smart City offers intelligent infrastructure and cogitative environment for the elderly and other people living in the Smart society. Different types of sensors are present that help in monitoring inhabitants' behaviour and their interaction with real world objects. To take advantage of the increasing amounts of data, there is a need for new methods and techniques for effective data management and analysis, to generate information that can assist in managing the resources intelligently and dynamically. Through this research a Smart City ontology model is proposed, which addresses the fusion process related to uncertain sensor data using semantic web technologies and Dempster-Shafer uncertainty theory. Based on the information handling methods, such as Dempster-Shafer theory (DST), an equally weighted sum operator and maximization operation, a higher level of contextual information is inferred from the low-level sensor data fusion process. In addition, the proposed ontology model helps in learning new rules that can be used in defining new knowledge in the Smart City system.

BibTex:

    @Article{OJIOT_2015v1i2n02_Gaur,
        title     = {Evidential Sensor Data Fusion in a Smart City Environment},
        author    = {Aditya Gaur and
                     Bryan W. Scotney and
                     Gerard P. Parr and
                     Sally I. McClean},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2015},
        volume    = {1},
        number    = {2},
        pages     = {1--18},
        url       = {https://www.ronpub.com/OJIOT_2015v1i2n02_Gaur.pdf},
        urn       = {urn:nbn:de:101:1-201704244969},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Wireless sensor networks have increasingly become contributors of very large amounts of data. The recent deployment of wireless sensor networks in Smart City infrastructures have led to very large amounts of data being generated each day across a variety of domains, with applications including environmental monitoring, healthcare monitoring and transport monitoring. The information generated through the wireless sensor nodes has made possible the visualization of a Smart City environment for better living. The Smart City offers intelligent infrastructure and cogitative environment for the elderly and other people living in the Smart society. Different types of sensors are present that help in monitoring inhabitants' behaviour and their interaction with real world objects. To take advantage of the increasing amounts of data, there is a need for new methods and techniques for effective data management and analysis, to generate information that can assist in managing the resources intelligently and dynamically. Through this research a Smart City ontology model is proposed, which addresses the fusion process related to uncertain sensor data using semantic web technologies and Dempster-Shafer uncertainty theory. Based on the information handling methods, such as Dempster-Shafer theory (DST), an equally weighted sum operator and maximization operation, a higher level of contextual information is inferred from the low-level sensor data fusion process. In addition, the proposed ontology model helps in learning new rules that can be used in defining new knowledge in the Smart City system.}
    }

 Open Access 

Accurate Distance Estimation between Things: A Self-correcting Approach

Ho-sik Cho, Jianxun Ji, Zili Chen, Hyuncheol Park, Wonsuk Lee

Open Journal of Internet Of Things (OJIOT), 1(2), Pages 19-27, 2015, Downloads: 4103

Full-Text: pdf | URN: urn:nbn:de:101:1-201704244959 | GNL-LP: 1130622525 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: This paper suggests a method to measure the physical distance between an IoT device (a Thing) and a mobile device (also a Thing) using BLE (Bluetooth Low-Energy profile) interfaces with smaller distance errors. BLE is a well-known technology for the low-power connectivity and suitable for IoT devices as well as for the proximity with the range of several meters. Apple has already adopted the technique and enhanced it to provide subdivided proximity range levels. However, as it is also a variation of RSS-based distance estimation, Apple's iBeacon could only provide immediate, near or far status but not a real and accurate distance. To provide more accurate distance using BLE, this paper introduces additional self-correcting beacon to calibrate the reference distance and mitigate errors from environmental factors. By adopting self-correcting beacon for measuring the distance, the average distance error shows less than 10% within the range of 1.5 meters. Some considerations are presented to extend the range to be able to get more accurate distances.

BibTex:

    @Article{OJIOT_2015v1i2n03_Cho,
        title     = {Accurate Distance Estimation between Things: A Self-correcting Approach},
        author    = {Ho-sik Cho and
                     Jianxun Ji and
                     Zili Chen and
                     Hyuncheol Park and
                     Wonsuk Lee},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2015},
        volume    = {1},
        number    = {2},
        pages     = {19--27},
        url       = {https://www.ronpub.com/OJIOT_2015v1i2n03_Cho.pdf},
        urn       = {urn:nbn:de:101:1-201704244959},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {This paper suggests a method to measure the physical distance between an IoT device (a Thing) and a mobile device (also a Thing) using BLE (Bluetooth Low-Energy profile) interfaces with smaller distance errors. BLE is a well-known technology for the low-power connectivity and suitable for IoT devices as well as for the proximity with the range of several meters. Apple has already adopted the technique and enhanced it to provide subdivided proximity range levels. However, as it is also a variation of RSS-based distance estimation, Apple's iBeacon could only provide immediate, near or far status but not a real and accurate distance. To provide more accurate distance using BLE, this paper introduces additional self-correcting beacon to calibrate the reference distance and mitigate errors from environmental factors. By adopting self-correcting beacon for measuring the distance, the average distance error shows less than 10\% within the range of 1.5 meters. Some considerations are presented to extend the range to be able to get more accurate distances.}
    }

 Open Access 

Modelling the Integrated QoS for Wireless Sensor Networks with Heterogeneous Data Traffic

Syarifah Ezdiani, Adnan Al-Anbuky

Open Journal of Internet Of Things (OJIOT), 1(1), Pages 1-15, 2015, Downloads: 2071

Full-Text: pdf | URN: urn:nbn:de:101:1-201704244946 | GNL-LP: 1130621979 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: The future of Internet of Things (IoT) is envisaged to consist of a high amount of wireless resource-constrained devices connected to the Internet. Moreover, a lot of novel real-world services offered by IoT devices are realized by wireless sensor networks (WSNs). Integrating WSN to the Internet has therefore brought forward the requirements of an end-to-end quality of service (QoS) guarantee. In this paper, the QoS requirements for the WSN-Internet integration are investigated by first distinguishing the Internet QoS from the WSN QoS. Next, this study emphasizes on WSN applications that involve traffic with different levels of importance, thus the way realtime traffic and delay-tolerant traffic are handled to guarantee QoS in the network is studied. Additionally, an overview of the integration strategies is given, and the delay-tolerant network (DTN) gateway, being one of the desirable approaches for integrating WSNs to the Internet, is discussed. Next, the implementation of the service model is presented, by considering both traffic prioritization and service differentiation. Based on the simulation results in OPNET Modeler, it is observed that real-time traffic achieve low bound delay while delay-tolerant traffic experience a lower packet dropped, hence indicating that the needs of real-time and delay-tolerant traffic can be better met by treating both packet types differently. Furthermore, a vehicular network is used as an example case to describe the applicability of the framework in a real IoT application environment, followed by a discussion on the future work of this research.

BibTex:

    @Article{OJIOT_2015v1i1n02_Syarifah,
        title     = {Modelling the Integrated QoS for Wireless Sensor Networks with Heterogeneous Data Traffic},
        author    = {Syarifah Ezdiani and
                     Adnan Al-Anbuky},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2015},
        volume    = {1},
        number    = {1},
        pages     = {1--15},
        url       = {https://www.ronpub.com/OJIOT_2015v1i1n02_Syarifah.pdf},
        urn       = {urn:nbn:de:101:1-201704244946},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {The future of Internet of Things (IoT) is envisaged to consist of a high amount of wireless resource-constrained devices connected to the Internet. Moreover, a lot of novel real-world services offered by IoT devices are realized by wireless sensor networks (WSNs). Integrating WSN to the Internet has therefore brought forward the requirements of an end-to-end quality of service (QoS) guarantee. In this paper, the QoS requirements for the WSN-Internet integration are investigated by first distinguishing the Internet QoS from the WSN QoS. Next, this study emphasizes on WSN applications that involve traffic with different levels of importance, thus the way realtime traffic and delay-tolerant traffic are handled to guarantee QoS in the network is studied. Additionally, an overview of the integration strategies is given, and the delay-tolerant network (DTN) gateway, being one of the desirable approaches for integrating WSNs to the Internet, is discussed. Next, the implementation of the service model is presented, by considering both traffic prioritization and service differentiation. Based on the simulation results in OPNET Modeler, it is observed that real-time traffic achieve low bound delay while delay-tolerant traffic experience a lower packet dropped, hence indicating that the needs of real-time and delay-tolerant traffic can be better met by treating both packet types differently. Furthermore, a vehicular network is used as an example case to describe the applicability of the framework in a real IoT application environment, followed by a discussion on the future work of this research.}
    }

 Open Access 

The Potential of Printed Electronics and Personal Fabrication in Driving the Internet of Things

Paulo Rosa, António Câmara, Cristina Gouveia

Open Journal of Internet Of Things (OJIOT), 1(1), Pages 16-36, 2015, Downloads: 3271

Full-Text: pdf | URN: urn:nbn:de:101:1-201704244933 | GNL-LP: 1130621448 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In the early nineties, Mark Weiser, a chief scientist at the Xerox Palo Alto Research Center (PARC), wrote a series of seminal papers that introduced the concept of Ubiquitous Computing. Within this vision, computers and others digital technologies are integrated seamlessly into everyday objects and activities, hidden from our senses whenever not used or needed. An important facet of this vision is the interconnectivity of the various physical devices, which creates an Internet of Things. With the advent of Printed Electronics, new ways to link the physical and digital worlds became available. Common printing technologies, such as screen, flexography, and inkjet printing, are now starting to be used not only to mass-produce extremely thin, flexible and cost effective electronic circuits, but also to introduce electronic functionality into objects where it was previously unavailable. In turn, the growing accessibility to Personal Fabrication tools is leading to the democratization of the creation of technology by enabling end-users to design and produce their own material goods according to their needs. This paper presents a survey of commonly used technologies and foreseen applications in the field of Printed Electronics and Personal Fabrication, with emphasis on the potential to drive the Internet of Things.

BibTex:

    @Article{OJIOT_2015v1i1n03_Rosa,
        title     = {The Potential of Printed Electronics and Personal Fabrication in Driving the Internet of Things},
        author    = {Paulo Rosa and
                     Ant\'{o}nio C\^{a}mara and
                     Cristina Gouveia},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2015},
        volume    = {1},
        number    = {1},
        pages     = {16--36},
        url       = {https://www.ronpub.com/OJIOT_2015v1i1n03_Rosa.pdf},
        urn       = {urn:nbn:de:101:1-201704244933},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In the early nineties, Mark Weiser, a chief scientist at the Xerox Palo Alto Research Center (PARC), wrote a series of seminal papers that introduced the concept of Ubiquitous Computing. Within this vision, computers and others digital technologies are integrated seamlessly into everyday objects and activities, hidden from our senses whenever not used or needed. An important facet of this vision is the interconnectivity of the various physical devices, which creates an Internet of Things. With the advent of Printed Electronics, new ways to link the physical and digital worlds became available. Common printing technologies, such as screen, flexography, and inkjet printing, are now starting to be used not only to mass-produce extremely thin, flexible and cost effective electronic circuits, but also to introduce electronic functionality into objects where it was previously unavailable. In turn, the growing accessibility to Personal Fabrication tools is leading to the democratization of the creation of technology by enabling end-users to design and produce their own material goods according to their needs. This paper presents a survey of commonly used technologies and foreseen applications in the field of Printed Electronics and Personal Fabrication, with emphasis on the potential to drive the Internet of Things.}
    }

OJIOT Publication Fees

All articles published by RonPub are fully open access and online available to readers free of charge. To be able to provide open access journals, RonPub defrays the costs (induced by processing and editing of manuscripts, provision and maintenance of infrastructure, and routine operation and management of journals) by charging an one-time publication fee for each accepted article. In order to ensure that the fee is never a barrier to publication, RonPub offers a fee waiver for authors from low-income countries. Authors who do not have funds to cover publication fees should submit an application during the submission process. Applications of waiver will be examined on a case by case basis. The scientific committee members of RonPub are entitled a partial waiver of the standard publication fees as reward for their work. 

  • Standard publication fee: 338 Euro.
  • Authors from the low-income countries: 71% waiver of the standard publication fee. (Note: The list is subject to change based on the data of the World Bank Group.):
    Afghanistan, Bangladesh, Benin, Bhutan, Bolivia (Plurinational State of), Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Comoros, Congo (Democratic Republic), Côte d'Ivoire, Djibouti, Eritrea, Ethiopia, Gambia, Ghana, Guinea, Guinea-Bissau, Haiti, Honduras, Kenya, Kiribati, Korea (Democratic People’s Republic), Kosovo, Kyrgyz Republic, Lao (People’s Democratic Republic), Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Micronesia (Federated States of), Moldova, Morocco, Mozambique, Myanmar, Nepal, Nicaragua, Niger, Nigeria, Papua New Guinea, Rwanda, Senegal, Sierra Leone, Solomon Islands, Somalia, South Sudan, Sudan, Swaziland, Syrian Arab Republic, São Tomé and Principe, Tajikistan, Tanzania, Timor-Leste, Togo, Uganda, Uzbekistan, Vietnam, West Bank and Gaza Strip, Yemen (Republic), Zambia, Zimbabwe
  • Scientific committee members: 25% waiver of the standard publication fee.
  • Guest editors and reviewers: 25% waiver of the standard publication fee for one year.

Payments from within the European Union are subject to VAT (19%). European Union customers must supply their VAT Number to be exempt from VAT charge. Customers from within Germany are not exempt from VAT charge.

Editors and reviewers have no access to payment information. The inability to pay will not influence the decision to publish a paper; decisions to publish are only based on the quality of work and the editorial criteria.

OJIOT Indexing

In order for our publications getting widely abstracted, indexed and cited, the following methods are employed:

  • Various meta tags are embedded in each publication webpage, including Google Scholar Tags, Dublic Core, EPrints, BE Press and Prism. This enables crawlers of e.g. Google Scholar to discover and index our publications.
  • Different metadata export formats are provided for each article, including BibTex, XML, RSS and RDF. This makes readers to cite our papers easily.
  • An OAI-PMH interface is implemented, which facilitates our article metadata harvesting by indexing services and databases.

The paper Getting Indexed by Bibliographic Databases in the Area of Computer Science provides a comprehensive survey on indexing formats, techniques and databases. We will also continue our efforts on dissemination and indexing of our publications.

OJIOT has been indexed by the following libraries and bibliographic databases:

Submission to Open Journal of Internet of Things (OJIOT)

Please submit your manuscript by carefully filling in the information in the following web form. If there technical problems, you may also submit your manuscript by sending the information and the manuscript to .

Submission to Regular or Special Issue

Please specify if the paper is submitted to a regular issue or one of the special issues:

Type of Paper

Please specify the type of your paper here. Please check Aims & Scope if you are not sure of which type your paper is.





Title

Please specify the title of your paper here:

Abstract

Please copy & paste the abstract of your paper here:

Authors

Please provide necessary information about the authors of your submission here. Please mark the contact authors, which will be contacted for the main correspondence.

Author 1:


Name:
EMail:
Affiliation:
Webpage (optional):

Author 2:


Name:
EMail:
Affiliation:
Webpage (optional):

Author 3:


Name:
EMail:
Affiliation:
Webpage (optional):

Add Author

Conflicts of Interest

Please specify any conflicts of interests here. Conflicts of interest occur e.g. if the author and the editor are colleagues, work or worked closely together, or are relatives.

Suggestion of Editors (Optional)

You can suggest editors (with scientific background of the topics addressed in your submission) for handling your submission. The Editor-in-Chief may consider your suggestion, but may also choose another editor.

Suggestion of Reviewers (Optional)

You can suggest reviewers (with scientific background of the topics addressed in your submission) for handling your submission. The editor of your submission may consider your suggestion, but may also choose other or additional reviewers in order to guarantee an independent review process.

Reviewer 1:

Name:
EMail:
Affiliation:
Webpage (optional):

Reviewer 2:

Name:
EMail:
Affiliation:
Webpage (optional):

Reviewer 3:

Name:
EMail:
Affiliation:
Webpage (optional):

Add Reviewer

Paper upload

Please choose your manuscript file for uploading. It should be a pdf file. Please take care that your manuscript is formatted according to the templates provided by RonPub, which are available at our Author Guidelines page. Manuscripts not formatted according to our RonPub templates will be rejected without review!

If you wish that the reviewer are not aware of your name, please submit a blinded manuscript leaving out identifiable information like authors' names and affiliations.

Choose PDF file...

Chosen PDF file: none

Captcha

Please fill in the characters of the image into the text field under the image.

Captcha

Submission

Please check all information about your manuscript above. For submission please press the SUBMIT button below:

For Authors

Manuscript Preparation

Authors should first read the author guidelines of the corresponding journal. Manuscripts must be prepared using the manuscript template of the respective journal. It is available as word and latex version for download at the Author Guidelines of the corresponding journal page. The template describes the format and structure of manuscripts and other necessary information for preparing manuscripts. Manuscripts should be written in English. There is no restriction on the length of manuscripts.

Submission

Authors submit their manuscripts via the submit page of the corresponding journal. Authors first submit their manuscripts in PDF format. Once a manuscript is accepted, the author then submits the revised manuscript as PDF file and word file or latex folder (with all the material necessary to generate the PDF file). The work described in the submitted manuscript must be previously unpublished; it is not under consideration for publication anywhere else. 

Authors are welcome to suggest qualified reviewers for their papers, but this is not mandatory. If the author wants to do so, please provide the name, affiliations and e-mail addresses for all suggested reviewers.

Manuscript Status

After submission of manuscripts, authors will receive an email to confirm receipt of manuscripts within a few days. Subsequent enquiries concerning paper progress should be made to the corresponding editorial office (see individual journal webpage for concrete contact information).

Review Procedure

RonPub is committed to enforcing a rigorous peer-review process. All manuscripts submitted for publication in RonPub journals are strictly and thoroughly peer-reviewed. Our editorial offices will organize the peer-reviewing and collect three review reports per manuscript. The editorial board will make an accept/revision/reject decision based on the reports of reviewers. Authors will be informed with the decision and reviewing results within 6-8 weeks after the manuscript submission. Authors should perform an adequate revision to address the concerns from reviewers. A second round of peer-review will be performed if necessary.

Accepted manuscripts are published online immediately.

Copyrights

Authors publishing with RonPub open journals retain the copyright to their work. 

All articles published by RonPub is fully open access and online available to readers free of charge.  RonPub publishes all open access articles under the Creative Commons Attribution License,  which permits unrestricted use, distribution and reproduction freely, provided that the original work is properly cited.

Digital Archiving Policy

To guarantee permanent access to our publications, we will use LOCKSS (Lots of Copies Keep Stuff Save) and CLOCKSS to archive our content. Further measures will be taken if necessary. Furthermore, we also encourage our authors to self-archive their articles published on the website of RonPub.

For Editors

About RonPub

RonPub is academic publisher of online, open access, peer-reviewed journals. All articles published by RonPub is fully open access and online available to readers free of charge.

RonPub is located in Lübeck, Germany. Lübeck is a beautiful harbour city, 60 kilometer away from Hamburg.

Editor-in-Chief Responsibilities

The Editor-in-Chief of each journal is mainly responsible for the scientific quality of the journal and for assisting in the management of the journal. The Editor-in-Chief suggests topics for the journal, invites distinguished scientists to join the editorial board, oversees the editorial process, and makes the final decision whether a paper can be published after peer-review and revisions.

As a reward for the work of a Editor-in-Chief, the Editor-in-Chief will obtain a 25% discount of the standard publication fee for her/his papers (the Editor-in-Chief is one of authors) published in any of RonPub journals.

Editors’ Responsibilities

Editors assist the Editor-in-Chief in the scientific quality and in decision about topics of the journal. Editors are also encouraged to help to promote the journal among their peers and at conferences. An editor invites at least three reviewers to review a manuscript, but may also review him-/herself the manuscript. After carefully evaluating the review reports and the manuscript itself, the editor makes a commendation about the status of the manuscript. The editor's evaluation as well as the review reports are then sent to EiC, who make the final decision whether a paper can be published after peer-review and revisions. 

The communication with Editorial Board members is done primarily by E-mail, and the Editors are expected to respond within a few working days on any question sent by the Editorial Office so that manuscripts can be processed in a timely fashion. If an editor does not respond or cannot process the work in time, and under some special situations, the editorial office may forward the requests to the Publishers or Editor-in-Chief, who will take the decision directly.

As a reward for the work of editors, an editor will obtain a 25% discount of the standard publication fee for her/his papers (the editor is one of authors) published in any of RonPub journals.

Guest Editors’ Responsibilities

Guest Editors are responsible of the scientific quality of their special issues. Guest Editors will be in charge of inviting papers, of supervising the refereeing process (each paper should be reviewed at least by three reviewers), and of making decisions on the acceptance of manuscripts submitted to their special issue. As regular issues, all accepted papers by (guest) editors will be sent to the EiC of the journal, who will check the quality of the papers, and make the final decsion whether a paper can be published.

Our editorial office will have the right directly asking authors to revise their paper if there are quality issues, e.g. weak quality of writing, and missing information. Authors are required to revise their paper several times if necessary. A paper accepted by it's quest editor may be rejected by the EiC of the journal due to a low quality. However, this occurs only when authors do not really take efforts to revise their paper. A high-quality publication needs the common efforts from the journal, reviewers, editors, editor-in-chief and authors.

The Guest Editors are also expected to write an editorial paper for the special issue. As a reward for work, all guest editors and reviewers working on a special issue will obtain a 25% discount of the standard publication fee for any of their papers published in any of RonPub journals for one year.

Reviewers’ Responsiblity

A reviewer is mainly responsible for reviewing of manuscripts, writing reviewing report and suggesting acception or deny of manuscripts. Reviews are encouraged to provide input about the quality and management of the journal, and help promote the journal among their peers and at conferences.  

Upon the quality of reviewing work, a reviewer will have the potential to be promoted to a full editorial board member. 

As a reward for the reviewing work, a reviewer will obtain a 25% discount of the standard publication fee for her/his papers (the review is one of authors) published in any of RonPub journals.

Launching New Journals

RonPub always welcomes suggestions for new open access journals in any research area. We are also open for publishing collaborations with research societies. Please send your proposals for new journals or for publishing collaboration to This email address is being protected from spambots. You need JavaScript enabled to view it. .

Publication Criteria

This part provides important information for both the scientific committees and authors.

Ethic Requirement:

For scientific committees: Each editor and reviewer should conduct the evaluation of manuscripts objectively and fairly.
For authors: Authors should present their work honestly without fabrication, falsification, plagiarism or inappropriate data manipulation.

Before review:

In order to filter fabricated submissions, the editorial office will check the authenticity of the authors and their affiliations before a peer-review begins. It is important that the authors communicate with us using the email addresses of their affiliations and provide us the URL addresses of their affiliations. The overall quality of paper will be also checked including format, figures, tables, integrity and adequacy. Authors may be required to improve the quality of their paper before sending it out for review. If a paper is obviously of low quality, the paper will be directly rejected.

Acceptance Criteria:

The criteria for acceptance of manuscripts are the quality of work. This will concretely be reflected in the following aspects:

  • Novelty and Practical Impact
  • Technical Soundness
  • Appropriateness and Adequacy of 
    • Literature Review
    • Background Discussion
    • Analysis of Issues
  • Presentation, including 
    • Overall Organization 
    • English 
    • Readability

For a contribution to be acceptable for publication, these points should be at least in middle level.

Guidelines for Rejection:

  • If the work described in the manuscript has been published, or is under consideration for publication anywhere else, it will not be evaluated.
  • If the work is a plagiarism, or contains data falsification or fabrication, it will be rejected.
  • Manuscripts, which have seriously technical flaws, will not be accepted.

Call for Journals

Research Online Publishing (RonPub, www.ronpub.com) is a publisher of online, open access and peer-reviewed scientific journals.  For more information about RonPub please visit this link.

RonPub always welcomes suggestions for new journals in any research area. Please send your proposals for journals along with your Curriculum Vitae to This email address is being protected from spambots. You need JavaScript enabled to view it. .

We are also open for publishing collaborations with research societies. Please send your publishing collaboration also to This email address is being protected from spambots. You need JavaScript enabled to view it. .

Be an Editor / Be a Reviewer

RonPub always welcomes qualified academicians and practitioners to join as editors and reviewers. Being an editor/a reviewer is a matter of prestige and personnel achievement. Upon the quality of reviewing work, a reviewer will have the potential to be promoted to a full editorial board member.

If you would like to participate as a scientific committee member of any of RonPub journals, please send an email to This email address is being protected from spambots. You need JavaScript enabled to view it. with your curriculum vitae. We will revert back as soon as possible. For more information about editors/reviewers, please visit this link.

Contact RonPub

Location

RonPub UG (haftungsbeschränkt)
Hiddenseering 30
23560 Lübeck
Germany

Comments and Questions

For general inquiries, please e-mail to This email address is being protected from spambots. You need JavaScript enabled to view it. .

For specific questions on a certain journal, please visit the corresponding journal page to see the email address.